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Abstract

This paper introduces a flexible time-varying network vector autoregressive model frame-
work for large-scale time series. A latent group structure is imposed on the heterogeneous
and node-specific time-varying momentum and network spillover effects so that the number
of unknown time-varying coefficients to be estimated can be reduced considerably. A classic
agglomerative clustering algorithm with nonparametrically estimated distance matrix is com-
bined with a ratio criterion to consistently estimate the latent group number and membership.
A post-grouping local linear smoothing method is proposed to estimate the group-specific
time-varying momentum and network effects, substantially improving the convergence rates
of the preliminary estimates which ignore the latent structure. We further modify the method-
ology and theory to allow for structural breaks in either the group membership, group number
or group-specific coefficient functions. Numerical studies including Monte-Carlo simulation
and an empirical application are presented to examine the finite-sample performance of the
developed model and methodology.
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1 Introduction

Modeling large-scale time series has been the main frontier of recent advances of time series anal-
ysis and is of fundamental importance in various fields of applications such as climatology, eco-
nomics, finance and social networks. Since Sims (1980)’s seminal work, the vector autoregressive
(VAR) model has become a commonly-used statistical tool to tackle multivariate time series, see
Liitkepohl (2006) and Kilian and Liitkepohl (2017) for a comprehensive review of classic estima-
tion and forecasting techniques. However, the VAR-based estimation and forecasting are chal-
lenging when the number of time series sequences N diverges to infinity. In this case, the number
of unknown parameters in VAR transition matrices is of order O(N?), which may be substantially
larger than the time series length T. In order to construct sensible estimate and forecast, two
dimension-reduction approaches are often employed: VAR with sparse transition matrices and
regularised estimation (e.g., Song & Bickel 2011, Bonhomme & Manresa 2015, Kock & Callot 2015,
Davis, Zang & Zheng 2016, Miao, Phillips & Su 2023) and factor-augmented VAR (e.g., Bernanke,
Boivin & Eliasz 2005, Bai & Ng 2006, Bai, Li & Lu 2016). Although some sound asymptotic prop-
erties have been developed for the sparse or factor-augmented VAR estimates, they often neglect
possible network structures in large-scale time series and cannot directly capture dynamic net-
work effects.

Consider time series observation vectors X; = (xj¢, - - ,xN,t)T with N being the number of
nodes in the large-scale network, and denote an adjacency matrix by W = (wi;)nxn, Where wy; =
0, wy; =1 for i # j if there exists a directed edge from i to j and w;; = 0 otherwise. The matrix W
is assumed to be observable and can be either directed (W' # W) or undirected (W' = W). The
classic network VAR model is defined by

Xit = PB1 Zﬁ’ijxj,t—l + Boxit—1 + e, 1=1,---,N, (1.1)
j#AL

where wi; = wij/n; withn; = Z#i Wwij, B1 and B, are unknown parameters, and e¢ = (€14, -, ent)
is a sequence of independent and identically distributed (i.i.d.) random vectors. The above
network VAR model formulation contains two regression components: f3; Z]. 2i WijXj—1 and
2xi¢—1, corresponding to the network (cross-lag) and momentum (own-lag) effects, respectively.
Zhu et al (2017) discuss stationarity conditions for an extended network VAR model with extra
nodal effects, propose the least squares estimation method and derive the relevant asymptotic
theory. Although the classic linear network VAR model is easy to interpret and implement, it
may be invalid in empirical applications. In particular, there exist two practical issues: (i) the
stable network VAR model cannot capture smooth structural changes in the underlying data gen-
erating process over a long time span; and (ii) it is often too restrictive to impose the homogeneity
assumption on the autoregressive coefficients over N nodes. Consequently, the homogenous lin-
ear network VAR (1.1) may suffer from the model misspecification problem, resulting in biased
estimates, inaccurate forecast and misleading inference. There have been some attempts in recent



years to address one of the aforementioned two issues. To incorporate structural changes in the
autoregressive structures, Sun (2016), Sun & Malikov (2018), Wu (2019), Chen et al (2023) and Yin,
Safikhani & Michailidis (2024) extend the linear network VAR models, allowing the coefficients
to vary smoothly over time or with a stationary index variable. On the other hand, to relax the
homogeneity restriction in linear VAR models, Yin, Safikhani & Michailidis (2023, 2024) introduce
tully heterogenous network VAR models with the momentum and network spillover effects vary-
ing over nodes. However, the number of unknown coefficients in the latter models grow with the
number of nodes, resulting in slow estimation convergence when the time span is not sufficiently

long.

This paper aims to jointly tackle the aforementioned two issues by introducing a general time-
varying network VAR model framework satisfying a latent group structure, i.e., the time-varying
network autoregressive relationships are invariant within a group of nodes, but change over dif-
ferent groups. The grouped time-varying network VAR model achieves a good balance between
model flexibility and parsimony. It not only covers the homogenous network VAR models (Zhu
et al 2017, Wu 2019) as a special case, but also provides a more parsimonious model formula-
tion than the fully heterogenous network VAR models (Yin, Safikhani & Michailidis 2023, 2024),
achieving dimension reduction in estimation and improving the subsequent out-of-sample fore-
casting performance. The main methodological and theoretical contributions of our paper with
connection to the existing literature are summarized as follows.

* General network VAR model framework with a latent group structure on time-varying momentum
and network spillover effects. There has been increasing interest in recent years to explore a
group structure under the classic stable VAR or network VAR model framework. For exam-
ple, Zhu & Pan (2020) introduce a grouped linear network VAR model via a mixture Gaus-
sian distribution and use an EM estimation algorithm; Gudmundsson & Brownlees (2021)
propose a stochastic block VAR model and detect a latent group structure on the network
spillover effects; Chen, Fan & Zhu (2023) study a community network VAR model and allow
network effects to vary over different communities; and Zhu, Xu & Fan (2023) introduce a
least squares algorithm to simultaneously estimate the parameters and identify the group
structure for heterogeneous network VAR models. In this paper, we relax the somehow re-
stricted stable model assumption in the aforementioned literature, allowing for structural
changes in the underlying data generating process, a typical dynamic feature for large-scale
network time series collected over a long time span. With the latent group structure, we sub-
stantially reduce the number of unknown coefficient functions for momentum and network
spillover effects, which is appealing when the model is applied to the out-of-sample pre-
diction. As in Zhu, Xu & Fan (2023), we allow the time-varying network effects to depend
on both the sender and receiver’s group information, resulting in a further homogeneity
structure over the network effects.

 Easy-to-implement clustering algorithm and post-grouping nonparametric estimation. Since nei-
ther the group number nor membership is known a priori, we combine a classic agglom-
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erative clustering algorithm and a simple ratio criterion to consistently estimate the group
structure. With the nonparametrically estimated distance matrix, we may directly adopt a
standard package in the computing software to implement the cluster analysis. The three-
stage procedure introduced in Section 3.1 does not require iterative computation (e.g., Bon-
homme & Manresa 2015, Zhu, Xu & Fan 2023) to obtain consistent group membership es-
timates. The developed clustering methodology complements recent developments on la-
tent group estimation in the context of large panel data (e.g., Bonhomme & Manresa 2015,
Ke, Li & Zhang 2016, Su, Shi & Phillips 2016, Ando & Bai 2017, Vogt & Linton 2017, 2020,
Chen 2019). However, since the underlying high-dimensional time series process is locally
stationary, it is technically more challenging to derive the asymptotic property of the de-
veloped methodology. To improve the convergence rates of the fully heterogenous time-
varying coefficient estimation which only uses the sample information from one node and
its direct neighbors, we propose a post-grouping local linear smoothing method in Section 4
to estimate the group-specific time-varying momentum and network effects by making use
of the consistently estimated group structure. The asymptotic normal distribution theory
is derived with the convergence rates comparable to those for homogenous time-varying
coefficient estimation.

Structural breaks in the group structure. The existing literature on grouped network VAR mod-
els requires the assumption that the latent group structure is time-invariant. This assump-
tion may be restrictive for some empirical case studies. For example, a macroeconomic
shock such as the global financial crisis may not only lead to a structural break in the group
structure among a large number of countries, but also result in abrupt changes in the vec-
tor autoregressive structure of macroeconomic time series. This paper extends the model,
methodology and theory, allowing for structural breaks in either the group membership,
group number or group-specific coefficient functions. With the two-stage estimation pro-
cedure introduced in Section 5, we consistently estimate the scaled break location and the
group structures over the two time periods separated by the break point. The online supple-
ment (Li et al 2024) further introduces a refined break point estimation using the consistently
estimated group structure to improve the break point estimation accuracy. Our model and
methodology can be seen as an extension of the linear panel model framework (with break
in the group structure) considered by Lumsdaine, Okui & Wang (2023) and Wang, Phillips
& Su (2023), taking into account the network structure and allowing for structural changes
over time.

The finite-sample Monte-Carlo simulation study shows that the proposed clustering algorithm

and ratio criterion can consistently estimate the latent group membership and number as long as
the time series length T is moderately large; the post-grouping local linear estimates perform
significantly better than the naive heterogeneous local linear estimates; and the developed two-
stage estimation procedure can precisely locate the break point and estimate the group structure
before and after the break. The developed model and methodology are further applied to analyze
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the monthly temperature data collected in 37 UK weather stations over the time period between
January 1950 and February 2023. The empirical result reveals that there exist two groups over
the node-specific time-varying coefficients: weather stations in Northern Ireland and Wales tend
to form one group and those in England and Scotland form the other. In addition, our proposed
method outperforms other competing methods in terms of out-of-sample prediction.

The rest of the paper is organized as follows. Section 2 introduces the time-varying network
VAR model together with the latent group structure and provides some fundamental model as-
sumptions. Section 3 describes the estimation methodology for the group structure and estab-
lishes the consistency property for the resulting estimation. Section 4 proposes the post-grouping
nonparametric estimation and derives the relevant asymptotic theory. Section 5 extends the
model, method and theory to the case with breaks in either the group structure or group-specific
coefficient functions. Section 6 reports both the simulation and empirical studies. Section 7 con-
cludes the paper. Appendix A introduces the clustering algorithm to identify the homogeneity
structure on the network effects. The online supplement (Li et al 2024) contains proofs of the
main asymptotic theorems, some technical lemmas with their proofs, discussion on the refined
break point estimation, and extra numerical results. Throughout the paper, we let [-] and [-]
be the floor and ceiling functions, respectively. For a vector x = (xy,--- ,xp)T € XP, we write

Ixlqg = (X0 Ixil9)"V9 for ¢ > 1 and [xle = maxicicp Ixil; for a matrix £ = (0yj)pxp, Write
IZlF = (Z]i):l Z}Dzl G%j)1/2/ 1l = maXigi,j<p |Uij| and |Zlo = maxyegr:x,—1 |Zx|; and for a p-
dimensional random vector Z, write Z € £~ if ||Z]|. := [E(|Z|5)]V/* < oo,k > 1. Let I be a

k x k identity matrix and Oy 1 a k x 1 zero matrix. For a square matrix, Amin(-) and Anax(-) denote
the minimum and maximum eigenvalues and det(-) denotes its determinant. Let a,, = o(b,,),
a, = op(by) and a,, x b, denote that a,,/b,, - 0as n — oo, a,/b, — 0 with probability
approaching one (w.p.a.1),and 0 < ¢ < an /b, < T < oo, respectively.

2 Time-varying network VAR and latent groups

In this section, we introduce the main model framework, i.e., the time-varying network VAR
model with a latent group structure, and impose some fundamental assumptions, ensuring the
network time series are locally stable.

2.1 Grouped time-varying network VAR

Suppose that there exists a partition of the node indexset{1,2,-- - , N}, denoted by ¥ = {4, %, - - - , %},
suchthat % N¥; =0 for1 <i#j < Ko. Let gi € {1,---, Ko} be the group membership of the i-th
node, i.e., g; = k is equivalent to i € %. Neither the group membership nor the group number is



known a priori. Consider the following grouped time-varying network VAR model:

Xit = Z Xg,g; (T )WiXj -1 + &g (Te)xie—1+ €, i=1,---,N, t=1,.--,T, (2.1)
j#AL

where 1, = t/T denotes the scaled time point, oy, ¢, () and &g, (-) are smooth coefficient functions,
and the remaining elements are defined as those in (1.1). In contrast to the linear network VAR
model (1.1), the grouped time-varying network VAR model (2.1) provides a much more flexible
framework, allowing the network and momentum effects to change over time and nodes. In par-
ticular, the interaction between nodes from two groups share the same time-varying network ef-
fects which is appealing for modeling social networks with smooth structural changes. Although
we only consider one lag in model (2.1) for simplicity of exposition, the method and theory de-
veloped in Sections 3 and 4 below can be easily extended to the model setting with finite lags. It
is worth pointing out that our network structure is deterministic (Zhu et al 2017) and the group
membership is determined by node-specific time-varying momentum and network spillover ef-
fects. This is substantially different from the community network VAR model studied by Chen,
Fan & Zhu (2023), where the network structure is random and the community structure is used
for the network generating mechanism.

Let W be the row-normalized adjacency matrix with the (i, j)-entry being wi;, B1(-) bean N x N
matrix being the diagonal entries being zeros and the off-diagonal (i,j)-entry being &g, 4, () and
B,(-) = diag{ag,(-),- -+, xgy (-)}. Then, we may rewrite model (2.1) as

Xt - B(Tt)xtfl + &ty B(Tt) - Bl(Tt) O] /wv + BZ(Tt)/ t= 1/ e rT/ (22)

where © denotes the Hadamard product between matrices. Model (2.2) thus falls within the
high-dimensional time-varying VAR model framework which has received increasing attention
in recent years. For instance, Ding, Qiu & Chen (2017) propose a kernel-weighted {;-regularised
estimation for a time-varying VAR model; Xu, Chen & Wu (2020) study a high-dimensional VAR
model with multiple breaks and estimate smooth time-varying covariance and precision matrices
between the break points; Chen et al (2023) estimate dual network structures via directed Granger
causality and undirected partial correlation linkages within the high-dimensional time-varying
VAR framework. However, the aforementioned literature often assumes a sparsity condition
on the time-varying VAR transition matrices to facilitate the use of the regularised estimation
techniques and cannot directly capture possible time-varying network effects. In this paper, we
decompose the time-varying transition matrix into two components: B,(t¢) capturing the mo-
mentum effects and By(t,) © W capturing the dynamic network spillover effects.

The proposed model (2.1) contains the homogenous time-varying network VAR model (e.g.,
Wu 2019) as a special case, i.e.,

Xit = OCI(Tt) ZVVinj,t—l + O(QT(Tt)Xi,t—l + €t
j#AL



In contrast to the fully heterogenous network VAR model (e.g., Yin, Safikhani & Michailidis 2024),
our model achieves substantial dimension reduction, reducing the number of unknown coeftfi-
cient functions to K3 + K, which is finite (as Ko is assumed to be fixed). In the homogenous or
grouped linear network VAR (e.g., Zhu et al 2017, Chen, Fan & Zhu 2023, Zhu, Xu & Fan 2023),
the so-called nodal effect is often incorporated in the model formulation. Hence, we may further
extend model (2.1) to

Xit = Z Xg,g; (T )WiiXj-1 + &g, (Te)Xie—1 + Zh’gi('ft) + €it, (2.3)
j#L

where Z; is a p-dimensional vector of node-specific exogenous covariates and vy, (-) is a vec-
tor of smooth coefficient functions. Letting {Z;} be independent of {¢;}, the model framework
and methodology developed in the sequel can be extended to tackle (2.3) with slight modifica-
tion. However, for notational simplicity, we mainly focus on model (2.1) without the nodal effect
throughout the paper.

2.2 Fundamental assumptions and functional dependence measure

Let f'(-) and f”(:) be the first- and second-order derivatives of f(-). We impose the following
assumption on model (2.1).

Assumption 1. (i) For 1 < g,9" < Ko, agg+(-) and og4(-) are second-order continuously differentiable
functions with

1! 12
<
emax, sup {latgq (0] + |age (O} + max sup {Jog(1)] +[og (0]} < ca
where c, is a positive constant. In addition,
max sup |« |+ max sup |x | < 1. 24
19,97 <K00<TI<)1 99° () 1\9<K00<TI<)1 o) @4

(ii) Let {e(} be a sequence of i.i.d. random vectors with zero mean, positive definite covariance matrix
denoted by ., and

max Efle; 7] <ce,
1I<iKN

where q > 8 and c, is a positive constant.

Remark 2.1. (i) The smoothness condition on xgg+(-) and «g(-) in Assumption 1(i) is common for the local
linear estimation method and theory (e.g., Fan & Gijbels 1996). We may replace it by the condition that
g+ (-) and oy (-) belong to the Holder class (e.g., Definition 1.2 in Tsybakov 2008) when adopting a general
local polynomial estimation. The condition (2.4) in Assumption 1(i) is a natural extension of the stability
assumption for grouped linear network VAR (Zhu, Xu & Fan 2023), ensuring that the underlying time



series process is locally stable'. We require a relatively strong moment condition (q > 8) in Assumption
1(ii) to derive the uniform convergence of the kernel-weighted quantities, see Lemmas D.1 and D.2 in
Appendix D of the supplement (Li et al 2024).

(ii) For X defined in (2.2), its stationary approximation is given by
X(t) = B(OX{_y (1) + &, 0<T< 1L, (2.5)

It follows from (2.4) in Assumption 1(i) that |B(7)lo < 1 uniformly over 0 < T < 1. Hence, we obtain the
following Wold representation:

Xi(t) = G(T, #) = i Bj(T)st,j, (2.6)
=0

where Fy = (-, €¢_1, €¢). Assume that

sup [[IX{ (Tl ll 4 < Oniay (2.7)

0<t<1

which is weaker than the condition in Example 2.1 of Zhang & Wu (2021) as we allow Oy q to diverge as
N increases. When N is fixed, the above condition can be simplified to sup, <<l E[!X;’(T)\g] < 04 with 04
be a positive constant. Letting X; = X (t¢), under Assumption 1(i) and (2.7), we may show that

max [[[X¢ = X{lollg = O (On,q/T), (2.8)

1<tKT

indicating that X, may be replaced by X{ in the asymptotic derivation by restricting the divergence rate of
On,q. The proof of (2.8) is provided in Appendix B of the supplement (Li et al 2024), which also discusses
the connection of the proposed model to the nonlinear functional dependence measure introduced by Wu
(2005).

3 Estimation of the latent group structure

In this section, we introduce the methodology for estimating the latent group membership and
number, and present the relevant asymptotic properties.
3.1 Group membership estimation when K is pre-specified

We next introduce the nonparametric estimation and clustering methods and obtain the consistent
estimation of the group membership ¢ when K, is known a priori. The methodology can be split

'The condition in (2.4) may be replaced by the following assumption: uniformly over t € [0, 1], det(In—zB(t)) # 0
for all |z| < 1. In fact, (2.4) is a sufficient condition to guarantee the latter assumption.
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into the following three stages.

Stage 1: As there is no prior information on the latent group structure, we start with the fully
heterogenous time-varying network VAR model:

Xit = Z Bij (Te)WisXj—1 + BilTe)Xit—1 + Eie, (3.1)
JEM

where .#{ = {j # i: wy; = 1}is the index set of nodes which the i-th node follows, Bi;(-) = otg,g; (*)
and Pi(-) = og,(-). Model (3.1) is similar to that in Yin, Safikhani & Michailidis (2024). Note
that 34;(-), j ¢ -4, are unidentifiable and thus not estimable. With the smoothness condition in
Assumption 1(i), we adopt the local linear smoothing (e.g., Fan & Gijbels 1996) to estimate the
heterogenous time-varying coefficient functions, only using the sample information from the i-th
node and its direct neighbors, i.e., wy; # 0.

Define

T
~ . T
Xit—1 = [(Wijxj,tfl D e M) /Xi,tfl} ’

which is a random vector with dimension n; + 1, where n; = card(.4{) is allowed to diverge
slowly to infinity and card(-) denotes the cardinality of a set. Letting

Bi(t) = |(By(¥): j € A), BilT)]
with Assumption 1(i), we have the following Taylor expansion:
Bio (Tt) ~ Bio (T) + Bio(T) (Tt - T)

when 7, falls in a small neighborhood of t. Define the node-specific local linear weighted objective
function:

T _ _ 2
Li(a,b) = Z [Xi,t - aTXi,tfl - bTXi,tfl(Tt —1)| Knlte—1), (3.2)
t=1
where a and b are (n; + 1)-dimensional vectors, Ky,(-) = %K(- /h), K(-) is a kernel function and h

is a bandwidth. Minimizing £;(a, b) with respect to the vectors a and b, we obtain the solution
denoted as a and b, and then the local linear estimate of Bi.(T) as

T
-~

Bie(T) = |:(/B\ij('f) Dje e/1/1>T ,Bi(’t)} a. (3.3)

In practice, we obtain the local linear estimates at t{, 1 = 1,--- ,L, a sequence of user-specified
equidistant grid points between 0 and 1 satisfying L — co and L = O(T).

Stage 2: Let 4y ={(1,j) : 1 <1 < N,j € A} It follows from (2.1) that there exists a latent
homogeneity structure for i;(+), (i,j) € AN, and the number of distinct time-varying coefficient
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functions is at most K3. Let 2 (), m =1, -- -, My, denote the true distinct time-varying coefficient
functions for network spillover effects, MO K3, and gi; € {1, -+, Mo} be the group membership
for the index pair (i,j) € AN. With {[31) (t7) : 1 <1 <L (1,]') € ) obtained in Stage 1,
combining the clustering algorithm and the ratio criterion with details provided in Appendix A
(see also Stage 3 and Section 3.2), we may obtain a consistent estimate of M, denoted by /I\/\l, and
the estimated membership Qij. For the i-th node, we construct

Be(t) = [Bau(), B (m)]  with B (1) = ) Biy(0)dDijm, (3.4)

JEM

where 7 is chosen as the grid points T} defined in Stage 1,

Wijm =

~ . (91) /Z]e/;/ 91] - )r if Z]E/K I(@g - m) > Or
0, if Z]E/Vl I(§1] = TTI,) = 0,

and I(-) denotes the indicator function.

Stage 3: With the estimates Bi(-) and B{’,(-) defined in Stages 1 and 2, respectively, we may
compute the point-wise distance between nodes i and j:

~

dij (T) = , (35)

Bu(v) — By(0)| +

and subsequently define the distance matrix:

It is clear that the diagonal elements of D are zeros. With the distance matrix D, we may adopt the
agglomerative hierarchical clustering algorithm which is commonly used in unsupervised cluster
analysis (e.g., Hastie, Tibshirani & Friedman 2009, Everitt et a 2011). This clustering algorithm has
been recently combined with the kernel-based estimation technique to identify the homogene-
ity /group structure in nonparametric panel regression models. For instance, Chen (2019) con-
structs a similar distance matrix and further estimates the latent group structure in time-varying
coefficient panel data models; and Vogt & Linton (2020) introduce a bandwidth-free normalized
distance measure in the clustering algorithm but assume the panel observations are independent
over subjects. The latter assumption may be too restrictive for large-scale network time series
data and is thus removed in this paper. Another relevant paper is Zhang (2013) which clusters
nonlinear trend functions based on parallelism and allows the number of time series to grow at a
slow polynomial rate of T. In contrast, the number of nodes N can be much larger than T in this
papet, see (3.4) in Assumption 2(iii).

Assuming the true group number K, is known a priori, we start with N clusters each of which
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corresponds to one node, search for the smallest off-diagonal entry in D (which is the smallest
estimated distance between nodes), and merge the two corresponding nodes. Consequently the
cluster number reduces from N to N — 1. Use a linkage technique (such as the single or complete
linkage) to calculate the distance between the merged cluster and the remaining ones and update
the estimated distance matrix with size (N — 1) x (N — 1). Repeat the previous steps with the
updated distance matrix, and stop the algorithm when the number of clusters reaches K,. We
denote the estimated clusters by %Ak, k=1,---,K,.

Let A = E[)N(i,t)z{,t] with )N(i,t defined in Stage 1, and write

Bo (1) = [BA(D), -, Bon, (W] with B (1) = Y Bij(twism (3.6)

jeM

and
e — { I(giy =m)/ X e 4 gy =m), if 3 ;c 4 I(gy; =m) >0,
ijm —

0, if Z]’EJ% I(gij = m) =0.

The latter is estimated by Ei",(’t) defined in (3.4) (up to permutation). The following conditions
are required to derive the consistency property of %, k=1, -, K,.

Assumption 2. (i) The kernel function K (-) is a symmetric probability density function that is Lipschitz-
continuous and has a compact support [—1, 1.

(ii) There exist two finite positive constants: A and A, such that

0<A< min min Apin(Ai) < max  sup  Apax(Ait) <A < oo.
1<ISN 0<t<T—1 1SN gep T 1
<"

(iii) Let T, N, and h satisfy h — 0, Th — oo and

NG{L,q

s —0 (3.7)
T e+

[hlog(N\/ T)]9/*

with q defined in Assumption 1(ii) and Oy q is defined in (2.7).
(iv) Lettzng e/Vl()) = {k e N Jx = ]} and i = maxygignN M,

1<rin,jigKO card(A4(j)) >1, A=o0 (\/Th/ log(N \/T)) . (3.8)
Assumption 3. Let
log(NV T
VA <h2 + %) +L =0 (A Chr), (3.9)
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where 1
Chr = 1<91'1T7}igrjl<|<0 L [‘O‘gim — atg ()| + |BL(T) — 5?-“)’2} dr

and .
o= min_ | 1B~ B (Dl

1<m7ém*<M0 0

Remark 3.1. (i) Assumption 2(i) contains some commonly-used conditions imposed on the kernel function
(e.g., Fan & Gijbels 1996). Assumption 2(ii) is crucial to ensure that the kernel-weighted random denom-
inator in local linear estimation is non-singular. In fact, the consistency property in Theorem 3.1 below
continues to hold by allowing A to slowly converge to zero and strengthening other relevant conditions,
e.g., the second restriction in (3.8) and (3.9) would be strengthened to

i=o0 (A\/Th/log(N \/T) and Vi (hz + w> /A+L =0 (CLT) /

respectively. Note that h — 0 and Th — oo in Assumption 2(iii) are reqular conditions for kernel-based
smoothing, whereas the condition (3.7) indicates that there is a trade-off between the network size and the
required moment condition (i.e., when q increases, N may diverge at a faster rate). The first condition in
(3.8) indicates that node i follows nodes in each of the Ko groups and o, (+) is estimable via the local
linear method in Stage 1, whereas the second condition in (3.8) restricts the divergence rate of n; so that
the first-stage local linear estimation of the heterogenous time-varying coefficient functions is uniformly
consistent, see Lemma D.3 in the supplement (Li et al 2024).

(ii) Assumption 3 indicates that the minimum distance between groups may converge to zero at a rate
slower than a typical nonparametric uniform convergence rate if the grid number L is of order T and 7 is
bounded. The restriction (3.9) is automatically satisfied if C\ ; and (i are strictly larger than a positive
constant (e.g., Zhu, Xu & Fan 2023).

Theorem 3.1 below establishes the consistency property of the group membership estimation
when Ky is pre-specified.

Theorem 3.1. Suppose that Assumptions 1-3 hold and K is known a priori. Then, as N, T — oo jointly,
we have
P({% 1<k<Ko}={% 1<k<K}) > 1. (3.10)

Remark 3.2. The consistency property (3.10) is similar to the consistency results of group membership
estimation in nonparametric panel/longitudinal data models, see Theorem 3.1 in Vogt & Linton (2017) and
Theorem 4.1(a) in Vogt & Linton (2020). The key step of proving Theorem 3.1 is to show that

max max Dij; < min min Dj;, w.p.a.l.
1<k<Kp 1,j €% 1<kAL<K i€%,]EF,

This can be proved by using the uniform convergence property of ai)- (+).
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3.2 Estimation of the group number

In practice, the true number of groups is unknown and a data-driven criterion is thus required
to obtain its consistent estimation. We next introduce an easy-to-implement ratio criterion to
estimate K, consistently. Assuming the group number to be K, we may terminate the clustering
algorithm in Stage 3 when the cluster number reaches K and obtain the estimated clusters denoted
by %AMK, k = 1,---,K. With these estimated clusters, we pool the heterogenous time-varying
coefficient estimates Ei(-) and Ei".(-) overie Qk“(, and obtain

N 1 . ~ 1 ~
- - (1), B° = ° (7). 3.11
Brk (1) — %K) %B (1), Byk(T) — (g@ ;&3 (1) (3.11)

Then, we define the average deviation:

ﬁ(K)%ii%Z[

B (tf) — BL(T))

Bu(v) — Bux()| +

2] . (612

€%k

The grouped time-varying network VAR model is either correctly- or over-fitted when K > K,,
indicating that ﬁ(K) converges to zero, and is under-fitted when K < K. For the latter scenario,
at least two groups would be falsely merged, leading to biased estimation of some group-specific
time-varying coefficient functions and a relatively large value of R(K). Hence, it is sensible to
estimate K, by

K= argmin AR&, (3.13)

1<KKK R(K - 1)

where K is a pre-specified positive integer larger than K. In practical implementation, we set
ﬁ(l)/ ﬁ(O) =1, ﬁ(K) = 0 if it is smaller than pn, a user-specified tuning parameter, and define
0/0 = 1. A similar ratio criterion is adopted by Yang et al (2023) to consistently estimate the group
number in nonparametric grouped panel quantile regression models. Other applications of the
ratio criterion can be found in Lam & Yao (2012) and Li, Robinson and Shang (2020).

We require some further conditions to derive the consistency property of K.

Assumption 4. (i) There exists a positive constant cy such that

min card(%) > cy - N.
1<k< K

(ii) The tuning parameter pn satisfies that

log(NVT
ont =0 (thr A dkr), VA (h2+ %h)) — o (pnt). (3.14)
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Remark 3.3. Assumption 4(i) indicates that the cardinality of % is of the same order over k. A similar
restriction is also adopted by Chen (2019) and Zhu, Xu & Fan (2023). Assumption 4(ii) indicates that the
order of pn lies between v/ (h* 4+ \/log(N V' T)/(Th)) and Elr A &L, which is not unreasonable due
to Assumption 3. In particular, when &L A &L is bounded away from zero and . is upper bounded by a
positive constant, the conditions in (3.14) can be simplified to

log(NVT)

0, h?
ONT — + T

=0 (pnT) -

We establish the consistency property of the ratio criterion in the following theorem.

Theorem 3.2. Suppose that Assumptions 1—4 are satisfied. Then, as N, T — oo jointly,

P (12 - KO) S (3.15)

Finally, we use the estimated group number K and terminate the clustering algorithm in Sec-
tion 3.1 when the cluster number reaches K. In order to avoid unnecessary notational burden, we
still denote the estimated groups as %Ak, k=1,---, K. Combining Theorems 3.1 and 3.2, we readily
have the following result.

Corollary 3.3. Suppose that Assumptions 14 are satisfied. Then, as N, T — oo jointly,

P({% 1<k <K} ={% 1<k<K}) = 1 (3.16)

4 Post-grouping local linear estimation

The heterogenous local linear estimation defined in (3.3) only makes use of the sample informa-
tion from node i and its direct neighbors, resulting in rather slow convergence rates (see Lemma
D.3 in the supplement) and unstable numerical performance if T is not sufficiently large in finite
samples. We next aim to address this issue by pooling the sample information over nodes in the
same cluster and proposing a post-grouping local linear estimation.

It follows from Corollary 3.3 that, for any k = 1,--- , K, there exists 1 < Kkt < K such that
% = %+ w.p.a.l. Without loss of generality, we may consider ¥, = % (conditioning on K = Kj)
throughout this section. For i € %, define

T

Xit-1= E WiiXj -1, E WiiXje—1,Xi,t—1|

J€ES jG%ﬁ
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which is a random vector with dimension K + 1. For the k-th group, let

Kke (T) = [(Xkl (T)/ c XKk (T)/ (xk(T)]T

be a vector of true group-specific time-varying coefficient functions to be estimated. For each k
and given T € (0,1), we define the following post-grouping local linear objective function:

;
S i~ a X — b Xt — )] Kiy (10— 1), (41)

16% t=1

where h; is a bandwidth which may be different from h used in the heterogenous local linear
estimation (3.2) and (3.3). Minimizing the post-grouping objective function with respect to the
vectors a and b, we obtain the solutions denoted by & and b, and construct the post-grouping
local linear estimation as

Ko (T) = [&p (T), - -+, Bk (T), & (T)] = d. 4.2)

Let oy = E (e,¢¢5,) and
AY(1) =E [X{ (DXL (D], 1<ij<N,
where
X = | W5l o) 3 W (0,65, (0
€% je%i,

with x{ (1) being the i-th element of X () defined in (2.6).

Assumption 5. (i) The bandwidth h; satisfies that hy — 0and Thy/log(NV T) — oo. In addition, (3.7)
holds when h is replaced by h.

(ii) There exists a positive definite matrix Y, (T) such that

cardl(%) _Z 035 A5(7) = Vg (7) (4.3)

i,jE€E%
as card(%.) — oo, and in addition,

1

card(%) 16% A7 (1) = Ag (T),

which is positive definite, where A (1) = A7 (7).

Remark 4.1. The bandwidth restriction in Assumption 5(i) is comparable to that in Assumption 2(iii).
Assumption 5(ii) allows weak correlation between nodes and can be substantially simplified when & are
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independent over i (e.g., Zhu et al 2017). For example, if 0; = 0 when i # j and oy = 0?2, (4.3) would be
simplified to

1 o - 0—2 o )
card (%) Z O—l)Aii(T) - card(%,) Z A7 (1) = 0°Ag (T).

i,j S SN

Theorem 4.1. Suppose that Assumptions 1-5 are satisfied. For any t € (0,1),

\/card (%) Th; [&k.(’c) — Oie(T) — %h%moc{é.(’t)} 4N (0,Qq, (1)), (4.4)

asN, T — oo jointly, where Qg (T) = VOAEZ(T)Y%(T)A;:(T), Ve = [urK*(u)duand p = [u*K(u)du
fork=0,1,---.

Remark 4.2. Since card (%) is of order N by Assumption 4(i), Theorem 4.1 shows that the post-grouping
local linear estimation & () has the point-wise convergence rate 1//NThy + h2, which is substantially
faster than that for the heterogenous local linear estimation (ignoring the group structure). This is unsur-
prising since more sample information is used in the post-grouping estimation procedure. Note that Yin,
Safikhani & Michailidis (2024) use the spline-based estimation for heterogenous functional coefficients,
which only achieve the root-T convergence rate. If, in addition, €; . are independent over 1, as discussed in
Remark 4.1, we may simplify the asymptotic covariance matrix, i.e., Qg, (T) = vy GZA§;: (T).

5 Breaks in the group structue

The model, methodology and theory developed in Sections 2—4 rely on the assumption that the
latent group structure is time invariant and the group-specific coefficient functions are smooth
over the entire time span. As discussed in the introductory section, this assumption may be re-
strictive for some empirical applications. Hence, we next make a further extension of the model,
methodology and theory, allowing structural breaks in either the group membership, group num-
ber or group-specific coefficient functions. Our main interest lies in locating the break point and
estimating the group structure before and after the break. We mainly consider the case of a single
break for notational brevity and will briefly discuss its extension to the case of multiple breaks
later in Remark 5.2(ii).

Assume that the break occurs at an unknown time point to. Let ' = {¢,--- ,% }and g €
{1,---,K;} be the group structure and membership label (for node i) before the break, whereas let
G =1{9,--- , 9 yand g; € {1,--- ,K;} be defined similarly for those after the break. Consider
the time-varying network VAR model with break in the group structure:

Zj;éi 0‘;191(%)@1%5,&1 + (Xlg_l(Tt)xi,tfl +ee, 1<ty 5.1)
Xi,t — iYj N i .
2 o‘é%g?(’tt)wijx)}t—l + O‘é%(Tt)xi,t—l +eir, t+H1<t<<T,
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where « 191( -) (or o 5 2( )) and oc ( ) (or oc »(+)) are the smooth time-varying network spillover
and momeﬁtum effects before (or after) the break Model (5.1) can be seen as an extension of the
linear panel model framework (with break in the group structure) in Lumsdaine, Okui & Wang
(2023) and Wang, Phillips & Su (2023), taking into account the smooth time-varying feature and

network structure.

Throughout this section, assume that i is bounded. We next introduce a two-stage estimation
procedure with break location estimation in Stage 1 and then group estimation in Stage 2.

Stage 1: As the time-varying group structure is latent, similar to (3.1), we first consider the
fully heterogenous time-varying network VAR model with break at ty:

Xit = Z B%j (T)WiXj -1 + B%(Tt)xi,t—l + €ty (5.2)
jEM
where
Lity), 1<t<t, Hty), 1<t<ty,
Bf] (Tt) — B;)( t) 0 [.))f(’rt) — [32( t) 0 (5.3)
1)(Tt)/ t0+1 gth/ Bl(Tt)/ t0+]- gth
Write :
Bl = | (B im) s e ) Bl
as in Section 3.1, and let
Biu(t) =limBL,(x) and Bi(r) =lim Bi,(x)
denote the left and right limits of B}, (), respectively. Define
_ Ir _ il
op(t) = max Bis(T) — BT (5:4)

It follows from (5.1)—(5.3) that 65(t), t = 1,---, T, achieve the maximum at t = ty, which moti-
vates the subsequent estimation procedure. Specifically, we estimate 65 (t) by a one-sided kernel
smoothing method? and then locate the break point by maximizing the estimate of 8(t) over t.

Let K*(-) be a one-sided kernel function with a compact support [0, 1], say, the one-sided ver-
sion of the Epanechnikov kernel. Define

= 1 S T —Ts —
N,.=—9Y X; 11X . K : Xis 1X] K
it Th;}; Zl ,$—1/V,s—1 ( h ) 1t Thi Z 17N ,s—1 ( hi )

¥

2The extension to the one-sided local polynomial smoothing is straightforward, see Chen, Wang & Wu (2022).
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J— TS - Tt
1 Xl S— 1, S 7 i Xl S— 1, s 7
i Thi Z i ( hy ) ' Thi Z T ( hy )

where h; is the bandwidth and >N<i,s_1 is defined as in Section 3.1. We estimate Bf.' (t¢) and [5%: (ty)
by

—~ ~| -1 — ~ ~r \ —1_,
By = (M) T and Bl(v) = () T (5.5)
respectively, and then construct
S — i
op(t) = max ’[5 (t) — BH(x ) (5.6)
The estimation of t; is defined as
t = argmax 55 (t). 6.7)

t

Stage 2: Let
%:{1,2,“',%— |_€0TJ} and 57.1:{:(\—{— L€0TJ/"'/T_1/T}/

where ¢ is an arbitrarily small positive number (say 0.01). From Theorem 5.1(i), the group mem-
bership and number are time invariant w.p.a.1 over the two time periods .7 and .%. Hence, we
may adopt the clustering algorithm and ratio criterion developed in Section 3 to estimate ¥, and
Ky (using the network time series sample over fl) as well as % 2 and K, (using the sample over .2%).

We denote the resulting estimates as %k, Kl, % and Kz, whose consistency property is derived in
Theorem 5.1(ii) below.

The following conditions are required to derive the asymptotic property of the above two-
stage estimation method.

Assumption 6. (i) For 1 < g, g* < Ky, ocgg* () and oc; (+) have bounded first-order derivatives and satisfy

max  sup |ot,.(T)|+ max sup |o(T)| <1.
1S9.9"sK1 o<t IsgsKipge<t

The same conditions hold for o . (-) and o (-), 1 < g, g* < Ka.
(i) K¥(+) is positive and Lipschitz-continuous with a compact support [0, 1].
(iii) There exist positive constants ci € (0,1) and c, such that to = ¢, T and b5 (tg) > co.

(iv) There exist positive constant c3 and c4 such that

min card(%!) > c3-N and min card(%?) > cs- N.
1<k<Ky 1<k<Ky

Remark 5.1. Assumption 6(i)(ii) contains some typical conditions on the time-varying coefficient func-
tions and kernel function which are often required when the one-sided kernel smoothing is adopted. In
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particular, Assumption 6(i) ensures that the grouped time-varying network VAR process is locally stable
over the two time periods separated by the break point. Assumption 6(iii) indicates that the break location is
well separated from the endpoints and the break size is bounded away from zero. The structural break may
be due to abrupt changes in the group-specific time-varying coefficients functions or breaks in the group
membership or number. More discussion and examples are available in Appendix E of the online supple-
ment (Li et al 2024). In fact, by slightly modifying the proof and theory, we may allow g (to) to slowly
approach zero as in Chen, Wang & Wu (2022). Assumption 6(iv) is a natural extension of Assumption
4(i) to the time-varying group structure.

Let 3¢,(-) be defined similarly to 3,(-) in (3.6) but with Byj(-) replaced by Bi;(-). As By, (-)
defined in Stage 2 of Section 3.1, we let B51(-), m = 1,---,M,, denote the distinct coefficient
functions for time-varying network effects before the break, where M; < K2. The definitions of

°2(:)and BS2(-), m =1,---,M,, are analogous. Define

1 . Jcl[
(T = Min

OC;%(T) - ‘Xlg}(’f)’ +

Boa () — B52(7)], ] dr,

1<gi#9{<K1 Jo
1
2 .
Br=_min | [lodyr) - oy + B30 - BRnl] a
1<91#95<Ka J ¢y i j

¢
oy . ol ol
=  min 1) — Rl (7)] dr,
= min | 1B = ik (o]

1
2 : 02 02
= min T) — .(T)| dT.
CNT I<m#Am*<M, Jcl ’Bm( ) Bm ( )|

Let #{'(j) = {k € A : gy =jland A2(j) ={k € A : g% =]}
Theorem 5.1. Suppose that Assumptions 1(ii), 2(ii) and 6(i)—(iii) are satisfied.

(i) The break location estimate t has the following approximation order:
— 0, <\/ iy logT(N VT, hg) . (5.8)

(ii) If, in addition, Assumption 6(iv) is satisfied and (3.8), (3.9) and (3.14) continue to hold when h,
card(A4(j)) and (Lt Ay and replaced by hy, card (A4 (§))Acard (A;2(j)) and min{CL1, (3, Curr Gl
respectively, we have

t— 1
T

as N, T — oo jointly.
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Remark 5.2. (i) Theorem 5.1(i) shows that the scaled break point estimation is consistent. Although the
convergence rate in (5.8) is conservative, it is sufficient to consistently estimate the time-varying group
membership and number in Stage 2. The approximation rate may be improved if we replace the one-sided
kernel by one-sided local linear smoothing (e.g., Chen, Wang & Wu 2022) in Stage 1.

(ii) In practice, there are often multiple breaks in the latent group structure, i.e., breaks occur at some
unknown but well separated break points tq,t,,--- ,t,. In this setting, the methodology and theory con-
tinue to hold with minor amendments. For example, we may use the recursive algorithm in Xu, Chen
& Wu (2020) to locate the p break points, an idea similar to the binary segmentation commonly used to
estimate multiple breaks in parametric models (e.g., Cho & Fryzlewicz 2012, 2015).

(iii) In Appendix E of the online supplement (Li et al 2024), we discuss a refined break point estimation,
making use of the consistently estimated group structures. Under some high-level conditions, we show that
the refined estimation of the break location is consistent. Furthermore, we provide a few examples to verify
the high-level conditions.

6 Numerical studies

In this section, we conduct both the simulation and empirical studies. Sections 6.1 and 6.2 assess
the finite-sample performance of the developed methodology and verify the main convergence
properties via simulation, whereas Section 6.3 reports the empirical application to a network time
series data set for UK temperature.

6.1 Simulation study without break

We use the grouped network time-varying VAR model (2.1) for data generation. The entries of
the adjacency matrix W are defined by wy; = I(uy; < W), where u; ~ U(0,1) and 0 < w < 1,
controlling the sparsity level of the network structure. The innovation vectors are generated by
e¢ ~ N(0,Z;) independently over t, where . = {ojj}nxn With 0y = 0.1 allowing cross-
sectional dependence over components. Consider K, = 2 and define the group-specific coeffi-
cients as

o (1) = 0.49 cos(mt), 1€ %, (1) = 05—1, ifi,je9q,
] —0.2, 1€ %, 998 ] 13— 0.5, otherwise.

The group membership is generated as follows: assign each node i € {1,...,N} to ¢4 and %
with respective probabilities 0.65 and 0.35. Note that there exists a further group structure on
the time-varying spillover effects oy, g, () with My = 2, as described in Stage 2 of Section 3.1.
In the simulation, we consider two scenarios for generating the group membership: (i) fixed
group, i.e., the group membership is only generated once and remains the same over replications;

20



and (ii) random group, i.e., the group membership is randomly generated for each replication.
We conduct the simulation over R = 1000 replications and set N = 100,200, T = 300,600, and
w = 0.025,0.075.

We use the Epanechnikov kernel in the local linear smoothing, where the bandwidth is deter-
mined by the rule of thumb (Su & Wang 2017): h = (2.35/ V12)T~Y/5 for the fully heterogenous
local linear estimation (3.2) and h; = (2.35/1/12) [card(gzj\ )TI1/% for the post-grouping estimation
(4.1), where {2) denotes the estimated group. We notice that the clustering results are insensitive
to the bandwidth choice in our simulation. For each simulated data set, we first estimate the
group membership and number as in Section 3, and then conduct the post-grouping estimation
as in Section 4. To evaluate the group structure estimation accuracy, we adopt the following two
measurements:

AC(K,) = %Z I(K, =K,) and Purity(¥) = L > > max

where ﬁr and E%\(,T denote the estimates of the group number and membership in the r-th repli-
cation. The purity quantity Purity(¥) is a simple and transparent evaluation measure with value
close to one when the clustering method is precise. To compare the estimation performance be-
tween the pre-grouping local linear estimation and the post-grouping one, we compute the root
mean squared errors for the estimated momentum and spillover effects:

;NS ) V2
RMSEw, = {N_S >y } ,
i=1 s=1

1 NS ) 2
RMSES,V = {N_S Z B:,io(,rs) - B?Q(TS) 2} s

i=1 s=1

Er,i(Ts) - Bi(Ts)

where B7,(-) = (By(-) : j € A ), Br,i(') and Ei/i,ﬂ) stand for the estimates in the r-th replication,
T, = 0.05,0.1,--- ,095and S = 19.

The simulation results are summarized in Tables 1 and 2. The numbers in parentheses of Table
2 are standard deviations of RMSEy, and RMSEs, over 1000 replications. It follows from Table
1 that both AC(K() and Purity(¥) converge to one as the time series length T increases from 300
to 600, and the results remain stable when the sparsity level W changes from 0.025 to 0.075. Table
2 shows that the post-grouping time-varying coefficient estimation substantially outperforms the
pre-grouping one, confirming that the estimation accuracy is significantly improved by making
use of the estimated group structure. The standard deviations are generally small, indicating
that the nonparametric estimation performance is stable over replications. In addition, both the
pre-grouping and post-grouping local linear estimates deteriorate when W increases from 0.025
to 0.075.
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Table 1: Estimation performance of the group number and membership

Fixed group Random group

Sparsity Measurement T\ N 100 200 100 200
w = 0.025 AC(Ky) 300 1.000 0.995 0.999 0.997
600 1.000 1.000 1.000 1.000

Purity(¢) 300 0.997 0.996 0.996 0.995

600 1.000 1.000 1.000 1.000

w = 0.075 AC(Ko) 300  0.999 0.989 0.989 0.993
600 1.000 1.000 1.000 1.000

Purity(¢) 300  0.988 0.958 0.985 0.955

600 1.000 1.000 1.000 0.999

Table 2: Estimation performance of the time-varying momentum and network spillover effects

Fixed group Random group
RMSE RMSEsg RMSEy RMSEsg
Sparsity =~ Estimation TAN 100 200 100 200 100 200 100 200

w = 0.025 Pre-grouping 300 0.148 0.316 | 0.330 0.768 0.189 0.312 | 0.419 0.745
(0.023) (0.015) | (0.011) (0.012)  (0.027) (0.019) | (0.038) (0.037)

600 0.078 0.211 | 0.234 0.493 0.116 0.223 | 0.295 0.515

(0.023) (0.014) | (0.007) (0.006)  (0.026) (0.016) | (0.025) (0.025)

Post-grouping 300 0.035 0.048 | 0.107 0.118 0.036 0.047 | 0.108 0.117

(0.010) (0.007) | (0.004) (0.003)  (0.011) (0.008) | (0.004) (0.003)

600 0.021  0.024| 0.077 0.081 0.021  0.026| 0.078 0.082

(0.004) (0.003) | (0.002) (0.002) (0.004) (0.003) | (0.002) (0.002)

w = 0.075 Pre-grouping 300 0.399 0.751 | 0.967 2.268 0.424 0.768 | 1.075 2.333
(0.023) (0.129) | (0.015) (0.020)  (0.034) (0.146) | (0.063) (0.083)

600 0.289 0.505 | 0.660 1.450 0.306 0.509 | 0.729 1.457

(0.014) (0.048) | (0.009) (0.010)  (0.019) (0.047) | (0.038) (0.042)

Post-grouping 300 0.062 0.102| 0.125 0.156 0.063 0.104 | 0.126  0.157

(0.013) (0.019) | (0.004) (0.003)  (0.015) (0.020) | (0.005) (0.004)

600 0.032 0.049 | 0.086 0.099 0.033 0.050 | 0.086 0.100

(0.003) (0.004) | (0.003) (0.002)  (0.004) (0.005) | (0.003) (0.003)
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Table 3: Measurements of the (scaled) break point estimation

Fixed group Random group
Sparsity T\ N 100 200 100 200
w=0.025 400 -0.002(0.031) -0.003 (0.033) -0.001 (0.032) -0.003 (0.033)
800  -0.001 (0.016) -0.002 (0.017) -0.002 (0.016)  0.000 (0.017)
w=0.075 400  -0.003(0.033) -0.002 (0.034) -0.003 (0.034) -0.002 (0.034)
800  -0.001 (0.017) 0.000 (0.017) 0.000 (0.017) -0.001 (0.017)

o~~~ o~

6.2 Simulation study with a break in the group structure

We next examine the numerical performance of the estimation method with a break in the group
structure introduced in Section 5. The break point is set at ty = | T/2] + 1 when we re-assign each
node i to ¢ and %, with respective probabilities 0.65 and 0.35. This results in a break in the group
membership. Before the break time, the data generating process is the same as that in Section 6.1,
whereas, after the break, the group-specific time-varying coefficients are defined as

oo (1) = —0.49sin(nt/2), 1€ %, (1) = 0.49sin(7tt/2), ifi,j € 4,
I ) 049sin(ntt/2), i€ %, 99 ] —0.49sin(mt/2), otherwise.

As in Section 6.1, we consider both the fixed and random groups when generating the group
membership (with a break) over R = 1000 replications. In order to obtain stable finite-sample
performance, we slightly increase T from (300,600) to (400,800). The number of nodes remains
as N = 100 and 200.

The one-sided version of the Epanechnikov kernel function is adopted in our nonparametric
method. We first estimate the break point via (5.7), compute the (scaled) measurement Ay, =
(t — t9)/T, and then report the means and standard deviations (in parentheses) of A, in Table 3.
It is clear that the scaled break point ty,/T can be accurately detected, and its estimation accuracy
is not sensitive to the sparsity level of the adjacency matrix W. With the estimated break point,
we may split the entire time period into the "pre-break" and "post-break” periods and compute
their respective AC(Ky) and Purity(¢). We further take a simple average of those values over the
two periods and report them in Table 4. We note that both the group number and membership
are estimated very accurately even when there exists a break in the group structure. We finally
compare the estimation performance between the pre-grouping and post-grouping local linear
estimation after the break point is detected. When computing RMSEy and RMSEg, we choose
7, = 0.05,0.1,...,0.4 for the “pre-break” period and T, = 0.6,0.65,...,0.95 for the “post-break"
period, avoiding possible boundary effect in the estimation. The general pattern in Table 5 is
very similar to that in Table 2, again confirming the significant advantage of the post-grouping
estimation.

Appendix F in the online supplement (Li et al 2024) contains extra simulation results: the
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Table 4: Estimation performance of the group number and membership (with a break)

Fixed group Random group
Sparsity Measurement T\ N 100 200 100 200

w =0.025 AC(Ko) 400 1.000 1.000 1.000  1.000
800 1.000 1.000 1.000 1.000
Purity(¢) 400 0999 0.999 0999 0.998

800 1.000 1.000 1.000 1.000

w = 0.075 AC(Ko) 400 0994 0966 0993 0.968
800 1.000 1.000 1.000 1.000
Purity(¢) 400 099 0982 0995 0.983

800 1.000 1.000 1.000 1.000

Table 5: Estimation performance of the time-varying coefficients with a break in the group struc-
ture

Fixed group Random group
RMSEw RMSEg RMSEw RMSEg
Sparsity =~ Estimation TA\N 100 200 100 200 100 200 100 200

W =0.025 Pre-grouping 400 0490 0562 | 0553 0.785 0477 0.545] 0569 0.765
(0.006) (0.010) | (0.007) (0.008)  (0.020) (0.016) | (0.027) (0.028)

800 0485 0.490| 0521 0.622 0461 0.494| 0515 0.627

(0.004) (0.005) | (0.005) (0.006)  (0.020) (0.016) | (0.021) (0.020)

Post-grouping 400  0.032  0.040 | 0.093 0.101  0.034 0.040| 0.095 0.101

(0.006) (0.006) | (0.003) (0.002)  (0.009) (0.007) | (0.003) (0.002)

800  0.020 0.023| 0.067 0071 0021 0.024| 0.068 0.072

(0.003) (0.002) | (0.002) (0.002)  (0.004) (0.003) | (0.002) (0.002)

W =0.075 Pre-grouping 400  0.613  1.023| 0930 1.890  0.636  1.035| 0.998 1910
(0.026) (0.070) | (0.012) (0.015)  (0.027) (0.066) | (0.046) (0.058)

800 0535 0.730| 0731 1260 0538 0743 | 0759 1.291

(0.008) (0.021) | (0.008) (0.008)  (0.017) (0.027) | (0.029) (0.033)

Post-grouping 400  0.046  0.075| 0.106 0.126  0.050 0.075| 0.108 0.126

(0.010) (0.016) | (0.004) (0.003)  (0.011) (0.016) | (0.004) (0.004)

800  0.026 0.038| 0.074 0083  0.028 0.038| 0.074 0.083

(0.003) (0.003) | (0.002) (0.002)  (0.004) (0.005) | (0.002) (0.002)
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finite-sample performance of the clustering algorithm introduced in Appendix A on estimating
the homogeneity structure for the network spillover effects, and the clustering result by using
Zhu, Xu & Fan (2023)’s grouped network VAR model with constant coefficients.

6.3 An Empirical Study

There has been increasing interest in investigating the spatial pattern of climate data, see, for
example, Portmann, Solomon & Hegerl (2009), Kendon et al (2020), Hanlon et al (2021) and the
references therein. We next apply the proposed model and methodology to analyze a set of UK
climate data, exploring the network and latent group structures and allowing for smooth struc-
tural changes to account for possible climate changes in the past few decades. The data that we
use are collected from the UK Meteorological Office,® containing temperature recordings (in Cel-
sius) of 37 weather stations with their geographical locations presented in Figure 1. The original
dataset collects minimum and maximum temperatures per month over the period from January
1950 to February 2023. Hence, the time series length is T = 878. We consider the following two
scenarios when building the network VAR model: (i) both the minimum and maximum temper-
atures are used as elements of Xy; (ii) the averaged temperature per month is used as elements of
X¢. In model (ii), each weather station is treated as a node and N = 37; whereas in model (i), the
minimum and maximum recordings in each weather station are treated as two nodes and N = 74.
The time series observations are standardized to have zero mean and unit standard deviation.
The adjacency matrix W is constructed by following the UK climate region map*. Specifically, it is
classified into the following five regions: Southern England, Northern England, Wales, Scotland,
and Northern Ireland. When stations i and j are in the same region, we set w;; = 1, otherwise,
wy; = 0. Consequently, the percentage of non-zero elements of the adjacency matrix is 0.0559 and
0.2267 for the two models.

The primary interest of this empirical study lies in identifying potential group structure over
the weather stations to achieve dimension reduction in the subsequent network VAR model esti-
mation. With the clustering algorithm in Section 3, we obtain two estimated groups, i.e., K = 2,
for both models. Table 6 reports the estimated group membership which is very similar between
the two models. For model (i), all the stations of Group 1 are in Northern Ireland and Wales,
while those of Group 2 are in England and Scotland. This indicates that Northern Ireland and
Wales often have common patterns in terms of temperature change whereas the weather stations
in the island of Great Britain usually have similar temperature recordings. It is noteworthy that,
although each weather station in model (i) contains the minimum and maximum temperatures
(as two nodes), both nodes are classified into the same group (thus we only report the station
name in Table 6). For model (ii), three weather stations in the coastal towns (Eastbourne, Tiree
and Whitby) move from Group 2 to Group 1. The estimated time-varying coefficient functions

Shttps:/ / www.metoffice.gov.uk/research/climate /maps-and-data/historic-station-data
*https: / /www.metoffice.gov.uk/research/climate/ maps-and-data/about/regions-map
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Latitude

Figure 1: Geographical locations of the UK weather stations

are plotted in the online supplement (Li et al 2024).

To further show the necessity of accounting for the group structure and smooth structural
changes, we compare the out-of-sample prediction performance among the following three meth-
ods: fully heterogeneous time-varying network VAR model (Yin, Safikhani & Michailidis 2024);
the proposed grouped time-varying network VAR model; and the grouped network VAR model
with constant coefficients (Zhu, Xu & Fan 2023), denoted by "fully heterogeneous", "grouped+TV"
and "grouped+linear", respectively, in Table 7. We leave the last T, observations out for predic-
tion, where T, = 12,24 and 36, corresponding to one, two and three years, respectively. For any
time point t, in the prediction (or test) period, we use the observations overt =1,--- ,t, — 1 to
get the estimates of time-varying or constant coefficients, which are subsequently used to forecast
the value of X;,. We conduct this expanding-window one-step ahead forecasting exercise for all
the three models and report their out-of-sample RMSE in Table 7. It follows from Table 7 that our
proposed model produces the most accurate out-of-sample forecasting results with much smaller
RMSE than the other two competing methods.

7 Conclusion

In this paper we have introduced a general nonlinear network VAR model for high-dimensional
time series, where the momentum and network spillover effects are allowed to change over time
and nodes. To achieve dimension reduction and obtain satisfactory estimation convergence rates,
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Table 6: The estimated group membership using the UK temperature time series

Model Group 1 Group 2
Model (i) Aberporth Bradford Eskdalemuir Newton Rigg Stornoway
Armagh Braemar Heathrow Oxford Sutton Bonington
Ballypatrick Camborne Hurn Paisley Tiree
Cardiff Cambridge Lerwick Ringway Waddington
Cwmystwyth Chivenor Leuchars Ross-on-wye  Whitby
Valley Dunstaffnage Lowestoft Shawbury Wick Airport
Durham Manston Sheffield Yeovilton
Eastbourne Nairn Southampton
Model (ii) Aberporth Bradford Eskdalemuir Nairn Sheffield
Armagh Braemar Heathrow Newton Rigg Southampton
Ballypatrick Camborne Hurn Oxford Stornoway
Cardiff Cambridge Lerwick Paisley Sutton Bonington
Cwmystwyth Chivenor Leuchars Ringway Waddington
Valley Dunstaffnage Lowestoft Ross-on-wye  Wick Airport
Eastbourne Durham Manston Shawbury Yeovilton
Tiree
Whitby
Table 7: Comparison of out-of-sample RMSE
Model Tore =12 Tore =24 Tpre =36
Model (i): fully heterogeneous 0.939 1.048 1.030
Model (i): grouped+TV 0.609 0.618 0.624
Model (i): grouped-+linear 1.113 1.102 1.086
Model (ii): fully heterogeneous  0.711 0.703 0.773
Model (ii): grouped+TV 0.684 0.686 0.709
Model (ii): grouped-+linear 1.124 1.110 1.083
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we impose a latent group structure on time-varying coefficients in the heterogenous network VAR
model. The unknown group number is determined by an easy-to-implement criterion whereas
the group membership is estimated by the agglomerative clustering algorithm with the nonpara-
metrically estimated distance matrix. Theorems 3.1 and 3.2 show that the developed methodol-
ogy consistently estimates the latent group structure. To further improve the convergence rates of
the time-varying coefficient estimation, we have proposed a post-grouping local linear smooth-
ing to estimate the group-specific time-varying momentum and network effects. In addition, we
further extend the model, methodology and theory to allow for structural breaks in either the
group structure or group-specific coefficient functions. The simulation study demonstrates that
(i) the developed method can accurately estimate the latent group structure in finite samples;
(ii) the post-grouping local linear estimation significantly outperforms the naive heterogenous
estimation which ignores the latent structure; and (iii) the developed two-stage method can ac-
curately locate the break point and estimate the group structure before and after the break. The
empirical study of the UK temperature time series shows that there exist two groups over the 37
UK weather stations and our proposed method has better out-of-sample prediction performance
than the other two competing methods which ignore either the grouped or time-varying feature
in network VAR model building.
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A Cluster analysis of heterogenous network effects

Let Bij(-) = otg,g;(+) be the heterogenous time-varying network spillover effects defined as in
Section 3.1. Due to the homogeneity structure for 3;(-), (i,j) € N, there exists a partition of the
index pair set .44, denoted by 4° ={947, -+ ,9u,}, such that

GIeNg> =0, 1<i#j< Mo, Byl-) =Bm()for (i,j) € ¥y, (A.1)

where M, is a finite positive integer upper bounded by G3. Neither the group membership ¢°
nor the group number M, is known a priori. Define the distance between index pairs (i;,j1) and
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(1-'2/ jZ):
L

D (i131) (i2j2) z

[511]1 Tl Bizjz(TT) ’

where /f;i]' () and 17 are defined in Section 3.1. With D(i1j1](izjz) as the entries, we may further
construct an N x N distance matrix denoted by D, where N = |4 Assuming the group number
as M, we adopt the agglomerative hierarchical clustering algorithm described in Section 3.1 with
the distance matrix D, terminate it when the group number reaches M, and denote the resulting
group estimates as g?ﬁ;w sy, S%SMM.

As in Section 3.2, we pool the estimated heterogenous time-varying network spillover effects
over (i,j) € 95 m

B0 = —— Y Byln),

(13)E9om

and define the average deviation:

M L
D 1 1 R * P *
RM) =0 ) — 2| Bt = Brm(T})) -
m=1 gmlM (ijlege ., =1

The group number M, is estimated by the following ratio criterion:

M = argmin NR(—M) (A.2)

1<M<M R(M - 1)

where M is a pre-specified positive integer. With the above consistent group number number esti-
mate, we again run the agglomerative clustering algorithm, terminate it when the group number
reaches M, and denote the final estimates of group membership by E!Z?l, m=1,---,M, from
which we obtain the group label estimates gi; = mif (i,j) € Q\T‘; N AN-

Proposition A.1. Suppose that the conditions of Theorems 3.1 and 3.2 hold. Then

P</N\l:MO>—>1, P<{€2ﬁ1,1<m</1\/\l}:{g§1,1<m<7\40}>—>1- (A.3)

The above proposition establishes the c0n51stency properties of the group number estimate
M and the membership estimate G° wom =1, ,M. The tinite-sample performance of these
estimators is reported in Appendix F of the online supplement (Li et al 2024).
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Online Supplement to “Estimation of Grouped Time-Varying
Network Vector Autoregression Models"

This supplemental material contains five appendices: Appendix B gives the proof of (2.8) in Remark
1(ii) and discusses connection of the proposed model to the nonlinear functional dependence measure;
Appendix C provides the proofs of main theorems; Appendix D includes the proofs of some technical
lemmas; Appendix E discusses a refined estimation of the break location; and Appendix F reports some
extra numerical results. Unless explicitly stated differently, all the assumptions, equations, propositions,
remarks, theorems and sections mentioned in this supplemental material refer to those presented in the
main text. Throughout the supplement, we let C, Cq, Cy, - - - denote some generic positive constants.

B Theoretical justification of Remark 1(ii)

In this appendix, we first provide the proof of (2.8) in Remark 1(ii) and then discuss the nonlinear functional
dependence measure introduced by Wu (2005).

Proof of (2.8) in Remark 1(ii). The proof is similar to the proof of Lemma A.1 in Zhang & Wu (2021). It
follows from (2.4) in Assumption 1(i) that there exists 0 < xo < 1 such that

I1Xe = XSlollq = [[|B(Te) Xemt — X5 (7] ] |

q
< Xo H |Xt—1 - X§—1(Tt)‘oqu . (B.1)
Letting
Zeo11 = [[[Xeer = X2 (ren) | [l and Zecaz = ([ XE g (rea) = X2 (r)] 0
and using (B.1) and the triangle inequality, we obtain
11Xt = X{looll g < X0 (Ee—11 4+ Ze12) - (B.2)

For any 0 < 7, < 1, by the smoothness condition in Assumption 1(i) and (2.7), we may show that

X3 (7) = X3 () |l = [[[BITIXE_ () — Bir)X5_s (x*)] |
< |[[BEOX (1) — B )Xs 4 ()],

[Bx)X; (1) — BT )X¢ ()],
< Co X34 (] | = xo X5 (1) = Xg (e,

< C1On,qlT— T+ %0 H ’X;JA(T) - Xiq(’f*)’

q
+

7

olq

indicating that
C10N,glT— 77

XO _XO * <
11X () = X ()l T



and thus
Ci Ong

Zi 12 < AT B.
128 7T T (B.3)
By virtue of (B.2) and (B.3), we readily have that
o o (:1)(0 erqlq
”|Xt _Xt|oqu S Xo H‘thl - Xt—l‘oqu + 1—xo ’ T (B.4)

With (B.4), using the argument similar to the proof of Lemma 4.5 in Dahlhaus, Richter & Wu (2019), we
have

Cixo Onyg
_XO < . 4 ,
22 I = Xelellg < T 77

completing the proof of (2.8). O

We next connect the grouped time-varying network VAR model to the nonlinear functional dependence
measure introduced by Wu (2005), facilitating the development of our main asymptotic theory. Let {¢}} be
an independent copy of {¢{} and ﬂil} = (- ,€e1-1,€], €141, - , €¢) be a coupled version of .7 replacing
€1 by €]. Letting Xi{l}(ﬂt) = G(T, 34:{1}), as in Zhang & Wu (2021), we define the node-wise functional

dependence measure:

o o{0
dit,q = sup ‘ xi (1) — Xi,{t }(T) Hq ,
]

Ttel0,1
o{0}
it
the node-wise dependence adjusted norm:

where x{ , (t) and x; ;" (T) are the i-th element of X (7) and Xi{O} (1), respectively. Furthermore, we construct

oo

”Xiqu,L = Sup(m+ 1)LAi,m,q/ Ai,m,q = Z 6i,t,q,
m2=0 t=m

where « > 0 depicts the decay rate of the cumulative dependence measure A; , q. Letting Bi.(”t) be the

i-th row vector of B)(t), by (2.4) in Assumption 1(i), sup o4 B, ()2 decays at a geometric rate of j and

di,t,q decays at a geometric rate of t for all i. For simplicity, we may set 1 = 1 and write ||Xie||q = |[Xie]|q,1-
Then we have max;<i<N ||Xie|q < C2, where C; is a positive constant.

C Proofs of the main asymptotic theorems

We next provide the detailed proofs of the main asymptotic theorems in the main text.

C.1 Proof of Theorem 3.1

To prove (3.10), we only need to show that

P max max Dy < min min Dy | =1 (C.1)
1<k<K i,j €% 1<kALSK L€%,j €4



as T tends to infinity. Define

1
Dij = J di]'(T)dT with di]'(T) = ‘f.})l(’f) — B](T)’ + “5?.(’() — B;,(T)‘Z .

0

Notice that Dy; = 0if i,j € %, and

CTNT = min min Dij > 0.
1<k #1<Kp i€% i €Y

Hence, to prove (C.1), it is sufficient to show that

max Di: — Dy =0 (T )
1<i7éj<N‘ i 1)‘ P CNT

Letting Dy = % Zlel dij(t7), we have

Dij — Dyj| < |Dyj — Dyj| + [Dyj — Dy

By the definition of the Riemann integral and Assumption 1(i), we readily have that

\nax |Dij —Dij| =0 (1/L) =0 (CTNT) ,

where 1/L = o(CJ{\,T) in Assumption 3 has been used.

(C.2)

(C3)

By Proposition A.1, without loss of generality, we may assume that M = My and S!:?l =95, m =
1,---, My, hold w.p.a.1 in the remaining proof. By the triangle inequality, we have

L
[Dyj — Dy = HZ (5 (7}) — dyy () '
1=1
1< |~ ~
<fZ 1Bi(t) — B ()| — | Bilty) — Bj(t
1=1
1< |~ .
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1=1

1 » 1
< fZ |Bi(y) — BilTy)| +

I
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M-

which, together with Lemmas D.3 and D.4 and Assumption 3, leads to
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With (C.3) and (C.4), we complete the proof of (C.2). 0

C.2 Proof of Theorem 3.2

Let &4 denote the event that {%Al,- . ,%AKO} = {%,- -+, %, ). It follows from Theorem 3.1 that P(&y) — 1
Hence, to prove Theorem 3.2, it is sufficient to show that

P (12 — Ko | cs;g) 1 (C.5)
By the definition of ﬁ, we only need to show that

p((m min mg) . )

R Ko—1) 1<k<KR(K—-1

To prove (C.6), we next consider the following two scenarios: (i) 1 < K < Ko — 1 and (ii) Ko + 1 < K < K,
corresponding to the under-fitted and over-fitted grouped time-varying network VAR models, respectively.
For the case Ko + 1 < K < K, conditional on the event &, by Lemma D.5(i), we have ﬁ(K) = op(pNT) for
K =Ko+1,---,K. Consequently, we may set R(K) = 0 w.p.a.1, and

P AR&ZQEL K=Ko+1,--- ,K|& | =1 (©7)
R(K—1) O

For the case 1 < K < Ky — 1, conditional on &z, by Lemma D.5(ii), we have ﬁ(K) > QCTNT w.p.a.1 with ¢
being a positive constant strictly larger than zero. Hence, there exists a positive constant ¢, such that

P ﬂ}g*, K:1,---,K0—1|<fg —1, (C.8)
R(K—1)
setting Egé; =1,and
P ﬂzﬂé@ — 1. (C.9
R(Kp—1)
With (C.7)—~(C.9), we prove (C.6), completing the proof of Theorem 3.2. 0

C.3 Proof of Theorem 4.1

By the consistency properties in Theorem 3.2 and Corollary 3.3, we may prove the asymptotic distribution
theory conditional on K = Kgpand % =%, k=1,--- ,Ko. Fork=1,--- ,Kp, let

Zex (1) = ZZ XS XS Klg(n) Xg, XSy KL (D)
card () Thy gk Th XS e 1 XPo K (o) Xot XS KL (1)

t=11€%



k(T = —
x card(#)Thi & &= | X9 1 X{ g [oke (Te) — ot (T) — 0 (T) (T2 — 7)) Kl (1)

_ 1 [ Xe, XS [ock. — ota () — o () (T — T)] KLy () ]
( ) i,t—1"M,t—1 ke t0 ,
>y j

- 1 [ Xf,t—l’si,tho(T) t =T\ (T
=ke (T) card(%k)ThT Z Z Xio 1 ’ KtK(T) = hT K h]t .

e 1€1,tKgy (1)

By the definition of the post-grouping local linear estimation defined in (4.2), we have

&ko(T) — ke (T) =E, - EE}( (T) [Ekoc(T) + Eks (Tﬂ

conditional on K = Kg and % = %, k = 1,--- , Ko, where E, = (Ikg+1, O (k1) x (Ko+1)) - In order to prove
(4.4), we only need to show that

Eux (1) = diag{1, 1o} © Ag, (1), (C.10)
11,2 . "

Zkalt) = el “ZAka (Doea(0) | op(h}), (C.11)

[card (%) Thy] "% Zxe (1) & N (0, diag {vo, va} ® Y (1)), (C.12)

where ® denotes the Kronecker product between matrices.

By Lemma D.6 and the approximation result (2.8), we can prove (C.10). By the smoothness condition
in Assumption 1(i), Taylor’s expansion of xy,(-) and (C.10), we can prove (C.11). We next turn to the proof
of (C.12). Let

:
Wffk,t(’r) = [Ws;k,t(T/ 0), W/ t(T 1)]
with
Wg ,t(TI K) o1 tX K )
¢ \/m ék v
and write

-
y/card(% ) ThiZke (T) = Z Gt (

Using Lemma D.6 and the approximation (2.8), we have
T

=2 E[W Wy ((T,0)|F—
ThT; [ %, (T, 00We ¢ (T,0)|F¢ 1]

1
T card(%) ..Z o

T
1
WZX 1X1t 1Ktlo(’t)
=1

P
— card(%k Z o4 AG (T)-
1j€%



Similarly, we can also prove that

-
1 p
The E [Weg (1, )Wy, (T, 1)IF¢ 1] —>Card 7 > oyAy(v),
t=1 1,j€%
and -
1
=) E [Wiy (1, 00WJ, (t, DIF1] = op(1).
Thy =
Hence, we have
1 J
Tihf E [ng,t(’f)wgkt( T)|Fe— 1] —>d|ag{V0,Vz}® gk Z 0 A
t=1 1j€%

which, together with (4.3) and the martingale central limit theorem (e.g., Hall & Heyde 1980), leads to
(C.12). The proof of Theorem 4.1 is completed. O

C.4 Proof of Theorem 5.1

Let
| 1 il T T T
=he v, ) 1 t — Tg fr I3 i — 't
rit - Thi SZ_lxl,slel,sK ( hi ) Thi Z X1 s—1E&4, SK < hi >
=1 SN o —y ~r —1 S
to(Tt) = (rit) <rit - ri‘i) ’ ie(Tt) = (rit> (rit - ri‘f) .
Define

8p,i(t) = Bla (1) — Blaltd) and 8p:(t) = Bi(t) — Bli(we).
By Assumption 2(ii) and 6(i)(ii), we may show that
8p,i(t) = dp,i(t) + Op(hy) (C.13)

uniformly overi=1,---,N, where

0, t>t0+Thi or t<t0—Thi,
gﬁ (1) = 1— g1 Thi 5(3 i(to), Thi t < ty,
g 1fgl 5p,i(to), t0<t\t0+Thi,

5(3,1(t0), t =to,

and g!(-) and g} (-) are positive functions satisfying g\ (0) = ¢(0) =0, g} (1) = g{(1) = 1 and

13}1<le{91( x),gi(x)} = cox, 0<x<1,



with ¢\ being a positive constant.

Writing

Sp(t) = [0pal(t), -+, 0p,N (U]T and 8p(t) = [gfs,l(t), 8B (t)]T ,

by (C.13) and the triangle inequality, we have

186 (o) |, — |88 (1)] . > |86 (t0)], — [8p(1)], — Op(hy)
t—1

Thy | 5p(tg) — Op(hy) (C14)

Z ¢

when tg — Thy <t < tp + Thy, and otherwise

186 (to)]o = 38 (t)] > (86 (t0)], — O (hy).

Following the proofs of Lemma D.1 and (D.28) in Appendix D, we may show that

=N T oe| fLlog(N V' T)

12%%\1 1I<nta<XT (r“> Mic , O ( TRy ) (C.15)
=\ e filog(NVT)

11535\] 1rgrEcang (rit) I , =0p < T—hi . (C.16)

By the definition of t, we have 85 (t) > 8[3 (to), which, together with (C.15), (C.16) and the triangle inequal-
ity, leads to

_ N ~ ~ o~ nlog(NV T
185 (to)], — [55 (D), < Bp(to) —3p(E) + Op ( “"gT(hi)>
<o (Mo, c)

By virtue of (C.14) and (C.17), we readily have that

which completes the proof of (5.8) as 8 (to) is bounded away from zero in Assumption 6(iii).

We next turn to the proof of Theorem 5.1(ii). Let
201{1,2,"'/%} and <yZO:{to—1_1/t0—|_2/"'/T}-

It follows from (5.8) that
Plac 7°)—1 and P(%AHC %) —1,

indicating that the group structure is time invariant w.p.a.1 over the two separate time periods .71 and .%.



Following the proofs of Theorems 3.1, 3.2 and Corollary 3.3, we can prove Theorem 5.1(ii). Details are
omitted to save the space. U

C.5 Proof of Proposition A.1

Since the proof is analogous to the arguments used in the proofs of Theorems 3.1 and 3.2, we next only
sketch the proof.

In the first step, we need to prove that
P({Z5 1<m< Mo} ={%n, 1<m<Mo}) > 1. (C.18)

For the index pairs (i1,j1) and (iz,j2) taken from 44, recall

D (171) (i2j2) Z

—

Bll]l Tl Bizjz(Tik) s

and define
1 - * *
D) iaia) = T 2 |Biaia (70) = By (1))
=1

By (3.9) in Assumption 3, in order to prove (C.18), it is sufficient to show that

max _ [Dy
(i1,1),(i2,j2) €EAN

_ i
1131) (12j2) 131) (12j2)| = OP (CNT> : (C.19)

With Lemma D.3 and (3.9), following the proof of (C.2), we can easily prove (C.19).

In the second step, we need to prove that
p (ﬁ — Mo | @) -1, (C.20)

where & denotes the event that {?!:?1, 1<m <My} ={¥93, 1 <m < Mg}. The proof of (C.20) is similar to
the proof of (C.5).

In the final step, combining (C.18) and (C.20), we readily have that

P({f!:fl,1<m§ﬂ}:{%§u1<m§l\/{o})—>1

completing the proof of Proposition A.1. O



D Technical lemmas with proofs

We next prove some technical lemmas which have been used to prove the asymptotic theorems in Ap-
pendix C. For any 1 < i < N, we define

Fix(1) = = Z{:l gi,t—lglthtO(T) + Z{:l %i,t—l%{,t,thl (1)
=3 Xit—1X{ 1K1 (7) =Y Xit—1X{ ;_1Ke2(T)
IFix(t,0) Tix(t,1)

Fix(t,1) Tix(t,2)

Fig(t) = # Z% %i’tflg't—l [Bia () = Bial) — :i-(T)(Tt — )] Keo(T) ]
| TR e Xito1Xi g [Bie(Tt) = Bie(T) — By (T) (Tt — T)] Kia (1)
[ riglr,0
| Tl 1)

ndﬂ::-%ﬁZlqiu—ﬁquﬁ)]_.[ﬁdﬁm]/

+ ZLl Xi ¢ 161¢Ke1(T) Fie(T, 1)

where Kiq (1) = (275) 9K (®"). From the definition of Bie(+) in (3.3), we write

Bie(T) — BielT) = Ex - Tt (1) [Tip (1) + Tic ()], (D.1)

where E, = (Ini+1, O(mi+1)x (ni+1) ) As in the previous proofs, we let C denote a generic positive constant
whose value may change from one place to another.

Lemma D.1. Suppose that Assumptions 1 and 2(i)—(iv) and (2.7) in the main text are satisfied. Then we have

max sup

(D.2)
1<‘L<N 0<T<1

72
Rﬂﬂ—ﬂﬂﬂLzOP<1lngvﬂ>,

Th

and

%ZI:lE Xit—1X{ (1) K (1) TZt:lE i,tlei,t_l Ko (T)

is positive definite uniformly over T € [0, 1].

rt (1) = |: %21:1 E éii,tli{,tlg Kio(T) T Zt 1 g iLt— 1X1t 1; K1 (1) ]
iX - ~ ~

Proof of Lemma D.1. We start with the proof of (D.2). We only prove the uniform convergence for I'ix (-, 0)
since the proofs for the other block-matrices I'ix (-, 1) and T'ix (-, 2) are exactly the same. Let

1

T T
~ 1
Ai7(t) =Tix(7,0), AT ?Z [ it— 1X1t 1} Kio(T TZ i,t—1Keo(T (D.3)



where A;  is defined as in Assumption 2(ii). Hence, we only show that

)
~ At B n?log(NV T)
1I<I}iXN Oiligl ‘AlT(T) A; (T)‘F =0p ( —m | (D.4)
As
Air(0) - al@|_<ni|duwm-al@w| <n|Bia-alm]
it is sufficient to show that
~ log(N V' T)
) — Al — ) D
2, B =l -0 (| 2E50) ©3)

Let .
Z 2 aXTt1Keo(T), A TZE[ L XS 1} Ko (),

where )zft is defined similarly to Xi,t but with elements in X; replaced by those in X{. By Lemma D.2

—Hr—\

below, to prove (D.5), we only need to show that

(D.6)

max sup BfT(T) - A‘{(T)‘OO =0p ( ™

ISisNogr<t

log(N vn)

Let Vi = XO 1Xl +_1- We consider covering the closed interval [0, 1] by some disjoint sub-intervals Jy,
with centres Ty, and lengthynT = h? log(NV T)/Th/&EnT, 1 < b < B, whereé{nT = T(a—-2)/12(q+2)] [hlog(N V T)}
The number of sub-intervals, B, is upper bounded by EnT/ (h3/2,/ log(N V' T)/T). Observe that

-
~o 1 ~ -~
A. —A° ‘ < Vi — EV; K
\max, Oiligl (1) =AY S max  max Thtzl{ i —El l,t]} 0(Tv) Oo+
1
max max, Tsteljp ThtZ_l{ it — J}[Kto( ) — Keo(to)l|
We first prove that
-
max max { it — E[Vlt]}[KtO() Kio(Tp)]
1<i<KN 1<b<B TEJ h & o
log(N V' T)
- it =AML I D.7
op< T (D.7)
Let
ViT,t = Vil {|Vi,t|oo < ENT} and V it —V:r,t~

10



By Assumption 2(i), we readily have that

13{,82(3 ng) Ko (T) — Kio(To)l P (VNT )

Hence, we may show that

.
1 - -
max  max flg) T Z {Vi,t - E[Vi,t]} [Kto(T) — Kio(To)]

-
_ 1 S
<vynTh 2{ max 2 ‘oo+1g}ZXNT; Vii,t E[Vf/t]‘oo}
T
B log(NVT) s 1 ~ ~1
It follows from (2.7) in the main text that
Vide|| |, < 8% o D.
1 EN 1ST H' 2 q/2 N D9)
which, together with the Markov inequality, indicates that, for any n > 0,
1 T N T
= _ENVE < V.
P (@ZXN 72 EVE| > nam> < ; tZ_l P([Vie| > ent)
e (NTe;L anq/2> —o(1), (D.10)

where the last equality is due to (3.7) in Assumption 2(iii). With (D.8) and (D.10), we complete the proof of
(D.6).

It remains to show that

max max
1<i<N 1<b<B

Tih Z {Vi,t — E[Vi,t]} Kio(Tp)
t—1

S0, ({EENYT) . o

Letting \71;[(”() = Viltho(T) for notational simplicity, as K(-) has the support [-1, 1],

T Ta(7)
> Vi)=Y V. Z X¢ 1 X¢ i1 Keo(T),
t=1 t=T;(7) t=T;(7)

where Ti(t) = |Tt| — [Th| + 1 and Tx(t) = [Tt] + |[Th|. We next adopt some standard techniques in
the literature on high-dimensional locally stationary processes (e.g., Zhang & Wu 2021) to prove (D.11).
Let M = 2|Th|,M! = [logM/log2|,u; = 2' for 1 < 1 < Mt —1 and up; = M. Define Vi (1) =

11



(0)|F ] with ! = (es,--- ,€¢), and

Then, forany 1 < i< Nand 1 < b < B, we may decompose

1 To(te) _
=3 {Vir —E [Vie] } Kuolwo) = {Virlro) —E [Viu(m)| }

t=1 t=Ty(Tp)

1 To(te) mf

=Th [Vlt(Tb) Viem(to)| + ) Sipr(To)+
t=Ti(Tp) 1=2
() _
{Viia(to) = E [Vialwo)] }) . (D.12)

t=Ty (1)

Vi) = Viegm( = Y [Viekl®) = Vi (1)
k=M-+1
we have
To(Tp) _ _
> [Vi,t(Tb) Vit M(Tb)}
t=Ti(Tp) ©|lq/2
To(Tp)
= Z Z |:V1t 1 (To) Vi,t,kfl(Tb)}
t= T](Tb)k M+1 o0 q/2
00 To(Tp) _ _
<C Z Z [Vi,t,k(Tb) — Vi,t,kfl(Tb)}
k=M-+1 t—Tl(Tb) o0 q/2
Note that, forany 1 <i <N, 1<b<Bandk>M+1, VeC(Vi,t,k(Tb) — Viltlk,1(Tb)), Ti(t) <t < Tp(1), 18

a sequence of martmgale dlfference vectors. By Lemma D.3 of Zhang & Wu (2021), we have

Zb <\~/i,t,k(Tb) - Vi,t,kfl(Tb)>

1| =Ty (xo)

*llq/2

Z vec <\~/i,t,k(Tb) - \N/i,t,kfl(’fb))

1 tiTl (Tb )

o0
>
—M+
) Ta(tv)
>
—M+

*llq/2

12



0 T2(To) _ . 2
<C ) > ||vec (Vi,t,k(Tb) — Vitk—1 (Tb)) ‘
k:M+1 t:Tl(Tb) o0 q/2

o Ta(Tp) _ B 2
=C ) > [ Vaklto) = Vigr—1(To) :
k=M+1 \ t=Ti(Tp) oollq/2
With the triangle inequality,
Vit k(o) — Vi,t,k—l(Tb)‘ H
ocollq/2
- 1 B
= [E (Virlro) = Vi Mimo)| 751 ‘
collq/2
o o k
< ( it—1 Xl{tt 1 }) Xlt 1Kto(To) +
ocollq/2
;
voit—k} [vo voit—k
Xi,{tt—l ' ( i1 Xi,{ttq }) Kto(Tob) ,
ocollq/2

Al o{l o{l
where V% (1) = X2 X2 K o(7) and

.
Xt = [(Vvu Wijenm ) , x?,{tl}]

it

with x; { ) being the i-th element of Xo{l} Xo{l}(Tt) defined in Appendix B. Following the discussion in
Append1x B and noting that 3 ;. , Wij =1, we have

fe) ~O{t7k} ~
it—17 Xi,t—l OOH <dik—1,q+ Z Wijjk—1,q
q jeM

and

XS 1Kol Tb Z H‘ XS 1| Feor1) — E(Xf,t_l\c%fkfz)] Kio(To)

(e.¢]

q

(oe]
<CY | Bikg+ D Wisdikg
k=0

jeM

< C max [xiellg,.
1<i<N ’

which is bounded, where .%#; = (- - -, e¢_1, €¢) as in Section 2 of the main text. As discussed in Appendix B,
we set L = 1 in the rest of the proof. By the Jensen and Cauchy-Schwarz inequalities, we have

O k oT
(85~ kot |
oollq/2

13



V2o go{t—k}
< JRee x2S
collq

X$ 1 Kto(To) Lo H .

<Clok1q+ Z Wiidjk—1,q | »
jEM

and similarly,

Since M = 2| Th|, we have

golt—k} (¥ Solt—k}\ '
Xi 1 ( ti-1— X ) Kto(Tv)

<C{Bik1q+ ) Wik 1
collq/2 jeN

%) Ta(tp)

o2

2

Vi k(o) — Vi,t,k—l(Tb)’ H

KMo\ t=T; () coltasz
o0
<C(Th)1/2 Z 1k 1q ZWIJ j,k—1,q
k=M+1 jEM
=C(TR2 | Aimq + D WijAjmq
jeM
< C(Th) ™2 max [Xiell g1 (D.13)

1<i<N

where the last inequality is due to the fact that

max Aim,q < M1 max [xiell g1
1<iKN 1<igN ,
using the definition of ||xie|| o and setting 1 = 1. Then, by (D.13) and the Markov inequality, we have for
any z > 0,
To(te) N c
P . ; ) [Vi,t(’l'b) - Vi,t,M(Tb)] >z | < W 1I<11<N HX1.||q 17 (D.14)
=h{Tp

o0

where C is a positive constant independent of 1 <i < Nand 1 < b < B.

We next turn to the second term on the right side of (D.12). For each 2 < 1 < M, define

(kur+T1(t))AT2 (1)

Uipa(t) = Z [Vi,t,ul(T) — Vi,t,u1_1 (T)} , 1<k < [ M/,
Jur+Tq (1)

and

11T Z ulkl 11T Z u1k1

k is even k is odd

Let A\ = (1—1)72/(?/3)if2 <1< MT/2and Ay = (MT +1—1)72/(n?/3) if MT/2 < 1 < MT. Tt s easy to

14



verify that Zl 2 )\1 1. Since U i, 1(T) and U; x,1(7) are independent for [k; — ka| > 1, by Lemma D.4 of
Zhang & Wu (2021), we have, for any z > 0,

P (‘S?,I,T(Tb)‘oo > 7\12) <C ((All)_q/z > E [|Ui,k,1(’fb)|§o/2 +

k is even
exp d (Az)?
PYi7c v E (Ui 1(to)B] [ )7

k is even
where 2 < 1 < M. Similarly to the proof of (D.13), we may show that

~1/2
U5 (Dlsoll g2 < €y 1r<neg§\lllxl.||

and

2
Y2 max [[xielly; -

U C-
”| 1,)1 |ooH2 u1 1<GEN

Similar results also hold for [S¢; +(T)|e With details omitted to save space. A combination of the above

arguments yields that

mit
PlID Siur(te)| =2z | <D PSi17(To)lo >2M2)
1=2
mi mf
<D PSS ur(Telloo = Miz) + D> P (1S9 1(To)loo > Miz)
1=2 1=2
mi
Th —(q/4+1)4—q/2 2
<Cooam 2w AR max allgh ) +
1=2
}\2 2 2
Zexp — 1tz
1=2 C(Th) 1?3)?\; ||XuH41

Making use of the fact that Z{\fz qu/ Zuf(q/ #1) is bounded and min;>1 A¥u? > 0, we have
M
P ;Sm(rh) >22| <C <Zq/2 <12‘<N Pillgh” ) +
o 0o

z? -1
exp {_C(Th) <1r<n<N | 10||41> }) ’ (D.15)

where C is a positive constant independent of 1 <1 < Nand 1 < b < B.
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We next tackle the third term on the right side of (D.12). Note that
t
Viio(t) —E [Vi,t,z(T)} = Z {E [\7”2 )|-7s— 1} E |V [ L2 (1) | Fs— 2]}

S§=—00

For any s, by the triangle and Jensen inequalities, we have

H‘E [\N/i,t,Z(Tb)}ysfl} —E [Vi,t,Z(Tb)‘gs—Z] /2
q

i
1 oT 1 o —1
<[ (Re e = X3 K iKuolmo)|_|| X (R = XY Kol

<C (6i,ts,q + Z V~Vi)'6j,ts,q> .

q/2 H ocollq/2

jeM

Consequently,

t
Vi —E[\? ” H <C 51t Wiiditsq | <C Aioa,
H 1,t,2(Tb) 1,t,2(Tb) sollq/2 ; i,t—s,q +j€Z/VW1) jt—s,q 1I<I1a<)%\' 1,0,q9

and To(Tp) B _ /2 q/z
tle(Tb) H Vit2(te) — E [Vi,t,z(’fb)” Hq/2 C(Th) 1r<nax IXiellg/cc (D.16)

Note that \N/i,tlg(’r) and \7“2,2(1) are independent when [t; — t2| > 2. Following the proof of (D.15) and
using (D.16), we have

i (
Th 22 -1

< 24/2 T C(TRhY .

=¢ <Zq/2 <1< GEN qu” ) +exp{ C(Th) <1<12XN ’X“H‘“) }) ’ (D.17)

where C is a positive constant independent of 1 <1 < Nand 1 < b < B.

To(Tv)

Z {Vi,t,Z(Tb) —E [Vi,t,z('cb)” ‘ > z)

t=T1(Tv)

By virtue of (D.12), (D.14), (D.15) and (D.17), we readily have that
T ~ ~
> {Vi,t - E[Vi,t]} Kio(Tb)

P ( > Z)

t=1 [e9)
< || H z || || 1 (D.18)
<C a2 1r<nzix Xie + exp ~Cmh) r\n X [Xiella . D.18

As discussed in Appendix B, [[Xie |41 + [[Xie |4 is bounded uniformly over i. Setting z =n/Thlog(N V' T)

16



n (D.18), we may show that, for any 1 > 0,

T

%Z{ it — }KtO(Tb)

t=1

P<max max >

1I<KiKN 1KbLB

log(NVT)
Th

o0

> 14/ Thlog(N \/T))

NB
= O (NBexp {—Cn’log(NVT)}) + 0 <nq/2(Th)q/41(1og(N v T))q/4> : (D.19)

<> ye(lx

i=1b=1

{ it — E[Vi,t]} Kio(Tp)

Noting that B diverge at a certain polynomial rate of T and letting 1 be sufficiently large, the first order on
the right side of (D.19) converges to zero. By (3.7) in Assumption 2(iii), we may show that the second order
also converges to zero. The proof of (D.11) is completed.

By Assumption 2(i)(ii), it is easy to show that FIX (T) is positive definite uniformly over 0 < T < 1. The
proof of Lemma D.1 is completed. O

Lemma D.2. Suppose that Assumptions 1 and 2(i)(iii) and (2.7) in the main text are satisfied. Let

]
0 =2 3 XX Kul) ZE[XSt K] Kuolo),
t=1

where Xft is defined similarly to Xi  in Section 3.1 but with elements in Xy replaced by those in X$. Then we have

-~ —~o B log(NVT)
 max Oiligl )An(ﬂ - An(T)LO =op ( T ) (D.20)
and
max sup [All0) - Az o ( W) , D21)
1<‘L<N 0<T<1 o Th

where BiT( ) and AT ) are defined in (D.3).

Proof of Lemma D.2. With (2.7), by slightly modifying the proof of (2.8) in Appendix B, we may show that

Jmax [IXe = Xeloll = O (On,q/T) (D22)

By (2.7), (D.22), the classic c- and Cauchy-Schwarz inequalities, we have

~ ~ q/2
T o
max max H Xit—1X; X Xo" ‘ H
ISiSN I<t<T 1, i,t—1 7 Mt—1M,t—1 q/2
- < q/2 ~ q/2 q/2
< C max max H Xilt,l—Xit,l‘ H H Xi,t—l‘ H +H 1t 1‘ H
1SN 1<t<T ’ ollq o0 q

_yo| [19/2 q/2 o 19/2
< Cmax[IXe = XEl 1872 [IIX el 32 + 1XE1 1372
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-0 (e]‘L,qT*qﬂ) : (D.23)

With (D.23), the Bonferroni and Markov inequalities and (3.7) in Assumption 2(iii), we may show that, for
anyn >0,

P| max max
1<iKN 1Kt<T

N T
<> P(
i 1

i=1t=

v VT o) voT
Xit—1X{t—1 — i,tflxi,tfl‘oo >

log(N V' T)
Th

o~ > So o log(NVT)
Xi,t—lxz,t—l - i,t—lXi,Tt—lLo > gTh)

— N T
log(N \/T)> q/4 ~ ~r ~ ~ q/2
(BT S
<n Lt—1N -1 t—1 ’tlooq/Z

Th :
i=1t=1
Nog, ha/4
< Cn~9/2. R.d =o(1),
Ta/41[log(N V/ T)]a/4
indicating that
S ST So SoT B log(NVT)
11%12)?\] 1l'£ta<XT Xlltflxi/til - Xi/tilxi/til ‘OO — OP ( T . (D.24)
By (D.24) and Assumption 2(i), we may show that
Ace (1) — AS ‘
max 02121 ‘ (1) = Apr ()]
1 T
< S A I I ‘K
D P, ; L Xie — XX Keo(T)
1 T
v val V2o yoT
S max max (Xis X1 = Xis 1 X5 ’OO 02221 = tZ_l Ko(T)
Y log(NVT)
- r Th '
completing the proof of (D.20). With (D.24) and Assumption 2(i), we can also prove (D.21). 0

In the following lemma, we derive the uniform consistency of the local linear estimation of the het-
erogenous time-varying coefficient functions defined in (3.3).

Lemma D.3. Suppose that Assumptions 1 and 2(i)—(iv) and (2.7) in the main text are satisfied. Letting Biel-) be
defined in (3.3), we have

max maX |Bie(T) — Bie(T
max | max [Bia(r{) = Bia ()

B - log(NVT)
,=Op (ﬁ( Th+h2>>, (D.25)

where the number of grid points L satisfies L = O(T).
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Proof of Lemma D.3. By Lemma D.1 and Assumptions 1(i) and 2(ii), we may show that

 Max  max Amax (ITX (n)) = Op(1) (D.26)

and

—1 (% * — 5
' ' - : D.27
12?(1\1 121€<XL ‘FIX (T)Tip (Tl))z Op (\/ﬁh ) ( )

In view of (D.26) and (D.27), in order to prove (D.25), we only need to show that

filog(NVT)
19EN 1r<nla<xL|Fu('cl)|2 =0Or ( Th) '

As in the proof of Lemma D.1, to save the space, we only provide the proof of

:OP< W) (D.28)

maxX max
1<KiKNILIKLE

let 1€4,tKeo(T7)

Th Th

2

We next use the truncation technique and the concentration inequality for martingale to prove (D.28).
Let &Nt = T(a-2)/12(a+2)] [hlog(N V T)]l/2 be defined as in the proof of Lemma D.1, Wl £ = Xit—1€it,

S = 1/2 1/2 — —
W, =Xt 1eiql {|Xi,t71‘oo < 5N/T, leg,l < EN/T} and Wfrt =W — W/

i, i,t°

Note that

maX max

] Xit— 1€1th0(T1)
1<iKN 1KLL

=
I\/]—4

-
Il
—

2

{\Tv{t —E [Vv’{t} } Keo(t})| +

1
< max max |—
1<iKN 1KLL | Th

1
max max |—

Wi, —E Wi, ]} Kol
1KIKN 1KLL Th {ert E it to(T)

™M= M\/I"

2

For any 11 > 0, by the Markov inequality, Assumptions 1(ii) and 2(iii), and noting that

~ q
max max HIXi,tIOOH <Y o
1IN 0<t<T—1 q 4

we have

>
2

1/2 1/2
<P | max max |X1t|Oo > ENT /2) +P( max max legel > ENT /
1IN 0<t<T—1 1SN IStKT

Tle i (Wi —e W]} Kulr) (D.29)

P ( max max
t=1

1<iKN 1KLL Th

filog(N V T))
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T

N T-1 N
Z Z P (|X1 t|oo > 61/2) + ZZ P (|£1t| > 61/2)
t=0

i=1 i=1t=1
=0 (NTOJ o &ax¥/? + NTeI?) = o(1).

By the concentration inequality for martingales (e.g., Freedman 1975), we have
1 J

T t
15 (e ot
Z Wi —e W]} Kulr)

>11

/nlog N\/T )

5 ( o flog(N vn)
1<1<N 1<IKL

Sie(s

i=11=1 t=1
2(T
-0 <NLexp{ (T “CO%NVT)}) —o(1), (D.30)
by letting 1 be sufficiently large. With (D.29) and (D.30), we complete the proof of (D.28). 0

Lemma D.4. Suppose that the conditions of Lemma D.3 are satisfied and
P (ﬁ Mo and 92 =9°,1<m< M0> 1. (D.31)

Letting Ei",(-) be defined in (3.4) of the main text, we have

_ log(N'V'T)
L= (ﬁ( ——— +h2>>. (D.32)

maxX max
IKIKN IKIKE

BLa(T}) — BLa(T])

Proof of Lemma D.4. Define
&y = 1G5 = 945, (1,§) € AN {M = My},

where gj; and A\ are defined in Appendix A, and gi; is defined in Section 3.1. By (D.31), we readily have
that P(&y) — 1. Hence, it is sufficient to prove (D.32) conditional on the event &y. Let @ij,m and wij,m be
defined as in Section 3.1. Note that

Bom(T Z B1j(T)Dij,m = Z Bij (T)wWijm = Bim(T) (D.33)
jEMN jeM
and
Biel(T) — BSu(T) = { Z [gij (t) — By (T)} Wij1, ", Z [gij (t) — Bij(’f)] wij,Mo} (D.34)
jeM jeM

;
conditional on &, where Bio.(’r) = [Eil(’r),- . ,B?MO (T)} . Combining (D.33), (D.34) and Lemma D.3, we
can complete the proof of (D.32) conditional on &. O
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The following lemma is crucial to prove the consistency property of the ratio criterion.

Lemma D.5. Suppose that the conditions of Theorem 3.2 are satisfied. Define & as the event that (%, - ,%AKO} =
{4, ,%,}. Then, conditional on &, we have (i) for K = Ko, Ko +1,--- , K, R(K) = op(pNT), where pnT is
defined in Section 3.2; and (ii) for K =1,--- , Ko — 1, ﬁ(K) > QCJ{\,T w.p.a.1, where CJ{\,T is defined in Assumption 3
and ¢ is a positive constant strictly larger than zero.

Proof of Lemma D.5. For the case Ko < K < K, conditional on the event &, the grouped time-varying
network VAR model is either correctly- or over-fitted. Some of %, k = 1,---, Ky, are further split into
smaller groups when K > Kj. Without loss of generality, we only consider the case of K = Ky+1 (conditional
on &y) and assume that % is split into %IO and %&0. It follows from the latent group assumption in Section
2.1 that there exist o, (-), k =1,- - -, Ko, such that 3, (-) = a3, (-) when g; = k. By Assumption 4(i) as well
as Lemmas D.3 and D.4, we may show that

Ko—1 L
~ 1 1 o . %
R(Kog+1) = m g card (@) lék; ”5 Tl —Oék(TL)|+|(51.( 1) — “k.(T1)|2]+
L

L(Ko + 1)Card %IO % ; {”51 ~ ka1 B (71 = “KO'(Tl)}J +

> Z[us ) — oy ()] + B2 (77) — e (1), +

e =1

Op (ﬁ( log(_]?h\/ D +h2>>

= Op <ﬁ( bg;(];]h\/ﬂ%—hz)) =op(pNT)

L(Kg + 1)card( gio

conditional on &. The proof is similar for ﬁ(K), K=Xg,Kog+2,---,K.

For the case 1 < K < Ky — 1, conditional on the event &, the model is under-fitted and at least two
groups are falsely merged. Without loss of generality, we only consider the case of K = Ky — 1 (conditional
on &y) and assume that %, and %, are merged. Define

1
C&I‘d(%]{o_l U g}(o)

o (T) = (19 p—11 atkg—1(T) + %K, | ok, (T)]

and
1

card(%k,_1 U %,) [Ficoal o1

xg(t) = (T) + [kl ok o (T)] -

By Assumptions 3 and 4, and Lemmas D.3 and D.4, we can prove that

1 Ko—2

AT k; Card AP Z 1B+ (77) — o ()] + 1B (1) — 02 (Tl +

1€@k 1=1

R(Kg—1) =
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1 O *
L(Ko — 1)card(%k,—1 U %,) Z Z [B+(70) — o lmr)l +[Bia (1) — e (w0)ly)

iEgKO 1Ug]<0 1=1

— logNVT _,

card (%, _1)card (%,) .
L(Ko—l)card(%Ko 1U%,) g oty () — oty —1 (T + [t o (T1) — i, 10 (T7) ]

vor (v BT )

> QE,TNT w.p.a.l,

conditional on &y, where c is a positive constant. The same result also holds for ﬁ( K),K=1,---,Ky—2.
The proof of Lemma D.5 is completed. O

The following lemma is useful to prove the limit distribution theory of the post-grouping local linear
estimation.

Lemma D.6. Suppose that Assumptions 1, 2(i) and 5(i) in the main text are satisfied. Let

T K
. 1 Tt —T Tt — T
A7) = g 2 XL XK, Kl = < hT ) K ( » ) :
t=1
where X, is defined in Section 4.1. Then we have
. o log(NVT)
(max, A1) E [Ayx(1)]| = O ( e (D.35)

fork=0,1,2and T € [0,1].

Proof of Lemma D.6. The proof is similar to the proof of Lemma D.1. Details are omitted here to save
space. u

E Refined estimation of the break point

E.1 Refined estimation methodology

In Section 5 of the main text, we construct an estimation of the break location ty, which is shown to be

consistent with scaling, i.e.,

t— to
T

=op(1),

see Theorem 5.1(i). Although this consistency property is sufficient to consistently estimate the group mem-
bership and number in the subsequent stage, there is a natural question on whether the precision of the
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break location estimation can be improved. We next aim to tackle this issue by introducing a refined break
point estimation which achieves improvement of the estimation accuracy by making use of the estimated
group structure.

As in Section 4, we define

vl _ _
Xi,t = Z WiiXi,t, 0y E WiiXj,t, Xt |
. 21 . 21
36%1 ]Eg}zl

- 4T

- N N
Xoe= | D Wi, ) Wik i

iR icR
ISES ]GJRZ

For any t, we use the cross-node regression to estimate the group-specific coefficient functions:

- -1
~ val o1 T l ~
Ko (Tt) = Z Xit—1 (Xi,tq) 2 Xit—1xit, k=1, Ky,
ieg] ieg)

11

2 2 2 T 2 T
&olt) =) Xb, 1 (X, 1) > X xie k=1 K
i€ ieq?

As in Section 4, without loss of generality, we assume

G =4,
R=9%
;
We expect &i.(’rt) to be a consistent estimate of ocll“('rt) = [oc,ld (te), -+, oc]1<K] (t¢), oci('tt)} when t < tg

but this consistency becomes invalid for at least one k when t > to. Similarly, we expect &2, (T¢) to be a

.
consistent estimate of oc,z“ (t¢) := [oclz<1 (te), -+, ociK2 (T¢), oci('ct)] whent > to but the consistency becomes
invalid for at least one k when t < ty. Define

13 v 1 v 1 v 2 2
6oc(t) = maXx ’(Xko (Tt+1) — Xke (Tt)|2 + max ‘(xko (Tt—i—l) — Uye (Tt) ’2 . (El)
1<k<Ky 1<k<K,

The refined break location estimation is then obtained by

{ = argmax d4(t). (E.2)

t
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E.2 Assumptions and consistency

We next provide some high-level conditions and then derive the consistency property of {. We start with

the introduction of some notation. Let

10 ~ ~
Xi,t - Z WijXj i,y WiiXj e, X4t |,
gj=1 g9j=Ki

4T

2,0 ~ ~
Xy = Z WijXjtr ey z WijXjt, Xt |
g]-2:1 g]?:](z

:
1o _ 1,0 1,0 1,0 _ aAlo
Ai)‘,t =E [Xi,t (Xj,t) } o A =By
2 2 20\ 2 2
O O /O S <O
Ai)',t =E [Xi,t (Xj,t) } ’ Ai,t - Aﬁ,t-

Assumption E.1. (i) Let

_ 1 10 _ 1 2,0
Get card(¥4}) Z A A%‘%’t  card(%2) Z ot

1

be positive definite uniformly over k and t.

(ii) There exist A(‘;‘l v k=1,---,Kq,and A;‘z o k=1,---,Ky, such that
73 42,
1 1,0
2 ~ 2 o4
max max |——— E X’ E oy S (Te)WiiXi t—1 4+ oo (Te)Xi 1| — A% .| =op(1)
1<k<K] to<t<T card(gﬁ) Lt | L= Tgig; X4, g2 b Gt !
g%:k j#AL 5
max max % E X3¢ E ol (T Wigxj e + ok (Te)xio1 | — A%, | =op(1).
1<k<K, 1<t<ty | card (%) = 9i9; 9i ks
g?=k j#L ’

Assumption E.2. For any group ¢ with cardinality sufficiently large,

> [X%:i () - Ai’f]

ie¥y

L L

+
F

E 1,0 1,0 T _ Ale
max Z Xi,t (Xi,t> Ai,t

IstsT icy

L L

+
2

~0 ([card(g)]tﬂ) )

2,0 .
2 Xit—1Eit

ic¥y

max E E X%’f_lﬁi,t
1<t<T '
S icy

2

where  is a positive constant larger than 2. In addition, T/NY/2 — 0.
Assumption E.3. Let

+ max

2 i3
e (T —oi (T >c5>0
,+max [oda () - ol (r)], > e

50 = max |l (T —ol (T
o4 1<k<K, k.( t0+1) ko( to)
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where

ol () = A DGy t<t<T,

(gl t/

ocik.(’ct) A(g2 A(ﬂ v 1<t<to.

Assumption E.1(i) is similar to Assumption 5(ii) in the main text. Meanwhile, a combination of the
conditions in Assumption E.1(i)(ii) ensures that the limits of ock.( -) and 5(,2“ () are well defined even when
groups are misclassified, i.e., oc]T“( ) and ock.( -) in Assumption E.3 are well defined. Assumption E.2 im-
poses some high-level moment conditions to restrict weak correlation between nodes and indicates that
T can be either smaller or larger than N (depending on the value of 1). Assumption E.3 indicates that the
break size at tg needs to be bounded away from zero. This condition can be satisfied when there are breaks
in the group-specific coefficient functions, group membership or number. Some examples are provided in

Appendix E.3 to verify this condition.

Proposition E.1. Suppose that the conditions of Theorem 5.1 and Assumptions E.1-E.3 are satisfied. Then we have
Pt=ty) — 1

Proof of Proposition E.1. Let (5"(} denote the event that E@k = 54,1, 1 <k <Ky, and ﬁl = Kj, and let é"é
denote the event that @ %2 <k € Ky, and K; = Ky, For 1 < t < tg, conditional on é‘;} N &2, the
grouped time-varying network VAR model is correctly fitted. Hence, we have

—1

«1 1 T v 1
Ko (Tt) = Z Xlt 1 1t—1) Z Xit—1Xit
KEZ ie@
1 T
o
= let 1<X1t 1) let 1%4,t
RISA ic¥)
T
1 1,0 1,0
= ocko(Tt) + Z X‘Lt 1 <X1t 1) Z Xlt 184t (ES)
ie) ie!

conditional on éij} N é"é. By Assumptions E.2 and 6(iv) and the Bonferroni and Markov inequalities, we may
show that, for any n > 0

1 1,
P| max |———— X e S
1<t<ty Card_(gl) Z L,t—1%4t n

K iegl ’
to 1
1,0
< Pl |——— XY jeit| >
h Z card(¥4}) Z L1t
t=1 icg) )
L
to
anrd %k ZXlt 1€4t
t=1 16%1

2
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—0 (TN*W) —o(1),
which leads to

1 1,0
_— Xz ; = 1). E4
112t card (%) Z ie-160t or(1) (E4)

ieg!

Similarly, we can also prove that

1 1,0 1,0 T 1,0
- 1 ) Al = 1). E.5
12}%}5:0 card(%}) Z [X”t (XV‘) Ait op(1) (E5)
ie¥ F
With (E.3)—(E.5), as K; is fixed, we readily have that
o1 1 _
 fnax | max | Ko () — e (1) |, = 0p(1). (E.6)
Similarly, by Assumptions E.1 and E.2, we also have
i, (1) — of ’ — op(1 E.7
(Dax | max . (ock.(n) e (Te)| = 0p(1), (E7)
2 2
_ = 1), E.8
 fnax  max | &io (Te) — oGea(Te) |, = 0p(1) (E.8)
G (1) — o, (1)] = op(1). E9
(x| max Ko (Tt) — o4 (Tt) , op(1) (E9)

Note that oc%“(-) and oc,i“(-) are continuous over [0, T¢,] whereas oc%(.(-) and och.(-) are continuous over

[Tt,, 1]. By virtue of (E.6)-(E.9), we have da(t) = op(1) when t # tg and S (tg) — du(tg) = op(1). Finally,
by Assumption E.3, we may prove that P(f = tg) — 1. O

E.3 Verification of Assumption E.3

We next provide a few examples to verify the condition d(tg) > c5 in Assumption E.3.

Example E.1. Suppose that the group structure is time invariant, i.e., ¢ I = @2 and K; = K, = K, but there
exists a kg € {1,2,-- -, Ko} such that o e () defined in Section 4 is discontinuous at Ty, satisfying

|OCk0.(TtO+1) - (xkg. (Tt0)|2 2 Ce > 0/

where o ,(-) and cx'ko.(-) denote the right and left limits of «y 4 (+), respectively. In this case, we may verify

that

ol () = ae(Te), ok, (Te) = otia (1)

Hence, it is easy to show that
60( Z |0(k00 (Tt0+1) - (xkoo(Ttg”Q Z Cq,

verifying Assumption E.3. Similarly, the condition of 5 (tg) > ¢ in Assumption 6(iii) is also satisfied.
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In the following examples, for notational simplicity, we consider a special time-varying network VAR
model with break in either the group membership or number:

‘it = { Vi (T0) 254 WisXj o1 + X (Te)xie-1 + €ie, 1 i (E.10)

< to,
Vg2 (T) 20 WisXje—1 + &2 (Te)Xi -1+ e, to+1<

t
1<t<T,

where Yg! () and vy g2 (-) denote the time-varying network effects invariant over nodes which the i-th node
follows. This model is considered in an earlier version of our paper with no break in the group structure.

Example E.2. Suppose that model (E.10) holds, the group number is time invariant, K; = K, = 2, but there
is a break in the group membership at the time point to. Before the break point, g} =1 for 1 <1i < [N/2]
and g} = 2 for [N/2] +1 < i < N; after the break point, g = 1for 1 < i < [N/4] and ¢? = 2 for
IN/4|+1 < i< N. The group-specific coefficient functions y;(-), v2(-), &1 (-) and «(-) are continuous over
[0,1], and

[v2(Teg) — v1 (el + o2 (Teg) — o1 (T4 )| = €7 > 0. (E11)

Note that
x1e(Te) = [y1 (o), a1 (t)],  ce(Te) = [ya(Ti), ()]

With some elementary calculations, we may show that

Y2(Tt)
o2 (Tt)

Y1(Tt)

T _ wi
o (Ty) =W
1.( t) ! o1 (Tt)

+ W

] , ol () = [ya(te), o)l

Y1(Tt)
o1 (Tt

i

of () = lyi (o), cu(t)], oG, (Te) = Wi [ L wi

o (Tt)

v2(Tt) ]

where WI , WE, Wi—‘ and W; are all positive definite satisfying WI + W; =1I, and Wf + W% = I,. Under the
condition (E.11), it is easy to verify Assumption E.3. The verification of 5 (tg) > ¢, in Assumption 6(iii) is
similar.

It is worth pointing out that Assumption E.3 may be invalid when the break in the group membership
is sparse. In Example E.2, consider g} =1 for1 <i < [N/2] and g} =2 for [N/2] +1 < i < N before the
break point; g2 = 1for 1 < i< [N/2| —sand g? =2 for [N/2] —s+1 < i< N after the break point, where
s is a small and fixed positive integer. In this case, 6 would converge to zero, indicating that Assumption
E.3 is violated.

Example E.3. Suppose that model (E.10) holds. Consider a break in the group number: K; =2 and K, = 1.
Before the break time ty, g} = 1for 1 < i < [N/2] and g} = 2 for [N/2] +1 < i < N; after the break
point, the two groups merge, i.e., g2 = 1. Using the arguments in Example E.2, we can similarly verify
Assumption E.3 as well as 05 (tg) > ¢, in Assumption 6(iii).

27



Table F.8: Estimation performance of the group number M, and membership §°

Fixed group Random group

Sparsity Measurement T\ N 100 200 100 200
w =0.025 AC(M,) 300 0.890 0.972 0916 0.978
600 1.000 0.999 0.974 0.998

Purity(¢°) 300 0939 0.761 0.901 0.759

600 0982 0.874 0.961 0.860

w = 0.075 AC(M,) 300 0904 0.702 0.856 0.697
600 0999 0.829 0.988 0.857

Purity(¢°) 300 0.649 0471 0.622 0.467

600 0.782 0547 0.762 0.556

F Extra numerical results

F1 Results of the clustering algorithm in Appendix A

We next report the finite-sample performance of the clustering algorithm introduced in Appendix A to
determine the homogeneity structure on the time-varying network spillover effects. We start with the data
generating process provided in Section 6.1. Note that My = 2 and

7°={({j)e M :L€A,EG}, b5 =I/Y.

To evaluate the homogeneity structure estimation accuracy, as in Section 6.1, we compute

R
AC(M,) = %Z I(M, =Mp) and Purity(¢°) = L Z Z | Jhax
r=1 -

where M, and Cfﬁm are the estimates of the group number and membership in the r-th replication. The
relevant results are summarized in Table E.8. In general, the performance of the group number and mem-
bership estimates improve as T increases from 300 to 600 whereas the membership estimation is sensitive
to the network sparsity level with Purity(%) decreasing significantly as w increases from 0.025 to 0.075.

In addition, we report the clustering results when there exists a break in the group membership. The
data generating process is described in Section 6.2. Table F.9 summarizes the estimation performance for
the group number My and membership ¢°. The findings drawn from Table F.9 are similar to those from
Table E.8.
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Table F.9: Estimation performance of the group number M, and membership §° (with a break)

Fixed group Random group

Sparsity Measurement T\ N 100 200 100 200
w =0.025 AC(M,) 400 1.000 0.995 1.000 0.996
800 1.000 0.998 1.000 0.999

Purity(¢°) 400 0961 0.811 0.930 0.808

800 0.989 0.903 0.975 0.895

w = 0.075 AC(M,) 400 0.989 0933 0.975 0.938
800 1.000 0.980 0.995 0.979
Purity(¢°) 400 0.729 0.578 0.712 0.577

800 0.827 0.658 0.812 0.654

F2 Clustering results for grouped network VAR with constant coefficients

We next report the additional simulation result by treating the data generating process in Section 6.1 as
Zhu, Xu & Fan (2023)’s grouped network VAR with constant coefficients and adopting their clustering
algorithm. The estimation results for the group structure are shown in Table F.10. By comparing the results
with those in Table 1, we note that failure to account for smooth structural changes in network VAR would
substantially affect the estimation accuracy of the latent group structure for network time series, resulting
in lower values of AC(Kg) and Purity(¥).

Table F.10: Estimation performance of the group structure using Zhu, Xu & Fan (2023)’s model
and algorithm

Fixed group Random group

Sparsity Measurement T\ N 100 200 100 200
w =0.025 AC(Ky) 300 0.844 0.851 0.827 0.830
600 0.670 0.714 0.557 0.743

Purity(¢) 300 0.555 0.577 0.561 0.582

600 0.538 0.681 0.551 0.675

w = 0.075 AC(Ky) 300 0.802 0.773 0.796 0.823
600 0.763 0.705 0.719 0.733

Purity(¢) 300 0.616 0.644 0.604 0.663

600 0.711 0.750 0.685 0.757

E3 Extra empirical result

In addition, we plot the estimated time-varying momentum effects from both models in Figures F.2 and
E.3, respectively. In each figure, the left plot is for Group 1, while the right one is for Group 2. Although
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Figure F.2: Estimated time-varying momentum effects in model (i)
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Figure E.3: Estimated time-varying momentum effects in model (ii)

both figures present similar patterns of movement across groups, the Y-axis covers different ranges.
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