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of parameters of interest in a misspecified model can reduce the asymptotic fre-
quentist risk when the standard posterior is replaced with the sandwich posterior.
In this paper, we extend the results in Miiller (2013) to Bayesian model compar-
ison. Bayesian model comparison of potentially misspecified models can be con-
ducted in a predictive framework with three alternative predictive distributions,
namely, the plug-in predictive distribution, the standard posterior predictive dis-
tribution, and the sandwich posterior predictive distribution of Miiller (2013). Via
the Kullback-Leibler (KL) loss function, it is shown that the sandwich posterior
predictive distribution yields a lower asymptotic risk than the standard posterior
predictive distribution. Moreover, we provide sufficient conditions under which
the sandwich posterior predictive distribution yields a lower asymptotic risk than

the plug-in predictive distribution. We then propose two new Bayesian penalized
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information criteria based on the last two predictive distributions to compare mis-
specified models and establish their relationship with some existing information
criteria. The proposed new information criteria are illustrated in several empirical

studies.

KEYWORDS: AIC, DIC, Information criterion, Model misspecification, Sand-

wich posterior.

1. INTRODUCTION

In many empirical studies, researchers frequently utilize simple parametric models.
However, these models often lead to model misspecification. As George Box famously
stated, “all models are wrong, but some are useful.” When a model is misspecified, it can
result in inefficient and even inconsistent estimation of parameters of interest. Moreover,
likelihood-based statistical inferences — such as hypothesis testing and goodness-of-fit tests
— are significantly impacted. Therefore, developing effective methods to address model
misspecification is crucial.

White (1982) explored the consequences and detection of model misspecification in the
context of maximum likelihood (ML) estimation and inference. He found that, within linear
regression models, if the error distribution is misspecified and the normal distribution is in-
correctly assumed for the likelihood function, the ML estimator (MLE) remains consistent
and has an asymptotically normal distribution characterized by the so-called sandwich co-
variance matrix. Conversely, in the Bayesian framework, the standard posterior distribution
is centered around the MLE and asymptotically follows a normal distribution, with its pos-
terior variance converging to the Hessian information matrix. This indicates that standard
posterior analysis does not provide adequate protection against model misspecification. In
a significant contribution, Miiller (2013) proposed conducting Bayesian analysis based on
a sandwich posterior — an artificial Gaussian posterior centered at the MLE, with the sand-
wich covariance matrix as the posterior variance. He demonstrated that this approach yields
Bayesian inference with lower asymptotic frequentist risk for parameters of interest.

Empirical researchers frequently face another critical statistical decision: model compar-
ison. Notable studies on this topic include those by Granger et al. (1995), Phillips (1995),
Phillips (1996), Hansen (2005), and Kadane and Lazar (2004). From a predictive perspec-

tive, several penalty-based information criteria have been developed for model comparison.
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LIET AL. 3

In the frequentist approach, two well-known criteria were proposed by Akaike (1974) and
Takeuchi (1976). The former generally assumes that all candidate models encompass the
true model or are good approximations of the data generating process (DGP), while the
latter accommodates misspecified candidate models. Within the Bayesian framework, the
Deviance Information Criterion (DIC) introduced by Spiegelhalter et al. (2002) is a com-
monly used penalty-based criterion. Li et al. (2025) provided a decision-theoretic expla-
nation for DIC, asserting that it serves as the Bayesian counterpart to AIC. Furthermore,
Li et al. (2020) developed a variant of DIC for comparing misspecified models. All these
criteria are grounded in the Kullback-Leibler (KL) loss function and the plug-in predictive
distribution.

In this paper, we focus on comparing alternative models that may be misspecified.
Specifically, we aim to conduct a Bayesian comparison of these models based on their
predictive performance. Similar to the existing criteria reviewed above, we utilize the KL
function to define the risk. However, we consider three predictive distributions for the KL,
function calculation: the plug-in predictive distribution, the Bayesian predictive distribu-
tion derived from the standard posterior distribution, and the Bayesian predictive distri-
bution based on the sandwich posterior distribution (hereafter referred to as the sandwich
Bayesian predictive distribution). One of our main objectives is to evaluate the performance
of these alternative predictive distributions and establish conditions under which their per-
formance in terms of KL loss can be compared.

We investigate the theoretical properties of these three predictive distributions through
asymptotic frequent risk analysis. Our findings indicate that the sandwich Bayesian pre-
dictive distribution exhibits lower frequentist risk than the standard posterior distribution.
This result extends Miiller (2013) findings to the context of model comparison. However,
we generally cannot directly compare the frequentist risks associated with the plug-in pre-
dictive distribution and the Bayesian predictive distribution; this comparison depends on
the degree of misspecification. We provide conditions under which such a comparison is
possible.

Based on the frequentist risk analysis of the KL loss function derived from these pre-
dictive distributions, we propose two new penalty-based information criteria for model
comparison. We demonstrate that these new criteria are asymptotically unbiased estimators

of the risk between the corresponding predictive distributions and the DGP. Furthermore,
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4

they are applicable for comparing misspecified models. We also establish the relationship
between our proposed criteria and some existing ones, such as AIC and BIC. A significant
advantage of our proposed information criteria is that they not only identify the optimal
model but also the optimal predictive distribution, thereby offering more comprehensive
insights from a predictive perspective compared to existing penalized information criteria.

The paper is organized as follows. Section 2 provides a brief review of the literature on
statistical inferences regarding misspecified models. Section 3 examines the risk properties
of the alternative predictive distributions. Section 4 introduces the new penalty-based in-
formation criteria for comparing misspecified models. Section 5 studies the performance of
new information criteria by simulation experiments. Section 6 illustrates the application of
the new methods. Finally, Section 7 concludes the paper. The Appendix contains the proofs
of the two theorems presented, and the Online Appendix includes proofs of additional the-

oretical results.

2. STATISTICAL INFERENCE FOR MISSPECIFIED MODELS: A REVIEW
2.1. MLE-based inference under model misspecification

Let the observed data be y = (y1,- -+ ,y,) with the DGP being ¢(y). Consider a para-
metric model, denoted by p(y|@), which is used to fit the data, where 6 is the vector of
parameters with P dimensions and 8 € © C RY . In the literature, the KL divergence is

used to measure the ‘distance’ between two distributions, say ¢(y) and p(y|@), that is,

KLlg(y),p(y|0)] = / g(y)In p?}%)dy =Eyy)Ing(y) — Eyy)Inp(yl€), (1)

where Ej ) is the expectation with respect to g(y ).

Let 2 € © C RP be the pseudo true value that minimizes the KL loss between g(y) and
p(yl0)

Oy, = argmin K'L[g(y), p(y|6)] = arg max Ey(y) Inp(y|6). 2)

If the model is correctly specified, 6% is the true value, denoted 6.
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LIET AL. 5

Let 6,,(y) denote the quasi ML (QML) estimator of 6”,' which maximizes the log-

likelihood function of the parametric model,?

~

0, =arg max Inp(y|@). 3)

Let y' = (y1,92,- - , )" denote all observed data at time ¢, s;(0) = 0lnp(y*|0)/00 —
Olnp(y'=1|0)/08 denote the t-th P x 1 single point score vector at 8, h;(8) = 8313(9)/80/
denote the ¢-th P x P single point Hessian matrix at 8. Define the sample Jacobian matrix
at 0 as J,(0) = 2371 54(0)s(0) — 2370 1 s¢(0)1 57 | 54(6)', and define the sam-
ple Hessian-form information matrix at  as I,,(8) = —H,,(0) = —% > iy hi(0). White
(1982) established the ML theory for misspecified models, that is,

Vi 007,005, @] @, - 07) S N (0.17), @)

where [p stands for a P-dimensional identity matrix. So the asymptotic variance takes the

sandwich form. If the model is correctly specified, then

VL, (8.,)] 728, — 60) 4 N (0, 1p). 5)

2.2. Bayesian inference under model misspecification

To do Bayesian inference about 6, let p(8) be the prior distribution of 8. By Bayes’

theorem, the standard posterior distribution is

p(Oly) = % < p(O)p(y6). ©)

where p(y) = [ p(y|0)p(0)d0 is the marginal likelihood. Unlike the ML theory, there is
no difference between the Bayesian asymptotic theory for the correctly specified model
and that for a misspecified model. In both cases, the Bayesian large sample theory (for

example, Van der Vaart (1998)) guarantees that the scaled posterior distribution converges

!Given different parametric models, one may obtain distinct QML estimators. When focusing on a specific
parametric model, the QML estimator is referred to as the ML estimator for the sake of simplicity.

ZWhen there is no confusion, we simply write En (y) as §n
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6

to a normal distribution in total variation, that is,
o~ _71 ~

where |[p — ¢q||pv = [ [p(x) — g(x)|dz. So the posterior density can be approximated by a

density of a Gaussian variate:

POl = b1 5. (0 = Bn). @®)

n

Observing the difference between the asymptotic posterior variance in (8) and the sand-
wich form of the asymptotic variance in (4), Miiller (2013) proposed to make Bayesian
inference based on an artificial posterior distribution, which is a Gaussian distribution cen-

tered at the MLE with the sandwich variance, i.e.,
p*(8ly) = bg, 1, (0 — On), ©)

A ——1 = — ~ ——1 =
where ¥, =1, (0,,)J,(0,)1,, (6,).
Given a set of decisions D and a loss function £(8, d) for any decision d € D, the optimal
decision based on each of two posterior distributions is to minimize the posterior loss, i.e.,

d:(6),) := argmin / L£(6,d)p*(6]y)do, d*(6,,) := argmin / L£(6,d)p*(6]y)de.
deD deD

The frequentist risk of the two optimal decisions may be obtained as

~

" (0,d) = / £[6.0:80)| 615, (B — 606,

" (0,d") = / £[0.438.)] 65, (8, — 0)dB,.
Miiller (2013) showed that as n — 400,

r (6P dY) <r (6 d).

ny»s na

Moreover, he showed that the inequality becomes strict for many loss functions. These find-
ings imply that the Bayesian inference about the parameter of interest based on the standard
posterior can be improved by that based on the sandwich posterior. A natural question to
ask is whether the improvement also applies to model comparison from a Bayesian per-

spective. We first hope to answer this question.
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LIET AL. 7
3. RISK OF PREDICTIVE DISTRIBUTIONS ON MISSPECIFIED MODELS
3.1. Predictive Distributions in Misspecified Models and the risk functions

Given a parametric model p(y|@), which is potentially misspecified, we have different
ways to predict future data, denoted by y; whose density is g(y ). For any predictive dis-
tribution whose density is ¢(y ¢|y), following Aitchison (1975) and much of the literature,
we use the KL loss function between g (y ) and ¢(y |y), denoted by

9(¥s)

KL [g(ys),alysly)] =/lnmg (vy)dyy, (10)

to measure its predictive performance. It is important to find a good candidate model as
well as a good predictive distribution that leads the smallest possible value to the KL loss.
In this subsection, we introduce three different predictive distributions.?

The first predictive distribution is the plug-in predictive distribution, defined by

q(ysly) =p (y£|0n) , (11)

where 6,, = [ 0p(8]y)d@ is the posterior mean.
The second predictive distribution is the Bayesian predictive distribution. It takes average

on the parameter to eliminate the parameter uncertainty

q(yrly) =plysly) = /p(YfIH,y)p(OIY)dG- (12)

Here the ‘average’ is taken on the posterior distribution p(8|y) that does not take account
of the model misspecification.
Thirdly, if we replace the posterior distribution by the sandwich posterior distribution of

Miiller (2013), then we get a new predictive distribution

q(yrly) =p°(ysly) =/p(yf|9,y)ps(9!y)d9, (13)

3The predictive density estimation and the comparison framework under the KL loss was initially established in
Aitchison and Dunsmore (1975) and Aitchison (1975). The framework has been applied in many fields, including
decision theory, information theory, econometrics, machine learning, image processing, and mathematical finance.
Notable contributions include, but are not limited to, Komaki (2001), George et al. (2006), Brown et al. (2008),
Kato (2009), Marchand and Sadeghkhani (2018), Hamura and Kubokawa (2022) and Nishi et al. (2024).
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8

which is termed as the ‘sandwich Bayesian predictive distribution’. To the best of our

knowledge, this predictive distribution has not yet been used in the predictive literature.

Following the existing literature, we assume that y  is independent of y, which we de-

note by y,¢p. Given three different predictive distributions, a natural question arises: for a

misspecified model, which of the three predictive distributions one should use to get the

best prediction?

In this paper, we compare alternative predictive distributions from a decision-theoretical

viewpoint. Let D = {d,}3_, be the set of decisions, where d,, is the decision of using (11)
p a=1

or (12) or (13) if a =1 or 2 or 3. The predictive distribution under different action can be

expressed as p (Yrep|y, da)-

For candidate model M that is potentially misspecified, let p (yp|y,M, d,) be the pre-

dictive distribution under decision d,, and model ), and let the loss function L(y,M,d,)

be 2 times the KL loss function between g (y f) and p (Yrep|y, M, dy), that is,

Q(YTep)
(YTepb’aMa dq

Ly, M,de)=2xKL[g(yf).p(¥reply,M,da)] = 2/lnp

) g (3’7‘619) dYrep-

Given the loss function, the frequentist (average) risk of decision d, under model M is

(Good (1952) and Aitchison (1975))*

Risk(M.du) = Eyy [£(00.d0)) = [ o(3) [ - 9(Yrep) (3 Yy

(YT6p|Y7Ma da

Hence, the selection of a predictive distribution and a candidate model becomes

(a¥, M") = argmin {2Ey(y) Ey(y,.,) 109 (Yrep) = 2Eg(y) Eg(yrey) 0P (Yreplys M, da) } -

a,M

Since g (yrep) is the DGP and Ey(y, . ) Ing (yrep) is independent of candidate models and

predictive distributions, the selection problem is the same as

(a*, M*) = arg ]r\?in {—2Eg(y)Eg(yTep) Inp (Yreply, M,da)} -
a,
and the frequentist risk of decision d, under model M can be equivalently written as

RiSk‘(M, da) = —QEg(y) Eg(ymp) 1Ilp (YTep|Y7 M, da) .

4When there is no confusion, we purge M from Risk(M,dq).

(14)

(15)
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LIET AL. 9

In this case, the predictive distribution corresponding to statistical decision d,+ and the op-
timal model M* is selected. The smaller Risk(M, d,), the better the predictive distribution
performs when using p (yyep|y, M, dg) to predict g (yrep).

3.2. Risks of Three Different Predictive Distributions in Misspecified Model

In this subsection, we give the regularity conditions and make the frequent risk analysis
for these three predictive distributions. Before we introduce regular conditions, we need
to fix some notations. Let I; (y*,0) = Inp(y'|@) — Inp(y'~!|0) be the conditional log-
likelihood for the ¢-th observation for any 1 < ¢ < n. For simplicity, we suppress /; (yt, 0)
as I (@) so that the log-likelihood function In p(y|@) is Y.y I+ (8).° Define z§j ) (0) to be
the j-th derivative of /; (6) and

s(y',0) ;:‘Myt‘ﬁ’):il(l) 6), h(y',0) = np(y'8) _ 1@ (g)

00 — ¢ 5006’ — i '
s:(0) :=s(y",0) —s(y'~",0) = 11" (), hy(6) :=h(y',0) —h(y'1,0)=1{” (),
B, (0) := Var \}ﬁ;zg”( ] /H y)dy, I, (B)Z/Jn(e)g(y)dy.

The regularity conditions we impose are similar to those in Li et al. (2020). For the detailed
discussion of these conditions, see Li et al. (2020).

Assumption 1: ® C R” is compact.

—2r
Assumption 2: {y; }/ | is strong mixing with the mixing coefficient o (m) = O (m T2 _E>

for some € > 0 and r > 2.

Assumption 3: For all ¢, [; (0) is third-times differentiable on @ almost surely
i@ -1 (6| < vy o - e

in probability, where CZ (yt) is a positive random variable with sup; £ HCZ (y ) H < 00 and

Iy (d ) - B(d (1)) B0,

Assumption 4: For j =0, 1,2, for any 6,6’

31t should be noted that the predictive method d, and the candidate model M are jointly optimized in (14).
®In the definition of log-likelihood, we ignore the initial condition Inp(yo). For weakly dependent data, the
impact is asymptotically negligible.
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10

Assumption 5: For j = 0, 1,2, there exists a function M;(y') such that for all § € ©,
l,gj) (0) exists, supgee Hli (0)’ < My(y"), and sup; E “Mt(yt)“r+5 < M < oo for some

0 > 0, where r is the same as that in Assumption 2.

Assumption 6: {li (0)} is Ly-near epoch dependent with respect to {y;} of size —1 for
0<j<1land —% for j = 2,3 uniformly on ©.

Assumption 7: Let 6” be the pseudo-true value’ that minimizes the KL loss between
the DGP and the candidate model

o1
0ﬁ:argm1n—/ln 9(y) g(y)dy,

6cO N p(y|0)
where {07} is the sequence of minimizers interior to © uniformly in n. For all € > 0,
1 n
lim sup sup —» {E[l(8)] - E[l:(%)]} <0, (16)

O e\N(8he) i
where N (62, ¢) is the open ball of radius € around 6.

Assumption 8: The sequence {H,, (6%)} is negative definite and the sequence {B,, (6%)}
is positive definite, both uniformly in n.

Assumption 9: The prior density p (@) is thrice continuously differentiable and 0 <
D (02) < oo uniformly in n. Moreover, there exists an n* such that, for any n > n*, the
posterior distribution p (8|y) is proper and [ 10]1? p (B]y) dO < co.

For simplification, we denote H,, (8%) as H,,, B,, (6%) as B,,. Given these regularity
conditions, we can derive the asymptotic approximation for risks associated with the three
predictive distributions, which are given by®

Plug-in prediction: Risk(d1) = Eg(y)Ey(y,ep) [—21np(yr6p|é)] )

Bayesian prediction: Risk(d2) = Ey(y)Ey(yre,) [—21n/p(yrep|0)p(0|y)d9] ,
Sandwich Bayesian prediction:  Risk(d3) = Ey(y)Eg(y,.,) [—2ln/p(yrepw)ps(ely)dO] .
"Here we denote the pseudo-true value as 6% to allow it varies with the sample size n. This notation can

accommodate to the dependence and heterogeneity of data.

8To simplify notations, we purge their dependence on candidate model M.
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LIET AL. 11
Note that the sandwich posterior is given by

where ﬁn and ]§n are consistent estimators of H,, and B,,. An example is, taking ﬁn =

~I, ! (8,,) and B, = J,,(6,,) in the independent case, &, =T, ! (60,)3,.(0,)T, ! (6,,). In the
later sections, different choices will be discussed. Here we write ﬁn and ]§n for generality.

In this subsection, we will give the asymptotic approximation for Risk(d;), Risk(ds)
and Risk(ds3). Note that the risk of the plug-in predictive distribution, Risk(d;), has been
used in Li et al. (2020) to develop the new DIC criteria for comparing misspecified models.
They derived the asymptotic approximation for Risk(d;) under similar regularity condi-

tions. That is
Risk(dy) = ~2Eyy) [Inp (y[8,)] +2tr [By (<H,) ™| +0(1). (17)
Hence, an asymptotically unbiased estimator of Risk(d;) is
—2Inp (y|6,) + 2tr [Bn (—Hn)_l} :

In the following two theorems, we derive asymptotically unbiased estimators for Risk(d2)

and Risk(ds), which are our core theoretical results.
THEOREM 1: Under Assumptions 1-9, it can be shown that
Risk(dy) = —2E,y [Inp (y|6,)] + tr [Bn (—Hn)_l] +PIn2+40(1).  (18)

For i.1.d. data, Ando and Tsay (2010) gave an alternative expression as

_2E9(Y) [1H/p(y|0)p(9|y) d@} +tr [Bn (_Hn)_l] . (19)

Note that [ p(y|0)p(0]y)d6 is the Bayesian predictive distribution of y taking average
on the posterior distribution p(@|y). It can be shown that

_ 1
Ey(y) {m/p(yw)p(@lw dG} = Eyy) [lnp (y16n)] — 5PIn2+0(1).  (20)

Thus, these two expressions are asymptotically equivalent. From (20), the first term of (19),

Eyy) [In [p(y|0)p(0]y) d6], cannot be interpreted as a model fit term because it includes
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P1n?2 which is a penalty term. So (18) bears more similarity to the traditional information
criteria, such as AIC, TIC and DIC.

THEOREM 2: Under Assumptions 1-9, it can be shown that
Risk(d3) = —2E,(y) [lnp (y0,)] + tr [Bn (—Hn)‘l]
+1n (‘Bn (—H,) ™ + IPD ~tr [(Bn +H,) (—H, + z;l)‘l} +o(l), @D

where ¥, = H 1B, H_ .

REMARK 1: From Theorem 1 and Theorem 2, we can get asymptotically unbiased es-
timators for Risk(d2) and Risk(ds) by taking sample analogs respectively. These two
asymptotically unbiased estimators provide the basis for developing information criteria

for Bayesian model comparison, which will be reported in next section.

Note that the plug-in predictive distribution deals with model misspecification by plug-
ging in the posterior mean, which is asymptotically normal distributed with the variance

being a sandwich covariance matrix. The Bayesian predictive distribution is

p(YTeplY) = /p(yrepw)p(éﬂ y) de.

It takes account of the influence of parameter uncertainty via the standard posterior distribu-
tion p (6| y) and handle model misspecification via p (y,ep|@). Furthermore, the sandwich

Bayesian predictive distribution is

P° (Yreply) = /p(yTepw)pS (0] y)de.

It takes account of the influence of parameter uncertainty via the sandwich posterior distri-
bution p° (f|y) and handle model misspecification with both p (y,.p|@) and the sandwich
posterior distribution p* (6|y).

Clearly, the three estimators for the risk functions shares the first term, —21Inp (y[?n),
which measure the model fit. They also share the second term, tr [Bn (—Hn)_l] which
measures model misspecification. The third term in the estimator of Risk(dz) is Pln2
that measures the influence of the parameter uncertainty based on the standard posterior
distribution. The third term in the estimator of Risk(ds) is In (‘Bn (—H,) ' 41 p‘) —
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—1 : .
tr [(Bn +H,) (—Hn +3, 1) } that measures the influence of the parameter uncertainty
based on the sandwich posterior distribution with the consideration of the model misspeci-

fication.

REMARK 2: The plug-in predictive distribution does not consider the parameter uncer-
tainty, while both the Bayesian predictive distribution and the sandwich Bayesian predictive
distribution take parameter uncertainty into account by taking an average. The only differ-
ence between the last two distributions is that the Bayesian predictive distribution takes the
average over the standard posterior distribution, while the sandwich Bayesian predictive
distribution takes average over the sandwich Bayesian posterior, which has been adjusted

for model misspecification.
COROLLARY 3: Under Assumptions 1-9, when the model is misspecified such that

lim tr |B, (-H,)'| > P, (22)

n—00 -

then

lim (Risk(d) — Risk(dy)) < 0.
n—oo
REMARK 3: This corollary gives a sufficient condition under which the Bayesian pre-
dictive distribution is better than the plug-in predictive distribution asymptotically. In fact,

we can rewrite (22) as

n—oo n—oo

Thus, a sufficient condition to ensure (22) is that B,, + H,, is positive definite uniformly
: 9

in n.

Let P x P matrices A and B be symmetric and positive definite. Hence, there exists a P x P matrix @ such
that B = QQ7, and

tr (AB) = tr (AQQT) —tr (QAQT) = zpj q;Aq; >0,

j=1

where g; is the j-th column vector of Q.
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REMARK 4: When the model is correctly specified, we have lim,, ,, tr | B, (—Hn)f1 =1

P and hence, ?
_ 3
Risk(dy) = —2Ey(y) [Inp (y]0,)] +2P +0(1), 23)
— 5
Risk(da) = —2Ey [Inp (y]6,)] + P(14+1n2) +o(1). (24)
6
Since PIn2 < P, we have 9

lim (Risk(d2) — Risk(dy)) <O0.

n—r00 9
This suggests the predictive distribution p (y,ep|y) has a lower asymptotic risk than the Lo

plug-in predictive distribution. The limitation of the plug-in predictive distributions stems **

from their failure to account for parameter uncertainty, as they treat parameters as the esti- °

mated quantities. In contrast, the Bayesian method embrace this uncertainty by integrating **

out parameters with respect to their posterior distribution. For detailed discussions of the **

parameter uncertainty, readers may refer to Barberis (2000) and George and Xu (2010). It o

is easy to show that replacing 0,, with én in (23) and (24) does not change the results. 16
17

Under the assumption of correct model specification, the comparison of the Bayesian 1s
predictive distributions and the plug-in alternatives in terms of the frequentist risk has been 19
extensively studied in the statistics literature. Most of them focus their attention to specific 20
model setups or to specific prior distributions. 21

For example, in finite samples, Aitchison (1975) showed that the MLE-plug-in predic- 22
tive distribution for Gamma and normal models are uniformly dominated by Bayesian pre- 23
dictive distribution with uniform priors. Murray (1977) and Ng (1980) showed that the 24
Bayesian predictive density with uniform priors is the best predictive distribution that is 25
invariant under the translation group. Levy and Perng (1986) proved that the Bayesian pre- 26
dictive distribution with a diffuse prior dominates the plug-in predictive distribution for 27
normal linear models. 28

From an asymptotic point of view, Komaki (1996) showed that, for the multidimensional 29
curved exponential family, the plug-in predictive distribution with the asymptotically effi- 30
cient estimators can generate the frequentist risk that asymptotically coincide with that 31

of the Bayesian predictive distributions. For multivariate normal models with unknown 32
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means, Komaki (2001) proved that the Bayesian predictive distribution with Stein’s prior
dominates both the Bayesian predictive distribution with a uniform prior and the plug-in
predictive distribution. George et al. (2006) showed that any Bayes predictive density is
minimax if it is obtained by a prior yielding a marginal that is superharmonic or whose
square root is superharmonic for multivariate normal models with unknown means. For
multivariate normal linear models, George and Xu (2008) obtained sufficient conditions
of the Bayesian predictive distribution with different priors for minimaxity and dominance
over the Bayes predictive distribution with uniform priors and the plug-in predictive dis-
tribution. For multivariate models with unknown means and variances, Kato (2009) pro-
posed to use an improper shrinkage prior with which the Bayesian predictive distribution
dominates the Bayes predictive distribution with uniform priors and the plug-in predictive
distribution. For multivariate normal models with unknown means whose parameter space
restricted to a convex set, Fourdrinier et al. (2011) showed that the Bayesian predictive
distribution with a uniform prior on the convex set dominates the plug-in predictive distri-
bution. Matsuda and Komaki (2015) developed singular value shrinkage priors for the mean
matrix parameters in the matrix variate normal model with known covariance matrices and
showed that the Bayesian predictive distributions based on these priors are minimax and
dominate those based on uniform priors and the plug-in predictive distributions. For multi-
variate normal models with additional information for means and variances, Marchand and
Sadeghkhani (2018) gave the conditions under which the Bayesian predictive distribution
with uniform prior defined on the information set dominates the plug-in predictive distribu-
tion. For Type-II censored data that is generated by ordered observations, Nishi et al. (2024)
prove that the Bayesian predictive distribution with an improper Gamma prior dominates
the plug-in predictive distribution.

Almost all of these works are about normal models or normal linear models, but our
work give an asymptotic results for much general class of models. Moreover, none of these
studies allow model misspecification. When the model is misspecified, the claim of domi-
nance of the Bayesian predictive distribution using the standard posterior over the plug-in

predictive distribution may not valid.

REMARK 5: When the model is misspecified, we argue that in Corollary 3 the condition

lim,, o tr | By, (—Hn)_1 > P can be satisfied in most cases. To see this, note that the
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asymptotic covariance matrix of QMLE is H !B, H !, while the asymptotic covariance
matrix of MLE is —H; 1. QMLE is more robust than MLE, while the price we pay is the
loss of efficiency. Thus, we expect that H, !B, H,,! — (-H,)!)=H, (B, + H,)H,,! >

0, thatis B,, + H,, > 0 and tr [Bn(—Hle)} > P. This argument is based on the empirical
phenomenon that “robust standard error is often larger than simple standard error” which
is often observed in empirical research; for instance, White’s robust standard errors and the
cluster-robust standard errors are typically larger than the simple OLS standard errors in

most cases (Angrist and Pischke (2009)).
COROLLARY 4: Under Assumptions 1-9, it can be shown that

lim (Risk(ds) — Risk(dz)) <0.

n—oo

REMARK 6: Corollary 4 shows that when the model is misspecified, the risk of Miiller’s
sandwich predictive posterior distribution is always less (weakly) than that of the origi-
nal Bayesian predictive distribution in terms of KL loss function asymptotically. This can
explained by the arguments in Remark 2. The original Bayesian predictive distribution
only considers the parameter uncertainty, while the sandwich Bayesian predictive distribu-
tion considers both parameter uncertainty and model uncertainty by replacing the posterior
p(Oy) by the sandwich posterior p*(0|y). The result in Corollary 4 extends the result of
Miiller (2013) to model comparison.

COROLLARY 5: Under Assumptions 1-9, when the model is misspecified such that

lim tr [(Bn +H,,) (—H, + 2;1)‘1] >0, (25)

n—oo

it can be shown that

lim (Risk(ds) — Risk(d1)) <0.

n—oo

REMARK 7: This theorem gives sufficient conditions under which the sandwich
Bayesian predictive distribution can achieve a lower risk than the plug-in predictive distri-
bution asymptotically. In fact, a sufficient condition for ( 25) is that B,, + H,, is positive

definite uniformly in n, which is consistent with the trace condition in Theorem 3.
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REMARK 8: Under Assumptions 1-9, when the model is correctly specified, the infor-
mation equality holds. Consequently,,

lim (Risk(d2) — Risk(ds)) =0,

n—oo

lim (Risk(ds) — Risk(dy)) <O.

n—oo

This suggests that, when model is correctly specified, the sandwich Bayesian predictive
distribution is asymptotic equivalent with the Bayesian predictive distribution, while both

of them are better than the plug-in predictive distribution.

3.3. A Toy Model

To illustrate the risks associated with the three predictive distribution, we consider the
following toy model. The data {y;} ; are observed and the k-dimensional explanatory
variable {X;}" , are fixed for simplification. Suppose the true DGP is a linear model with

heteroskedasticity:
yi=XiB+ei,ei~N(0,07).

The k-dimension regression coefficient (3 is of interest. However, since we do not know the
true DPG, we assume the following misspecified linear regression model with homoskedas-

ticity is used to fit the data:

yi = XIB +e5,ei ~ N(0,0%). (26)

The variance 0 = Y"1 ;02 /n is assumed to be known.!” Let y = (y1,...,yn), X =

(X1, X9,...,X,)", then the log-likelihood function is given as

n

n 1
Inp(y|X, 3) = —§1n(27m2) 32 (yi — XIB)2.
=1

The QMLE of 3 is given by § = (31, X; X}) - (3=, Xiyi), which is also the ordinary

least square (OLS) estimator and the posterior mean under standard priors.

101f o2 is unknown, it can be shown that (8, 1| 02 /n) is the pseudo-true value. This simplification will not

affect the key conclusion.
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Denote Qp, = (312, XiX[) /nand V,, = (37, 02X;X]) /n. We then have

1

B, =Var (nl/Q—dlnp(Y|X’6)) =Var ( ! ZXZ'&) =V, /o%,

dp Vno? i=1
1 d*Inp(y|X,
f,— g LEMPVIXB)N o e
nodpdp
In our model (26), the variance structure is misspecified. If the heteroskedasticity is absent,
ie,ifo? =..=02=0%then V;, = (31, 02X;X]) /n=02Q, . In this case, the infor-

mation equality B,, + H,, = 0 holds. However, heteroskedasticity breaks the information

equality, that is,

1|1 1 — 1
B, +H, = — [;Zafxixg— <EZ‘71’2> (EZXinf)] £0.
=1 =1 =1

o

When the condition tr[B,,(—H,,) "] > k holds, note that the covariance matrix of \/n( —
8) s
1

1 & SR 1 < -
H,'B,H, ' = <5§ XZ-X{> (EE U?XiX,L() <E§ XiX£> ;

which is White’s heteroskedasticity robust covariance matrix for QMLE in White (1980).

Note that the covariance matrix of /n( B — [3), ignoring heteroskedasticity, is

—1
1 n
_HT_Ll = 0'2 (ﬁZXZXZ/> )
=1

which should be smaller than White’s heteroskedasticity robust covariance matrix.'! That
18,

H,'B,H,'>-H
that is B, + H,, > 0. So we expect the trace condition tr[B,,(—H,)™!] > k holds and

Corollary 3 can be applied. Hence, the Bayesian predictive distribution has smaller risk

than the plug-in predictive distribution. What is more, Corollary 4 guarantees the sandwich

’
1A sufficient condition is that 012 =02 (X;) and X; X; are positively correlated.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32



=

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

LIET AL. 19

Bayesian predictive distribution has a smaller risk than the Bayesian predictive distribution.
That is,

Risk(dg) S Risk’(dz) S Risk‘(dl).

for sufficient large n.
In this toy model, we can verify this result hold exactly for every n, because we can
directly derive the risk of all three predictive distributions and compare them. Consider the

independent replication data:
2 .
Yrep,i = X{ﬁ + Erepis Erepyi ™ N(07 g; )7 1=1,2,..,n.

where €p¢p 1, ..., Erep,n 18 independent of €1, ..., €.

Let yrep = (Yrep,1, - yrepm)’ , the plug-in predictive distribution is

-1
p(yreplX, B) = N(B,0°1,), 5 = (Z XZ-XZ‘) Z Xiyi.
i=1 i=1
Then we get the risk of the loss associated with the plug-in predictive distribution:
Risk(d1) = Eyy)Eyyrer) [—2 I p(yrep|X, B)]
n
93 Eg(yrep) [” In(270®) + % Z(yrep,i - X{B)]
i=1
= n[n(270?) + 1] + tr [a—Qlevn] . (27)
Note that tr [c72Q,'V;] = tr [Bn (—Hn)_l] , and that
Eyy) [—21np(y|X,B)} =n[ln(270?) + 1] — tr [0 72Q,'V;] .
The asymptotic expansion (17) holds, that is
Risk(d1) = Ey(y) [_2 Inp(y|X, B)} 4 otr [Bn <_Hn)—1} .

For the Bayesian predictive distribution, we should calculate the posterior distribution

p(B|y, X). For simplification, we use the flat prior p(f) o< 1. Then the posterior distribution
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is
Bly,X ~ N(B,5°Q, /n).

So the Bayesian predictive distribution is given by

D(reply, X) = / P(3repl X, B)p(Bly, X)db.

Let

=1

n -1 n
5rep = (Z XzXZ/> Z Xiyrep,i~
1=1
It can be shown that

1
—Ii

n 1
I p(yreply, X) = =5 In(270?) + S

+ é (Brep + B)l nQn (Brep + B) - % [i(yrep,i)Q + BIHQ”B :

Taking expectation with respect to y and y,..,, we get the risk associated with the Bayesian

predictive distribution:
Risk(da) = Ey(y) Eg(ypep) [2Ip(Yreply, X)] = n[ln(2ro?) + 1] + kIn2. (28)
So the asymptotic expansion in Lemma 1 holds exactly, that is
Risk(da) = Ey(y) [—21np(y|X,B)} +tr [Bn (—H,) "' +kIn2.

Given the trace condition tr[B,(—H,)~!] > k, we have Risk(d2) < Risk(dy) exactly
holds in this example.

The sandwich Bayesian predictive distribution is given by
P 5raply-X) = [ D03 X. OBl X5,
where p*(3|y, X) is the density of N(5,Q;'V;,Q;;!/n) evaluated at 3. Hence,

n 1 _ _
Inp*(yreply, X) = —§1n(2ﬂ02) — §ln ‘0 2Vninlk}
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N/ - N N e =1/ _o= _ .
+5 (072 rep + Vi QuB) (07205 + Vi) (07 2Brep + Vi ' Q)
1 — N .
- W (yTep,i)2 - Eﬁ ann_lQnB-

Taking expectation

i=1

with respect to y and y,.p, we get

Risk(d3) = Eg(y)Eg(Y'rep) [_QIHPS(Yrepb’a X))

— n[In(270?) + 1] +1n |J_2VHQ;1 + Iy

—tr [02(0 2V, — Qu)(072Qn + Qu Vi Q)Y

(29)

So the asymptotic expansion in Lemma 2 holds exactly. It can be verified that Risk(ds3) <

Risk(dy) because of B, + H,, > 0. This is easy to understand, because the sandwich

Bayesian predictive distribution is based on the sandwich posterior, which is adjusted for

the model misspecification.

4. BAYESIAN PREDICTIVE INFORMATION CRITERIA FOR COMPARING MISSPECIFIED MODELS

4.1. Statistical Decision Theory for Model Selection

In this section, from the predictive viewpoint, we develop new information criteria for

Bayesian model comparison. Suppose there are £ candidate models My, Mo, - - -, M that

are all potentially misspecified and we hope to select a model from the pool.

To begin, we define some notations. For Pj-dimension candidate model M}, the vec-

tor of parameters is 8, € ®; C R and p(y|@), M) is applied to fit the data. The

posterior distribution of model M} is denoted as p(@%|y, M} ), the pseudo-true value,

QMLE, posterior mean of model M) are denoted as Gfl, 0

Bf Hf >F Bf H

n

k. f)fl,ps (Ok|y, M}) can be defined in the same way.

and 92, respectively.

The traditional model selection argument considers how to choose the ‘best’ model

among them. However, we propose to choose the best model and the best predictive distri-

bution, that is,

min
a€{1,2,3},ke{l, K}

Risk (Mk7 da) = Eg(y) (2 X KL [g (YTep) P <YTep|Y> M;., da)]) .

(30)
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Note that p (yep|y, Mg, d,) denotes the predictive distribution under predictive decision
d, and model My, Risk (Mjy,d,) denotes the corresponding predictive risk. To be specific,

—k

p (YTep|Y7 M;,, dl) =P (}’repwm Mk) (31)
P (Yreply, My, d2) :/p(yrep|9k,Mk)p(ek\y,Mk)dek (32)
D (Vreplys My, ds) = / D (VreplOr My) p° 04y, My) d6y, (33)

The optimization problem (30) simultaneously solve the best model and the best predictive
distribution.

To the best of our knowledge, there are two information criteria that allow for model
misspecification in the literature, TIC of Takeuchi (1976) and DIC,; of Li et al. (2020),
both of which assume that the predictive distribution is the plug-in distribution. DIC; (k)
takes the form of

DIC; (k) = —2Inp(y|8", My) + 2Pk, with P¥, = tr {nﬁﬁvﬁ} , (34)

_ _ /
where nVE = nFE [<9k - HZ> <9k - 02) |y,Mk} is a consistent estimator of (H¥)~1;

see Li et al. (2020). Vﬁ can be directly calculated from Markov chain Monte Carlo
(MCMC) samples. In (34), ﬁi is in fact a robust choice of ]§n Li et al. (2020) used

=33 s () (@) (7). 39

t=17=1 n

which is a heteroskedasticity and autocorrelation consistent (HAC) estimator of BY, where
k(-) is a kernel function and -y, is the bandwidth; see Newey and West (1987) and Andrews
(1991) for more details.

Under some regularity conditions, Li et al. (2020) show that

By [DIC s (k) + 2C) = Risk (M, d1) + o(1). (36)

where C' = [Ing(yrep) & (Yrep) dyrep is a constant that is independent on model. If the
candidate model M}, is correctly specified or a good approximation to DGP, DIC,; (k)
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becomes
DIC s (k) = —2Inp(y|8", My,) + 2Pk with Pk = /2 [mp(yyéﬁ,Mk) “Inp(y|6s, Mk)} d6,.

(37
TIC is defined by

ok ki pk 5 (a8 a-1 (3"
TIC(k) = —2Inp <y|0n, Mk> + 2Pk with PF = —tr {Qn (an) i (en) } . (39)
Li et al. (2020) established the relationship between TIC(k) and DIC,; (k) by showing that
Ey [DICy (k) + 2C] = Ey [TIC(k) + 2C] + o(1) = Risk (M, d1) + o(1).  (39)

Hence, DIC),(k) can be explained as Bayesian version of TIC(k). When the candidate
model is correctly specified or a good approximation to DGP, it was shown in Li et al.
(2025) that

Ey [DIC (k) + 2C] = By [AIC(k) +2C] + o(1) = Risk (My,d1) +o(1),  (40)
where
AIC(k) = ~2Inp(y[By, M) + 2P, (41)

with P} being the number of parameters in M.

4.2. Information criterion for comparing misspecified models

It should be noted that these penalty-based information criteria generally comprise two
parts. The first part involves evaluating the log-likelihood at the certain point estimators,
which measures the model fit. The second part is the penalty term, which measures the
model complexity. What is more, these information criteria are in fact asymptotic unbiased
estimators of the corresponding statistical decision risks.

Follow the same logic, we now develop two new information criteria that can be used to
estimate Risk(Mjy,ds) and Risk(My, ds). For completeness, we also state the correspond-
ing result of Risk(My,d;) of Li et al. (2020).

When the misspecification is considered, we define three information criteria for model
M. as

—k
ICi (k) = —2Inp(y|0,,, My) + 2P},
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ICs(k) = —2Inp(y[@, My) + 2P2,
ICs(k) = —21np(y[0,, M) + 2P,
where
Pl =ntr [, V4],
P = (P! + PyIn2)/2,

PE = P24+ 1o (|n2, v + 1p]) /2 -

(8- () ) (vt) o [y ()] ) 2

with P, being the number of parameters in M}, and ﬁﬁ being a HAC estimator of BY
defined in (35).

Note that IC; is DIC,; in Li et al. (2020), while IC, and IC3 are new to the literature. Li

et al. (2020) showed that IC; (k) is an asymptotic unbiased estimator of the risk associated

tr

with the plug-in predictive distribution when model M is potentially misspecified. ICs
estimates the risk associated with the Bayesian predictive distribution. IC3 estimates the
risk associated with the sandwich Bayesian predictive distribution. In the following, for
convenience of description, we use IC; to stand for DIC),.

Consistent with the existing information criteria such as AIC, TIC and DIC, our new in-
formation criteria ICy and IC3 consist of two parts: the model fitness and penalty for model
complexity. The penalty terms in ICy and IC3 are proposed to capture ‘complexity’ un-
der the Bayesian predictive distribution and the sandwich Bayesian predictive distribution.
In fact, the following theorem guarantees that ICo(k) and IC3(k) are asymptotic unbiased
estimators for Risk(Mj,ds) and Risk(My,ds).

THEOREM 6: Under Assumptions 1-9, we have,

Ey(y)(ICa(k)) = Risk (M, da) +o(1),
Ey)(IC3(k)) = Risk (My, ds) + o(1).

REMARK 9: When the model is correctly specified, IC3 reduces to IC,. That is because

IC; is based on the Bayesian predictive distribution, while IC3 is based on the sandwich
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Bayesian predictive distribution. When the model is correctly specified, the two predictive
distributions are asymptotic equivalent and hence, their corresponding information criteria

are the same.

REMARK 10: Based on Risk(Mjy,d1), Risk(My,ds) and Risk(My,ds), we can use
IC1, IC2 and IC3 to do model selection. Let the corresponding optimal model be k7, k5 and
k3. Model k7 has the lowest prediction risk under the plug-in predictive distribution. Model
k3 has the lowest prediction risk under the Bayesian predictive distribution. Model £3 has
the lowest prediction risk under the sandwich Bayesian predictive distribution. It should be

noted that £7, k5 and k3 may be different in practice.

COROLLARY 7: Let the optimal decision under risk Risk(My,d2) and Risk(My,ds)
be k35 and k3, respectively. By Corollary 4 and Theorem 6,
lim RZSk?(Mkﬁ,dQ) > lim RZSk(ng,dg)

n—-+0o00 n—-+00
REMARK 11: Therefore, the risk associated with the sandwich predictive posterior can-
not be higher than that with the regular Bayesian posterior. This corollary again confirms

the importance of the sandwich posterior distribution of Miiller (2013).

REMARK 12: It should be noted that our goal is not simply to choose a ‘best’ model un-
der one predictive distribution. Based on Risk(My,d;), Risk(Mjy,ds) and Risk(My,ds),
we can get three ‘optimal’ models k7, k5 and k3, which can be estimated by ICy, IC> and
IC3. By comparing Risk(Mg:,d1), Risk(My;s,dz), Risk(Mys,ds), which are estimated
by IC; (k}), IC2(k3) and IC3(k3), we can further decide which predictive distribution is the
best for the purpose of prediction. We then obtain the optimal model and the corresponding
optimal predictive distribution from all 3 x /' combinations of /K candidate models and the
three different predictive distributions. Hence, from a predictive viewpoint, more informa-
tion can be obtained from our model selection framework. This is the important advantage

of our proposed method compared with other existing popular information criteria.

REMARK 13: Table I lists and compare alternative information criteria. We also list the
estimation methods and the predictive distribution that these information criteria based on,
as well as whether or not they need to assume the candidate model is correctly specification

or at least a good approximation to the true data generating process.
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TABLE I

ALTERNATIVE INFORMATION CRITERIA

Estimation Method | Specification | Predictive Distribution Literature 3
AIC MLE Correct Plug-in Predictive Distribution Akaike (1974)
TIC MLE Misspecified | Plug-in Predictive Distribution Takeuchi (1976) >
DIC Posterior Mean Correct Plug-in Predictive Distribution Spiegelhalter et al. (20023
DICy, Posterior Mean Correct Plug-in Predictive Distribution Li et al. (2020) 7
IC1/DIC); | Posterior Mean Misspecified | Plug-in Predictive Distribution Li et al. (2020) o
ICy Posterior Mean Misspecified | Bayesian Predictive Distribution | New
IC3 Posterior Mean Misspecified | Sandwich Predictive Distribution | New ’

5. SIMULATION STUDIES

We now design two simulation studies to check the performance of the new criteria. In
both studies, we compare misspecified models. In the first simulation study, we use the
polynomial regression to fit a nonlinear model. In the second simulation study, we try to
choose a ‘better’ model between the logit model and the probit model while the true model

1s a mixture of logit and probit. We also use other well-known criteria as benchmarks.

5.1. Polynomial Regression

In this subsection, we design a simple experiment to compare alternative model selection
criteria when the true DGP is not included in the set of candidate models. In other words,
all candidate models are misspecified. Following Li et al. (2020), we generate data from

the following model
yi =In (1 +46x;) + ¢, e, ~N(0,1),i=1,...,n

where x; = 0.7(i — 1)/n which is fixed under repeated sampling by design. In practice,
researchers do not know the functional form. Suppose the following set of polynomial
regressions is considered,

k—1

My yi = Brjaw] +ui
=0

TU
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where k= 1,..., {nl/BJ and u; is assumed to be N (0,02). When k — oo as n — oo,
the polynomial regression is related to the sieve estimator that uses progressively more
complex models to estimate an unknown function as more data becomes available. In our

experiment, we estimate and compare all the candidate models {Mk, k=1,..., Lnl/ 3J }

In M, z;-:é Bk)j.}rlx‘z is used to approximate In (1 + 46x;). Let B, = (51, ..., 8;) so that

. !/
), = (B}, 0?) and the number of parameters is k + 1. Let x/ = (m{,xé ...,:r;j> X =

0 1 k—1 0 1 [n1/3]—1
(x,x,...,x ),andX: X7, X", ..., X

Three different sample sizes are considered, n = 100,500, 1000. For each candidate
model M}, we obtain the MLE of 8, denoted by ﬁk = <[3;€, 62> , and then calculate AIC

and TIC. ék, which is also the OLS estimate, has a closed-form expression for this model.

The following g-prior is used for 8 do conduct the Bayesian analysis,
1 -1
T (02) X ?7 IBk ~ N </8k,07ga2 (X;ng) > )

where g = n denotes the unit information prior of Kass and Wasserman (1995) in the nor-

mal regression case. The posterior mean and the posterior variance of 0, are

Br.0

E<ﬁk|y,x>:i(7

+8 ),
g+1 ﬂ"’)

st + L (Bk - Bk,o)/X;ch (Bk - 5k;,0>

1
E(02|y,X): 9+ — ;
g -1
Var(/Bk | y,X) = g? (X;cxk) E(02 ‘ y7X)7
2 2
Var (02 |y, X) = 25 (2 l}; X) ,

Cov (,Bk,,0'2 | y,X) =0.

These closed-form expressions are used to calculate DIC, DICy, ICy, ICs and ICs.

We replicate the simulation experiment for 1000 times. In every experiment, we simulate
y from the true model and calculate seven criteria for each candidate model M, with £ =
1,..., Lnl/ 3J. Each of the seven criteria is used to select a best model (call it M}« may

differ across different criteria), we record this model and the corresponding IC.
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Note that for AIC and TIC, we take MLE under their best model as the estimator and
use the plug-in density p(yrep]/a\k* , Mj~) to predict new data. For DIC, DIC,; and ICy, we
use the plug-in predictive distribution p(yyep|O@+, Mg+ ) under the best model My« to pre-
dict new data. For ICy, we use the regular Bayesian predictive distribution p(y,ep|y, M=)
under the best model M+ to predict new data. For IC3, we use the sandwich predictive dis-
tribution p°(y,ep|y, My+) under the best model My« to predict new data. Then we replicate
the experiment 1000 time and estimate each of the seven risk functions using the average
of the corresponding ICs.

Table II reports the relative frequencies of the selected models by each of seven criteria
(namely AIC, TIC, DIC, DIC;, ICy, IC,, IC3), the average values of k£*, and the average
value of the estimated risks for each of seven criteria, all across 1000 replications.'?

Several interesting results can be found in Table II. First, the models selected by the
BIC tend to be more parsimonious than those selected by other criteria. This result is not
surprising as BIC has a larger penalty term than other criteria. Second, the average k*s
selected by AIC, TIC, DIC, DIC, and IC; are very similar, suggesting that they tend to
select the same model. This is not surprising because AIC, TIC, DIC, DICy, and IC; all use
the plug-in predictive distribution to calculate the predictive loss. Third, ICo tends to choose
more complex model than all the criteria based on the plug-in predictive distribution while
IC3 tends to choose even more complex model then ICy. Of course the complex model is
closer to the true model. Fourth, as the sample size increases, the average k*s selected by
all criteria tend to increase.

Now let us focus on the estimated risk of ICq, ICy and ICs. IC3 has a smaller risk than
ICo, and IC2 has a smaller risk than IC;. Results obtained from this Monte Carlo study
indicate that if one’s objective is to get a best prediction for future data, we should not only
consider how to choose the ‘best” model and estimator, but also consider what predictive

distribution we should use.

2We report (ﬁis\k /n —1—1n(27)) x 103 instead of Risk to better highlight differences in the estimated risk

functions under different criteria.
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TABLE II

SIMULATION RESULTS FOR THE FIRST EXPERIMENT

AIC TIC DIC DIC;, | IC1/DICy, ICo IC3 3

Relative frequency of the polynomial order selected by alternative (n = 100)
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k=2 0.064 0.061 0.065 0.063 0.052 0.042 0.041 .
k=3 0.510 0.491 0.504 0.510 0.468 0.451 0.441
k=4 0.426 0.448 0.431 0.427 0.480 0.507 0.518 !

Relative frequencies of the polynomial order selected by different criteria (n = 500)

k=3 0.062 0.062 0.063 0.062 0.059 0.044 0.042

k=4 0.348 0.334 0.341 0.346 0.327 0.287 0.283

k=5 0.318 0.321 0.323 0.318 0.322 0.323 0.321

k=6 0.167 0.174 0.168 0.168 0.180 0.200 0.200

k=T 0.105 0.109 0.105 0.106 0.112 0.146 0.154
Average value of the estimated risk under alternative IC (n = 100)

Risk 49436 48.602 50.573 50.935 44418 35901 33917
Standard Error  (4.732) (4.746) (4.708) (4.711) (4.743) 4.722) (4.724)
Average value of the estimated risk under alternative IC (n = 500)

Risk 12.128  12.020 12.131  12.178 11.704 8.330 8.167
Standard Error  (1.989) (1.990) (1.988) (1.989) (1.990) (1.990) (1.990)

The logit model and the probit model are widely used for discrete choices. In the second

experiment, we simulate data from the mixture of the two models and use alternative IC to

5.2. The mixture of logit and probit

choose between the logit model and the probit model.

Suppose y = (y1,¥2,...,yn)" be a vector of dependent variables, y; takes values 0 or 1

fori=1,2,...,n, the independent variable matrix X = [x1, X2, ..., xy] where x; isa P x 1

vector. The probability of y; = 1 conditional on x; is

P(y; = 1|x;, 8) = F(xf3),

(42)
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where 3 is a P x 1 vector and (y;,%;) are identical and independent distributed. If we
choose F'(x}f3) = ®(x}) with ®(-) be the CDF of standard normal distribution, (42) is the
probit model. If choosing F'(x]3) be the CDF of logistic distribution

o exp(xf)
Feaf) =17 exp(x;f3)’

(42) becomes the logit model. The latent variable representation of (42) is as follows
Yi :I(zi > 0),,2@' :Xéﬁ‘f—fﬁi,

where I(+) is the indicator function, the density function of ¢; is f(g;) = ¢(&;) with ¢(-) be
the PDF of the standard normal distribution for the probit model, and

exp(g;)
fle)=—2rs
(&) (14 exp(e;))?
for the logit model. For model comparison, we denote the probit and logit model as Model
1 and Model 2, named by M7 and M>, respectively.
We simulate from a mixture of the probit model and the logit model, so that both A/; and

My are misspecified. We generate i.1.d. data from the following model

e1;~ N(0,1), e9; ~ logistic(0,1), U~ U(0,1),
ei=IU < q)er; + I(U > q)eai,

Yi :I(zi > 0),2’1‘ :X;ﬁ+€i,

where ¢ € [0, 1] is a given parameter. For simplicity we write &; ~ ¢ x N(0,1) + (1 —¢q) X
logistic(0,1).

In this model, to simulate ¢;, we generate a random number ¢1; from N(0,1) and a
random number e2; from the standard logistic distribution. Then we let £; = £1; with prob-
ability ¢ and let €; = £9; with probability 1 — ¢. If we specify ¢ = 1, i.e., ; ~ N(0, 1), then
we get a probit model (we denote it as M;). If we specify ¢ = 0, i.e., &; ~ logistic(0,1),
then we get a logit model (we denote it as M>). Thus, we simulate data from the mixture
of probit and logit where parameter ¢ controls the proportions of probit and logit. When ¢

is closed to 1, the model is closer to a probit model than to a logit model.
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Now suppose we do not know the true DGP. We choose between M7 and Ms. Thus, we
use the seven criteria to make model selection. To compare M7 and M», we need to estimate
them first. The calculation of AIC and TIC requires QMLE, which is easily obtained by
a standard statistical software. However, the other information criteria need the posterior
mean, which is harder to get.

Albert and Chib (1993) proposed a Gibbs Sampling algorithm for the probit model based
on data augmentation of Tanner and Wong (1987). It draws samples from the joint posterior
distribution of the parameters and the latent variables. The latent variables can be drawn
form a conditionally normal distribution since they follow a linear model of parameters with
a normal error term. Zens et al. (2023b) applied marginal data augmentation (Liu and Wu
(1999)) to boost the convergence of the Gibbs Sampling algorithm for the probit model.
For the logit model, the latent variable follows a linear model with a logistic error term.
Holmes and Held (2006) used the scale mixture normal representation of the logistic error
with the Kolmogorov-Smirnov distribution. Polson et al. (2013) proposed a new mixture
representation of the logistic error with P6lya-Gamma distribution that can largely improve
the efficiency of the Gibbs Sampling algorithm. Zens et al. (2023b) proposed a ultimate
Pélya-Gamma (UPG) samplers with marginal data augmentation to further improve the
efficiency of the Gibbs Sampling algorithm for the logit model. In this paper, we use UPG
for the probit model and the logit model, which is implemented by the UPG package in R.

To conduct the Bayesian analysis, we specify a vague prior distribution
B~ N(0,10 x Iy),

We use the UPG package in R and draw 11000 MCMC samples from the posterior
distribution. The first 1000 is used as the burn-in sample, and the next 10,000 iterations is
collected as effective MCMC draws. With the posterior samples, we can obtain the posterior
mean B and DIC, DIC;, IC;, IC5 and IC3.

We simulate for ¢ = 0,0.1,0.2,...,0.9, 1. For each ¢, we simulate data with sample size
n = 500 and calculate AIC, TIC, DIC, DICy, ICy, ICq, IC3. Then replicate this experi-
ment for 1000 times. The performance of these criteria is compared based on these 1000
replications. We calculate the risks of every criterion using the same method as in Section

5.1. Table III reports the risks of all seven criteria, the corresponding standard errors are
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reported in the parentheses. AIC, TIC, DIC, DIC}, and IC; have similar risks, while the
risk of ICj3 is lower than those of IC; and ICq for every ¢. This indicates that the sandwich
predictive distribution can reduce the risk of statistical decision. Compared with other cri-
teria, even if IC3 chooses the same model, we can use the sandwich predictive distribution

to improve the prediction.

TABLE III

THE AVERAGE RISKS UNDER DIFFERENT CRITERIA

Criteria AlIC TIC DIC DIC;, | IC1/DICy, 1C, IC3

g=0 520071 520.066 520.066 520.104 | 520.106  519.172 519.159
s.e. 0.651)  (0.651) (0.651) (0.651) | (0.651)  (0.651) (0.651)
g=0.1 508725 508.719 508.720 508.760 | 508.760  507.826 507.813
s.e. 0.663)  (0.664)  (0.663) (0.663) | (0.664)  (0.663)  (0.664)
g=02 500.129 500.137 500.121 500.163 | 500.177  499.237 499.223
s.e. (0.654)  (0.654) (0.654) (0.654) | (0.654)  (0.654)  (0.654)
q=0.3 489.133 489.162 489.124 489.167 | 489.202  488.251 488.236
s.e. (0.680)  (0.680) (0.680) (0.680) | (0.680)  (0.680)  (0.680)
q=04 477.076 477.103 477.064 477.109 | 477.142  476.193 476.177
s.e. 0.667)  (0.667) (0.667) (0.667) | (0.667)  (0.667)  (0.667)
q=05 463546 463568 463.537 463.583 | 463.611  462.663 462.645
s.e. 0.690)  (0.690)  (0.690) (0.690) | (0.690)  (0.690)  (0.690)
q=06 453332 453367 453319 453366 | 453406 452453 452435
s.e. 0.693)  (0.693) (0.693) (0.693) | (0.693)  (0.693)  (0.693)
q=0.7 437.997 438.023 437.977 438.023 | 438.054  437.110 437.092
s.e. (0.716)  (0.716)  (0.716)  (0.716) | (0.716)  (0.716)  (0.716)
q=0.8 424242 424225 424224 424268 | 424258 423335 423314
s.e. (0.700)  (0.700)  (0.700)  (0.700) | (0.700)  (0.700)  (0.700)
g=0.9 408538 408.481 408.517 408.559 | 408.511  407.609 407.589
s.e. 0.686)  (0.687) (0.687) (0.687) | (0.687)  (0.687)  (0.687)
g=1 393119 392961 393.096 393.136 | 392.990  392.139 392.118
s.e. (0.653)  (0.654) (0.654) (0.653) | (0.654)  (0.653)  (0.654)
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6. EMPIRICAL STUDIES
6.1. Discrete choice models

In the empirical research, discrete choice models have been widely used. In this section,
we consider a model comparison between a binary probit model (1/1) and a binary logit
model (M>). The data set is the female labor force participation from the US Panel Study
of Income, including a binary dependent variable takes the value of 1 if the woman is
participating in the labor force, the number of children under the age of 5, the number of
children between 6 and 18 years, a standardized age index, two binary indicators capturing
whether a college degree was obtained by the wife and the husband, the expected log wage
of the woman, the logarithm of family income exclusive of the income of the woman. There
are 753 observations in the data set. For more details about the data, see Zens et al. (2023a).
Then there are 8 parameters in both models including the intercepts.

To obtain MCMC output, we first specify a vague prior distribution for parameters as
6 ~ N<0k><17)\ X Ik’)7

where A = 100 in both models. Then we use more informative priors with A = 10 or 1. To
draw MCMC samples, we use the same method as that in Section 5.2. We draw 510,000
random draws from the joint posterior distributions of parameters in each model. The first
10,000 is used as the burn-in sample, and the next 500,000 iterations is collected as effective
observations. Hence, there are 500,000 effective draws.

To compare the two models, based on 500,000 effective draws, we calculate AIC, TIC,
DIC, DICy, ICq, ICy and IC3 for two candidate models under different priors.

Table IV reports the model selection results under various prior. Several interesting re-
sults may be found in the table. First, it is unsurprising to see AIC and DIC take similar
values in all cases as they are asymptotically equivalent as shown in Li et al. (2025). How-
ever, we are surprised to see AIC, DIC, DICy, IC3 take similar values in all cases because
while AIC and DIC assume the models are correctly specified while DICj; and IC3 allow
model misspecification.

Second, TIC takes very different values from AIC in all cases, suggesting both models
are misspecified, and hence TIC is more applicable. Interestingly, AIC suggests M is

preferred, TIC suggests M is preferred.
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TABLE IV

MODEL SELECTION RESULTS FOR MODEL 1 AND 2 UNDER DIFFERENT PRIOR

A AIC TIC DIC DICy, IC1/DIC)y 1Cq IC3

M

1 921.3899 948.9662 921.2682 921.2658 | 948.8300  932.6584 921.6041
10 921.3899 948.9662 921.3975 921.4283 | 949.0664  932.7751 921.6842
100 921.3899 948.9662 921.3958 921.4302 | 948.8273  932.6563 921.6876

M,

1 921.2659 950.7182 920.9610 920.9141 | 950.7100  933.5714 921.5698
10 921.2659 950.7182 921.2944 921.4513 | 950.9292  933.6507 921.7726
100 921.2659 950.7182 921.3576 921.5378 | 951.0234  933.7023 921.8164

Third and most importantly, IC3 takes much lower values than IC5 that in turn takes much
lower values than IC3. This is consistent with our theoretical results. Since IC3 is smaller
than IC; and ICa, it suggests the sandwich predictive distribution leads to the smallest KL
losses in all case. According to IC3, M is preferred to M2 when a moderately vague or a
vague prior is used (i.e., A = 10, 100). However, M3 is preferred to //; when an informative

prior is used (i.e., A = 1),

6.2. SV models

Stochastic volatility (SV) models have been found very useful for pricing derivative se-
curities and modeling time-varying volatility. The discrete-time basic log-normal SV model
is composed of two equations. One is the measurement equation, the other is state equa-
tion where the logarithmic volatility is the state variable. The state equation is assumed to

follow an AR(1) model. The basic log-normal SV model is of the form:

yr = exp(he/2)ug, ug ~ N(0,1),t=1,...,n,

ht = M+¢(ht—1 - ,U/) + TV, v~ N(07 1>7h0 = [,
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where y; is the continuously compounded return, h; is the unobserved log-volatility, u; and
vy are serially independent for all ¢, corr(usvs) = 0 for any ¢, s. In this paper, we denote
this model M.

To carry out Bayesian analysis, following Meyer and Yu (2000) , the prior distributions

are specified as follows:
t~ N(0,100), ¢ ~ Beta(1,1), 1/7% ~T(0.001,0.001).

An important and well documented empirical feature in many financial time series is the
leverage effect. Following Yu (2005), the leverage effect SV model allows for correlation
between the two error terms, that is, corr(u;, vs) = p. In this model, p captures the leverage
effect if p < 0. We denote this model M3 and specify the prior distribution of p as p ~
Uniform(—1,1).

SV models are difficult to estimate by ML, and hence, it is hard to calculate AIC and
TIC. Our goal is to compare the two models using DIC;, ICy, IC> and IC3. Note that
both models are nonlinear non-Gaussian state-space models, the state variable h; is latent.
Thus, the likelihood function p(y|#) is not available in close-form . That is why a popular
estimation and inferential method is Bayesian MCMC.

The dataset consists of 945 daily mean-corrected returns on Pound/Dollar exchange
rates, covering the period between 01/10/81 and 28/06/85. For MCMC, after a burn-in
period of 10,000 iterations, we save every 20th value for the next 100,000 iterations to get
5,000 effective draws. The same dataset was used in Kim et al. (1998) and Meyer and Yu
(2000).

Table V gives the posterior mean and the posterior standard error of parameters in the
basic SV model (M) and the leverage SV model (M3). Also note that in My and M>, the
posterior mean and the posterior standard error of y, ¢ and 7 are all similar. Moreover,
the posterior mean of p is very close to zero, relative to its posterior standard error. This
indicates that the leverage effect may be no significant. From the point of simplification,
the basic SV model may be a better choice.

Table VI reports 2Py, 2P, 2P, 2P3, DICy, ICq, 1Cq, and ICs. First, all four criteria
choose the basic SV model (M), which coincides with our analysis in Table V. Judged by
the difference among DICy, ICy, IC9 and IC3 and the difference among 2FPr, 2Py, 2P,
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TABLE V

POSTERIOR MEAN AND STANDARD ERROR OF PARAMETERS IN M7 AND M

My Mo
Parameter Mean SE Mean SE
I -0.7158  0.3008 -0.6711  0.3529
0] 0.9767  0.0145 09771  0.0143
1) NA NA -0.0104 0.1381
T 0.1771  0.0161 0.1806  0.0144

2Ps, we can tell that the difference of information criteria is mainly caused by the penalty
term. Because the leverage SV model M3 has one more parameter p, its penalty terms are
larger than those of M;. The extra parameter p does not improve the model fitting a lot.
That explains why a parsimonious model is selected.

Moreover, among ICq, ICq and IC3, IC3 of M is the smallest. This observation suggests
that we prefer not only the basic SV model (M) but also the sandwich Bayesian predictive

distribution for the purpose of predicting future data.

TABLE VI

MODEL SELECTION RESULTS FOR M7 AND M>

Model 2PL DICL 2P1 ICl/DICM 2P2 ICQ 2P3 ICg

My 4.935 1843.784  8.658 1847.507  6.409 1845.257 6.088 1844.936
Mo 6.510 1845.406 10.451 1849.346  7.998 1846.894 7.710 1846.606

7. CONCLUSION

It is well known that in Bayesian literature, when the model is misspecified, the posterior
distribution still has an asymptotic normal distribution which centered at the maximum
likelihood estimator (MLE) with Hessian information matrix which is in general, different
than the "sandwich" covariance matrix. In a recent literature, Miiller (2013) showed that
due to this discrepancy between the Hessian information matrix and sandwich covariance

matrix, an artificial normal posterior centered at MLE with sandwich covariance matrix
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(sandwich posterior, hereafter) can yield lower asymptotic frequentist risk than the original
normal posterior. On the basis of these two different posteriors, from predictive viewpoint,
three are three different predictive distributions for candidate use, that is, Plug-in predictive
distribution, Bayesian predictive distribution, and Miiller’s Bayesian predictive distribution
based on the sandwich posterior distribution.

In this paper, the main contributions are least threefold. First, from predictive viewpoint,
we investigate the theoretical properties how these three predictive distributions work and
which can actually outperform best in a variety of settings. On the basis of Kullback-Leibler
(KL) loss function, we show that the sandwich Bayesian predictive distribution also can
yield lower asymptotic risk than the standard posterior distribution. Furthermore, we give
the conditions from the asymptotic risk that the sandwich Bayesian predictive distribution is
better or not than the plug-in predictive distribution. Second, based on the Bayesian predic-
tive distribution and sandwich Bayesian predictive distribution, we proposed two important
information criterion for comparing misspecified models which can be unbiased estimators
for the risks based on corresponding predictive distributions. Third, we established the re-
lationship between the propose information criterion and the existing information criterion
such as the popular AIC, TIC, and DIC, etc. At last, we illustrate the proposed new infor-

mation criteria using some real studies in economics and finance.

APPENDIX

A.1. Notations

<
= definitional equality 6 ,, posterior mode
o(1) tend to zero 6, QML estimator
(1) tend to zero in probability 62  pseudo true parameter

converge in probability 0,  posterior mean

A.2. Proof of Theorem 1

We provide a proof sketch in this Appendix, details are given in the Supplement. Denote

0, = arg mgxlnp (Yrep|@) +Inp(y[6) +Inp ().

These three lemma are useful to prove our result.
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~ <
LEMMA 8: Under Assumptions 1-9, 0,, — 6% 20,0 n— 0P

S ]

= 0.

n n

LEMMA 9: Under Assumptions 1-9, the following asymptotic expansions hold:

Vi (6, -61) =-H;
i (8, 01) = (-2m,)

aes

1 1 olnp(yl|6n)
" o 00
1 Olnp(y|67) | 1 Olnp(yrepl67)
Jn 08 vn 06

_1 1 Olnp(yl6?)
P\ —_H 1 n RT2
0") " Vn 00 n (),

+ RT)(y),

where E|RT(y)[2 = o(1), EIRTL(y.yrep)2 = o(1), E|RT2(y)[2 = o(1).

LEMMA 10: Under Assumptions 1-9, the following moment conditions hold

£l (o,

<c.eva(o. )| <c 5|y (7, o)

E||Vas(en)|* <€, E|Va(H.(65) - Hy)||" < C.

LEMMA 11: Under Assumptions 1-9,

E [\/ﬁ (“én - 9;1) Jn ('én - eg)'} =275, + o(1),

where ., = H, 'B, H, .

We are now in the position to prove Theorem 1. By the Laplace approximation (Tierney

et al., 1989, Kass et al., 1990) and Lemma 9, we have

p(Y"rep’Y) :/p(}’rep|0)p(0|}’) d0=

where

[ pralo)p(sio)p(6) do

/ p(y|6)p(6)d6

exp (—nhy @n))) (1 +0p (i)) O <

exp (—nhD (?n>

~1/2

v (0
- 5 —1/2

()

i (8) =~ (Inp (3,6, 6) + 10p (¥16) + Inp (6)).

1
n2

) + RT% (Y7 YTep)’

4
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1
hp(8) =—— (lnp(y[0) +1np(8)).
Then we have

Inp (yreply)
L 5)

“In ‘vth (?n> ) v [—nhN (én) +nhp (?n

39

)| +RT.

/

NV hd

T T
where E|RT3| = 0.

The first term can be approximated by

T, = —% (ln ‘VQhN (b’n> “In (V%D (7,1)

)

1 1 1
= —5In|=H, — Hy[ +  In|-H,| + RT} = —§P1n2+RTf;,

where E|RT}}| = 0. The second term can be approximated by

(43)

Ty = —nhy (02) +nhp (6) =1np (yrep| €) + Br + B2+ RIS, (44)

where RT? =1Inp (5n> —1Inp (?n> satisfies E|RT>| = o(1), and

~ < ~ <
By = lnp <YTep|0n> - lnp <YTep| 0 n) , By = lnp (YI0n> - lnp <Y| 0 n) .

We can further decompose F as £y = E11 + E12, where

Ey = lnp (YTep’5n> - lnp (YTep|9€L) , Bio = lnp (YTep|0$L) - hlp (yrep|

For F11, we have

1 Olnp (YTep|0;Z)

L ! 182 Inp (yrep|67)
Vn 00’

Eu= Vi (6~ 67) %ﬁ(én_aw n o000 V"

7.)

(b’n - 91;;) .

F111 Eq12

where 0, lies between 6., and 0P . By Lemma 11, we can show

1 1 Olnp(yrep|0f) 1 Olnp (yrep|6®
E(Ewn) = EyEy,,, [tr [(_zﬂn) 1% aep‘ )% (ae,p\ )

=tr [(—QHn)_1 Bn] +o(l)= %tr B, (—H,) | +0(1).

(45)

Joo

(46)
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Moreover,
B = o (.3 (8, - 07) Vi (8, - 07)) + R
Then, using Lemma 11, we have
B(Fi1a) = %u(an—lzn) +o(l) = —itr(Bn(—Hn)—l) +o(1).
Then we have

EyE

Yrep

(Ev) = E(Ern) + E(Evs) = }ltr B (1) +01).

For F5, we have

(47)

Fiy = _Lw\/ﬁ (?n _ 91701) _ % (?n _ 02)’ 0 Inp (yrepl6;,) (?n B 02) .

vn 06’ 9006’

(48)

Taking expectation with respect to both y and y.,,, the first term is exactly 0 because of the

independence between y and y,.p,. The second term can be treated similarly as £ (E112).

Then we have

Then

3 _
EyEyTep (El) = EyEyrep (Ell + E12) - Z__Ltr [Bn (_Hn) 1:| +o0 (1) .

—> ~
By applying the similar method to s = —Inp (y| 0 n) +Inp <y|0n> , we get

EyE

Yrep

1 _
(E2) = By Ey,.,, (Bat + Ez2) = = tr [By (<Ha) '] +0(1).
Recall (44) and we have

By By, (T2) = By By, [np (yrep!?nﬂ + %tr (B (=HL) ] +o(1).

—
Break By Ey,., [ln D (yrep| 0 n)} into three terms, we get

— —
EyEy,., 09 (yrepl )] = By [np (y160) | + By (B) + By By, (Es2),

(49)

(50)
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where

By =1np(y]65) —np (0 0)  Fio =10 (Yrep| 0 ) — 0p (yrep 7).
Following the similar argument of F711 and F/12, we have
Ey(Ey) = —%tr B (-H) ] o)
Fy By, (Bs2) = — 3t [By (~H,) ™| +0(1).

So we have
> < _
By By, |00 (yrep 0 n) | = By [mp (v ) | = tr [Bo (—H) 7| + (1),
Then we get
< 1 -1
By By,,,(T2) = By [Inp (y]'6, )| - Str B (~Hy) ™| +0(1), (51)
Combining (43) and (51), we have
EyEYTep [lnp (yT€p|Y)] = EYEYTep (TI) + EYEYTep (TQ) + 0(1)
Apd 1 -1 1
o8 [mp <y| 0 n)} —Str [Bn (—Ha) ™| = 5PIm2+o().
We finally get the desired result:

RZSk(d2) = EyEYTep[_anp (YTep|y)]

=Ey [—21np (y|<§>n>} +tr [Bn(—Hn)_1 + PIn2+o(1).

PEEN _
Note that 6, = 0, + Op(1) (see Li et al. (2025)), the first term can be replaced by
Ey [—2 Inp (y|§n)] without changing the result.

A.3. Proof of Theorem 2

Denote

52 = argmeaxlnp(yrepw) — g <§n — 0>/f];1 <§n> (@n — 9) ,
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where f]n (@1) is a consistent estimator of ¥J,,. By the Laplace approximation,

P (Freply) = / D (Yrepl0) p° (Bly) d6

[SIE

(L) [P0 fesn iy 2 (3.-0) 517 (52) (8- 0)]
L5 @) o (3)] e (s (82)) (100 (1)),

where

iy 6) =~ (100 (3 0) ~ 5 (B2 0) 5,7 (8.) (B - 6) ).

w5 -1 o) 5006
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So we get the following expansion

np® (Yreply) = —% In ‘inv%iv <”éfL> —nhd (52) +RTS (52)
= Ly + Lo+ Ly + 10p (YreplOn (yrep) ) + BT, (53)
o _% nls. 10mp (yrep|5n> s
Ly=Inp <yrep|52) —Inp <Y7“ep‘§n (YTep)> : (55)
(én) (@L . 52) . (56)
By the same argument as in the proof of Theorem 1, we can show that
—%m ‘Bn (—H,) " + [p‘ +o(1), (57)
B(Ly) =tr [(-H, +X,1)7'B,] + %tr [H,D,] - %tr[Bn(—H;I)] +o(1), (58)
E(Ls) =tr| (-H, + 3, 'B,,(-H, + =, )7 + (1), (59)
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where D, = (-H, + =, 1)"Y(B,, + =, 1)(~H,, + X !)~!. The details are given in the
Supplement.
Combine (53) and (54)-(56), we finally get the desired result.
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