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Müller (2013, Econometrica, 81(5), 1805-1949) shows that Bayesian inference

of parameters of interest in a misspecified model can reduce the asymptotic fre-

quentist risk when the standard posterior is replaced with the sandwich posterior.

In this paper, we extend the results in Müller (2013) to Bayesian model compar-

ison. Bayesian model comparison of potentially misspecified models can be con-

ducted in a predictive framework with three alternative predictive distributions,

namely, the plug-in predictive distribution, the standard posterior predictive dis-

tribution, and the sandwich posterior predictive distribution of Müller (2013). Via

the Kullback-Leibler (KL) loss function, it is shown that the sandwich posterior

predictive distribution yields a lower asymptotic risk than the standard posterior

predictive distribution. Moreover, we provide sufficient conditions under which

the sandwich posterior predictive distribution yields a lower asymptotic risk than

the plug-in predictive distribution. We then propose two new Bayesian penalized
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information criteria based on the last two predictive distributions to compare mis-

specified models and establish their relationship with some existing information

criteria. The proposed new information criteria are illustrated in several empirical

studies.

KEYWORDS: AIC, DIC, Information criterion, Model misspecification, Sand-

wich posterior.

1. INTRODUCTION

In many empirical studies, researchers frequently utilize simple parametric models.

However, these models often lead to model misspecification. As George Box famously

stated, “all models are wrong, but some are useful.” When a model is misspecified, it can

result in inefficient and even inconsistent estimation of parameters of interest. Moreover,

likelihood-based statistical inferences – such as hypothesis testing and goodness-of-fit tests

– are significantly impacted. Therefore, developing effective methods to address model

misspecification is crucial.

White (1982) explored the consequences and detection of model misspecification in the

context of maximum likelihood (ML) estimation and inference. He found that, within linear

regression models, if the error distribution is misspecified and the normal distribution is in-

correctly assumed for the likelihood function, the ML estimator (MLE) remains consistent

and has an asymptotically normal distribution characterized by the so-called sandwich co-

variance matrix. Conversely, in the Bayesian framework, the standard posterior distribution

is centered around the MLE and asymptotically follows a normal distribution, with its pos-

terior variance converging to the Hessian information matrix. This indicates that standard

posterior analysis does not provide adequate protection against model misspecification. In

a significant contribution, Müller (2013) proposed conducting Bayesian analysis based on

a sandwich posterior – an artificial Gaussian posterior centered at the MLE, with the sand-

wich covariance matrix as the posterior variance. He demonstrated that this approach yields

Bayesian inference with lower asymptotic frequentist risk for parameters of interest.

Empirical researchers frequently face another critical statistical decision: model compar-

ison. Notable studies on this topic include those by Granger et al. (1995), Phillips (1995),

Phillips (1996), Hansen (2005), and Kadane and Lazar (2004). From a predictive perspec-

tive, several penalty-based information criteria have been developed for model comparison.
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In the frequentist approach, two well-known criteria were proposed by Akaike (1974) and

Takeuchi (1976). The former generally assumes that all candidate models encompass the

true model or are good approximations of the data generating process (DGP), while the

latter accommodates misspecified candidate models. Within the Bayesian framework, the

Deviance Information Criterion (DIC) introduced by Spiegelhalter et al. (2002) is a com-

monly used penalty-based criterion. Li et al. (2025) provided a decision-theoretic expla-

nation for DIC, asserting that it serves as the Bayesian counterpart to AIC. Furthermore,

Li et al. (2020) developed a variant of DIC for comparing misspecified models. All these

criteria are grounded in the Kullback-Leibler (KL) loss function and the plug-in predictive

distribution.

In this paper, we focus on comparing alternative models that may be misspecified.

Specifically, we aim to conduct a Bayesian comparison of these models based on their

predictive performance. Similar to the existing criteria reviewed above, we utilize the KL

function to define the risk. However, we consider three predictive distributions for the KL

function calculation: the plug-in predictive distribution, the Bayesian predictive distribu-

tion derived from the standard posterior distribution, and the Bayesian predictive distri-

bution based on the sandwich posterior distribution (hereafter referred to as the sandwich

Bayesian predictive distribution). One of our main objectives is to evaluate the performance

of these alternative predictive distributions and establish conditions under which their per-

formance in terms of KL loss can be compared.

We investigate the theoretical properties of these three predictive distributions through

asymptotic frequent risk analysis. Our findings indicate that the sandwich Bayesian pre-

dictive distribution exhibits lower frequentist risk than the standard posterior distribution.

This result extends Müller (2013) findings to the context of model comparison. However,

we generally cannot directly compare the frequentist risks associated with the plug-in pre-

dictive distribution and the Bayesian predictive distribution; this comparison depends on

the degree of misspecification. We provide conditions under which such a comparison is

possible.

Based on the frequentist risk analysis of the KL loss function derived from these pre-

dictive distributions, we propose two new penalty-based information criteria for model

comparison. We demonstrate that these new criteria are asymptotically unbiased estimators

of the risk between the corresponding predictive distributions and the DGP. Furthermore,



4

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

they are applicable for comparing misspecified models. We also establish the relationship

between our proposed criteria and some existing ones, such as AIC and BIC. A significant

advantage of our proposed information criteria is that they not only identify the optimal

model but also the optimal predictive distribution, thereby offering more comprehensive

insights from a predictive perspective compared to existing penalized information criteria.

The paper is organized as follows. Section 2 provides a brief review of the literature on

statistical inferences regarding misspecified models. Section 3 examines the risk properties

of the alternative predictive distributions. Section 4 introduces the new penalty-based in-

formation criteria for comparing misspecified models. Section 5 studies the performance of

new information criteria by simulation experiments. Section 6 illustrates the application of

the new methods. Finally, Section 7 concludes the paper. The Appendix contains the proofs

of the two theorems presented, and the Online Appendix includes proofs of additional the-

oretical results.

2. STATISTICAL INFERENCE FOR MISSPECIFIED MODELS: A REVIEW

2.1. MLE-based inference under model misspecification

Let the observed data be y = (y1, · · · , yn) with the DGP being g(y). Consider a para-

metric model, denoted by p(y|θ), which is used to fit the data, where θ is the vector of

parameters with P dimensions and θ ∈Θ ⊆ RP . In the literature, the KL divergence is

used to measure the ‘distance’ between two distributions, say g(y) and p(y|θ), that is,

KL[g(y), p(y|θ)] =
∫

g(y) ln
g(y)

p(y|θ)
dy=Eg(y) lng(y)−Eg(y) lnp(y|θ), (1)

where Eg(y) is the expectation with respect to g(y).

Let θp
n ∈Θ⊂Rp be the pseudo true value that minimizes the KL loss between g(y) and

p(y|θ)

θpn = argmin
θ

KL[g(y), p(y|θ)] = argmax
θ

Eg(y) lnp(y|θ). (2)

If the model is correctly specified, θpn is the true value, denoted θ0.
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Let θ̂n(y) denote the quasi ML (QML) estimator of θp
n,1 which maximizes the log-

likelihood function of the parametric model,2

θ̂n = argmax
θ

lnp(y|θ). (3)

Let yt = (y1, y2, · · · , yt)′ denote all observed data at time t, st(θ) = ∂ lnp(yt|θ)/∂θ −
∂ lnp(yt−1|θ)/∂θ denote the t-th P ×1 single point score vector at θ, ht(θ) = ∂st(θ)/∂θ

′

denote the t-th P ×P single point Hessian matrix at θ. Define the sample Jacobian matrix

at θ as Jn(θ) =
1
n

∑n
t=1 st(θ)st(θ)

′ − 1
n

∑n
t=1 st(θ)

1
n

∑n
t=1 st(θ)

′, and define the sam-

ple Hessian-form information matrix at θ as In(θ) = −Hn(θ) = − 1
n

∑n
t=1 ht(θ). White

(1982) established the ML theory for misspecified models, that is,

√
n
[
I
−1
n (θ̂n)Jn(θ̂n)I

−1
n (θ̂n)

]−1/2
(θ̂n − θpn)

d→N (0, IP ) , (4)

where IP stands for a P -dimensional identity matrix. So the asymptotic variance takes the

sandwich form. If the model is correctly specified, then

√
n[I

−1
n (θ̂n)]

−1/2(θ̂n − θ0)
d→N (0, IP ) . (5)

2.2. Bayesian inference under model misspecification

To do Bayesian inference about θ, let p(θ) be the prior distribution of θ. By Bayes’

theorem, the standard posterior distribution is

p(θ|y) = p(y|θ)p(θ)
p(y)

∝ p(θ)p(y|θ), (6)

where p(y) =
∫
p(y|θ)p(θ)dθ is the marginal likelihood. Unlike the ML theory, there is

no difference between the Bayesian asymptotic theory for the correctly specified model

and that for a misspecified model. In both cases, the Bayesian large sample theory (for

example, Van der Vaart (1998)) guarantees that the scaled posterior distribution converges

1Given different parametric models, one may obtain distinct QML estimators. When focusing on a specific

parametric model, the QML estimator is referred to as the ML estimator for the sake of simplicity.
2When there is no confusion, we simply write θ̂n(y) as θ̂n.
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to a normal distribution in total variation, that is,∥∥∥p(θ|y)−N
(
θ̂n, I

−1
n (θ̂n)/n

)∥∥∥
TV

p→ 0, (7)

where ∥p− q∥TV =
∫
|p(x)− q(x)|dx. So the posterior density can be approximated by a

density of a Gaussian variate:

pa(θ|y) = ϕ
I
−1
n (θ̂n)/n

(θ− θ̂n). (8)

Observing the difference between the asymptotic posterior variance in (8) and the sand-

wich form of the asymptotic variance in (4), Müller (2013) proposed to make Bayesian

inference based on an artificial posterior distribution, which is a Gaussian distribution cen-

tered at the MLE with the sandwich variance, i.e.,

ps(θ|y) = ϕΣ̂s/n
(θ− θ̂n), (9)

where Σ̂s = I
−1
n (θ̂n)Jn(θ̂n)I

−1
n (θ̂n).

Given a set of decisionsD and a loss function L(θ, d) for any decision d ∈D, the optimal

decision based on each of two posterior distributions is to minimize the posterior loss, i.e.,

d∗a(θ̂n) := argmin
d∈D

∫
L(θ, d)pa(θ|y)dθ, d∗s(θ̂n) := argmin

d∈D

∫
L(θ, d)ps(θ|y)dθ.

The frequentist risk of the two optimal decisions may be obtained as

r (θ, d∗a) =

∫
L
[
θ, d∗a(θ̂n)

]
ϕ
I
−1
n (θ̂n)/n

(θ̂n − θ)dθ̂n,

r (θ, d∗s) =

∫
L
[
θ, d∗s(θ̂n)

]
ϕΣ̂s/n

(θ̂n − θ)dθ̂n.

Müller (2013) showed that as n→+∞,

r (θpn, d
∗
s)≤ r (θpn, d

∗
a) .

Moreover, he showed that the inequality becomes strict for many loss functions. These find-

ings imply that the Bayesian inference about the parameter of interest based on the standard

posterior can be improved by that based on the sandwich posterior. A natural question to

ask is whether the improvement also applies to model comparison from a Bayesian per-

spective. We first hope to answer this question.
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3. RISK OF PREDICTIVE DISTRIBUTIONS ON MISSPECIFIED MODELS

3.1. Predictive Distributions in Misspecified Models and the risk functions

Given a parametric model p(y|θ), which is potentially misspecified, we have different

ways to predict future data, denoted by yf whose density is g(yf ). For any predictive dis-

tribution whose density is q(yf |y), following Aitchison (1975) and much of the literature,

we use the KL loss function between g
(
yf

)
and q(yf |y), denoted by

KL
[
g
(
yf
)
, q(yf |y)

]
=

∫
ln

g
(
yf

)
q(yf |y)

g
(
yf

)
dyf , (10)

to measure its predictive performance. It is important to find a good candidate model as

well as a good predictive distribution that leads the smallest possible value to the KL loss.

In this subsection, we introduce three different predictive distributions.3

The first predictive distribution is the plug-in predictive distribution, defined by

q(yf |y) = p
(
yf |θ̄n

)
, (11)

where θ̄n =
∫
θp(θ|y)dθ is the posterior mean.

The second predictive distribution is the Bayesian predictive distribution. It takes average

on the parameter to eliminate the parameter uncertainty

q(yf |y) = p(yf |y) =
∫

p(yf |θ,y)p(θ|y)dθ. (12)

Here the ‘average’ is taken on the posterior distribution p(θ|y) that does not take account

of the model misspecification.

Thirdly, if we replace the posterior distribution by the sandwich posterior distribution of

Müller (2013), then we get a new predictive distribution

q(yf |y) = ps(yf |y) =
∫

p(yf |θ,y)ps(θ|y)dθ, (13)

3The predictive density estimation and the comparison framework under the KL loss was initially established in

Aitchison and Dunsmore (1975) and Aitchison (1975). The framework has been applied in many fields, including

decision theory, information theory, econometrics, machine learning, image processing, and mathematical finance.

Notable contributions include, but are not limited to, Komaki (2001), George et al. (2006), Brown et al. (2008),

Kato (2009), Marchand and Sadeghkhani (2018), Hamura and Kubokawa (2022) and Nishi et al. (2024).
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which is termed as the ‘sandwich Bayesian predictive distribution’. To the best of our

knowledge, this predictive distribution has not yet been used in the predictive literature.

Following the existing literature, we assume that yf is independent of y, which we de-

note by yrep. Given three different predictive distributions, a natural question arises: for a

misspecified model, which of the three predictive distributions one should use to get the

best prediction?

In this paper, we compare alternative predictive distributions from a decision-theoretical

viewpoint. Let D = {da}3a=1 be the set of decisions, where da is the decision of using (11)

or (12) or (13) if a= 1 or 2 or 3. The predictive distribution under different action can be

expressed as p (yrep|y, da).
For candidate model M that is potentially misspecified, let p (yrep|y,M,da) be the pre-

dictive distribution under decision da and model M , and let the loss function L(y,M,da)

be 2 times the KL loss function between g
(
yf

)
and p (yrep|y,M,da), that is,

L(y,M,da) = 2×KL
[
g
(
yf
)
, p (yrep|y,M,da)

]
= 2

∫
ln

g(yrep)

p (yrep|y,M,da)
g(yrep)dyrep.

Given the loss function, the frequentist (average) risk of decision da under model M is

(Good (1952) and Aitchison (1975))4

Risk(M,da) =Eg(y) [L(y,M,da)] =

∫
g(y)

∫
ln

g(yrep)

p (yrep|y,M,da)
g(yrep)dyrepdy.

Hence, the selection of a predictive distribution and a candidate model becomes

(a∗,M∗) = argmin
a,M

{
2Eg(y)Eg(yrep) lng(yrep)− 2Eg(y)Eg(yrep) lnp (yrep|y,M,da)

}
.

Since g (yrep) is the DGP and Eg(yrep) lng (yrep) is independent of candidate models and

predictive distributions, the selection problem is the same as

(a∗,M∗) = argmin
a,M

{
−2Eg(y)Eg(yrep) lnp (yrep|y,M,da)

}
. (14)

and the frequentist risk of decision da under model M can be equivalently written as

Risk(M,da) =−2Eg(y)Eg(yrep) lnp (yrep|y,M,da) . (15)

4When there is no confusion, we purge M from Risk(M,da).
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In this case, the predictive distribution corresponding to statistical decision da∗ and the op-

timal model M∗ is selected. The smaller Risk(M,da), the better the predictive distribution

performs when using p (yrep|y,M,da) to predict g (yrep).5

3.2. Risks of Three Different Predictive Distributions in Misspecified Model

In this subsection, we give the regularity conditions and make the frequent risk analysis
for these three predictive distributions. Before we introduce regular conditions, we need
to fix some notations. Let lt

(
yt,θ

)
= lnp(yt|θ) − lnp(yt−1|θ) be the conditional log-

likelihood for the t-th observation for any 1≤ t≤ n. For simplicity, we suppress lt
(
yt,θ

)
as lt (θ) so that the log-likelihood function lnp(y|θ) is

∑n
t=1 lt (θ).

6 Define l
(j)
t (θ) to be

the j-th derivative of lt (θ) and

s(yt,θ) :=
∂ lnp(yt|θ)

∂θ
=

t∑
i=1

l
(1)
i (θ) , h(yt,θ) :=

∂2 lnp(yt|θ)
∂θ∂θ′

=
t∑

i=1

l
(2)
i (θ) ,

st(θ) := s(yt,θ)− s(yt−1,θ) = l
(1)
t (θ) , ht(θ) := h(yt,θ)− h(yt−1,θ) = l

(2)
t (θ) ,

Bn (θ) := Var

[
1√
n

n∑
t=1

l
(1)
t (θ)

]
,Hn(θ) :=

∫
Hn(θ)g (y)dy, Jn(θ) =

∫
Jn(θ)g (y)dy.

The regularity conditions we impose are similar to those in Li et al. (2020). For the detailed

discussion of these conditions, see Li et al. (2020).

Assumption 1: Θ⊂RP is compact.

Assumption 2: {yt}∞t=1 is strong mixing with the mixing coefficient α (m) =O
(
m

−2r
r−2−ε

)
for some ε > 0 and r > 2.

Assumption 3: For all t, lt (θ) is third-times differentiable on Θ almost surely.

Assumption 4: For j = 0,1,2, for any θ,θ′ ∈Θ,
∥∥∥l(j)t (θ)− l

(j)
t

(
θ
′
)∥∥∥≤ cjt

(
yt
)∥∥θ− θ′

∥∥
in probability, where cjt

(
yt
)

is a positive random variable with suptE
∥∥∥cjt (yt

)∥∥∥<∞ and
1
n

∑n
t=1

(
cjt
(
yt
)
−E

(
cjt
(
yt
))) p→ 0.

5It should be noted that the predictive method da and the candidate model M are jointly optimized in (14).
6In the definition of log-likelihood, we ignore the initial condition lnp(y0). For weakly dependent data, the

impact is asymptotically negligible.
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Assumption 5: For j = 0,1,2, there exists a function Mt(y
t) such that for all θ ∈Θ,

l
(j)
t (θ) exists, supθ∈Θ

∥∥∥ljt (θ)∥∥∥ ≤Mt(y
t), and suptE

∥∥Mt(y
t)
∥∥r+δ ≤M <∞ for some

δ > 0, where r is the same as that in Assumption 2.

Assumption 6:
{
ljt (θ)

}
is L2-near epoch dependent with respect to {yt} of size −1 for

0≤ j ≤ 1 and −1
2 for j = 2,3 uniformly on Θ.

Assumption 7: Let θpn be the pseudo-true value7 that minimizes the KL loss between

the DGP and the candidate model

θp
n = argmin

θ∈Θ

1

n

∫
ln

g(y)

p(y|θ)
g(y)dy,

where {θp
n} is the sequence of minimizers interior to Θ uniformly in n. For all ε > 0,

lim
n→∞

sup sup
Θ\N(θpn,ε)

1

n

n∑
t=1

{E [lt (θ)]−E [lt (θ
p
n)]}< 0, (16)

where N (θpn, ε) is the open ball of radius ε around θpn.

Assumption 8: The sequence {Hn (θ
p
n)} is negative definite and the sequence {Bn (θ

p
n)}

is positive definite, both uniformly in n.

Assumption 9: The prior density p (θ) is thrice continuously differentiable and 0 <

p
(
θ0n
)
<∞ uniformly in n. Moreover, there exists an n∗ such that, for any n > n∗, the

posterior distribution p (θ|y) is proper and
∫
∥θ∥2 p (θ|y)dθ <∞.

For simplification, we denote Hn (θ
p
n) as Hn, Bn (θ

p
n) as Bn. Given these regularity

conditions, we can derive the asymptotic approximation for risks associated with the three
predictive distributions, which are given by8

Plug-in prediction: Risk(d1) =Eg(y)Eg(yrep)

[
−2 lnp(yrep|θ̄)

]
,

Bayesian prediction: Risk(d2) =Eg(y)Eg(yrep)

[
−2 ln

∫
p(yrep|θ)p(θ|y)dθ

]
,

Sandwich Bayesian prediction: Risk(d3) =Eg(y)Eg(yrep)

[
−2 ln

∫
p(yrep|θ)ps(θ|y)dθ

]
.

7Here we denote the pseudo-true value as θpn to allow it varies with the sample size n. This notation can

accommodate to the dependence and heterogeneity of data.
8To simplify notations, we purge their dependence on candidate model M .



LI ET AL. 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

Note that the sandwich posterior is given by

ps(θ|y) = ϕΣ̂n/n
(θ− θ̂n), Σ̂n = Ĥ−1

n B̂nĤ
−1
n ,

where Ĥn and B̂n are consistent estimators of Hn and Bn. An example is, taking Ĥn =

−I−1
n (θ̂n) and B̂n = Jn(θ̂n) in the independent case, Σ̂n = I

−1
n (θ̂n)Jn(θ̂n)I

−1
n (θ̂n). In the

later sections, different choices will be discussed. Here we write Ĥn and B̂n for generality.

In this subsection, we will give the asymptotic approximation for Risk(d1),Risk(d2)

and Risk(d3). Note that the risk of the plug-in predictive distribution, Risk(d1), has been

used in Li et al. (2020) to develop the new DIC criteria for comparing misspecified models.

They derived the asymptotic approximation for Risk(d1) under similar regularity condi-

tions. That is

Risk(d1) =−2Eg(y)

[
lnp

(
y|θn

)]
+ 2tr

[
Bn (−Hn)

−1
]
+ o (1) . (17)

Hence, an asymptotically unbiased estimator of Risk(d1) is

−2 lnp
(
y|θn

)
+ 2tr

[
Bn (−Hn)

−1
]
.

In the following two theorems, we derive asymptotically unbiased estimators for Risk(d2)

and Risk(d3), which are our core theoretical results.

THEOREM 1: Under Assumptions 1-9, it can be shown that

Risk(d2) =−2Eg(y)

[
lnp

(
y|θn

)]
+ tr

[
Bn (−Hn)

−1
]
+ P ln 2 + o (1) . (18)

For i.i.d. data, Ando and Tsay (2010) gave an alternative expression as

−2Eg(y)

[
ln

∫
p (y|θ)p (θ|y)dθ

]
+ tr

[
Bn (−Hn)

−1
]
. (19)

Note that
∫
p (y|θ)p (θ|y)dθ is the Bayesian predictive distribution of y taking average

on the posterior distribution p(θ|y). It can be shown that

Eg(y)

[
ln

∫
p (y|θ)p (θ|y)dθ

]
=Eg(y)

[
lnp

(
y|θn

)]
− 1

2
P ln 2 + o (1) . (20)

Thus, these two expressions are asymptotically equivalent. From (20), the first term of (19),

Eg(y)

[
ln
∫
p (y|θ)p (θ|y)dθ

]
, cannot be interpreted as a model fit term because it includes
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P ln 2 which is a penalty term. So (18) bears more similarity to the traditional information

criteria, such as AIC, TIC and DIC.

THEOREM 2: Under Assumptions 1-9, it can be shown that

Risk(d3) =−2Eg(y)

[
lnp

(
y|θn

)]
+ tr

[
Bn (−Hn)

−1
]

+ ln
(∣∣∣Bn (−Hn)

−1 + IP

∣∣∣)− tr
[
(Bn +Hn)

(
−Hn +Σ−1

n

)−1
]
+ o (1) , (21)

where Σn =H−1
n BnH

−1
n .

REMARK 1: From Theorem 1 and Theorem 2, we can get asymptotically unbiased es-

timators for Risk(d2) and Risk(d3) by taking sample analogs respectively. These two

asymptotically unbiased estimators provide the basis for developing information criteria

for Bayesian model comparison, which will be reported in next section.

Note that the plug-in predictive distribution deals with model misspecification by plug-

ging in the posterior mean, which is asymptotically normal distributed with the variance

being a sandwich covariance matrix. The Bayesian predictive distribution is

p (yrep|y) =
∫

p (yrep|θ)p (θ| y)dθ.

It takes account of the influence of parameter uncertainty via the standard posterior distribu-

tion p (θ| y) and handle model misspecification via p (yrep|θ). Furthermore, the sandwich

Bayesian predictive distribution is

ps (yrep|y) =
∫

p (yrep|θ)ps (θ| y)dθ.

It takes account of the influence of parameter uncertainty via the sandwich posterior distri-

bution ps (θ|y) and handle model misspecification with both p (yrep|θ) and the sandwich

posterior distribution ps (θ|y).
Clearly, the three estimators for the risk functions shares the first term, −2 lnp

(
y|θn

)
,

which measure the model fit. They also share the second term, tr
[
Bn (−Hn)

−1
]

which

measures model misspecification. The third term in the estimator of Risk(d2) is P ln 2

that measures the influence of the parameter uncertainty based on the standard posterior

distribution. The third term in the estimator of Risk(d3) is ln
(∣∣∣Bn (−Hn)

−1 + IP

∣∣∣) −
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tr
[
(Bn +Hn)

(
−Hn +Σ−1

n

)−1
]

that measures the influence of the parameter uncertainty

based on the sandwich posterior distribution with the consideration of the model misspeci-

fication.

REMARK 2: The plug-in predictive distribution does not consider the parameter uncer-

tainty, while both the Bayesian predictive distribution and the sandwich Bayesian predictive

distribution take parameter uncertainty into account by taking an average. The only differ-

ence between the last two distributions is that the Bayesian predictive distribution takes the

average over the standard posterior distribution, while the sandwich Bayesian predictive

distribution takes average over the sandwich Bayesian posterior, which has been adjusted

for model misspecification.

COROLLARY 3: Under Assumptions 1-9, when the model is misspecified such that

lim
n→∞

tr
[
Bn (−Hn)

−1
]
≥ P, (22)

then

lim
n→∞

(Risk(d2)−Risk(d1))< 0.

REMARK 3: This corollary gives a sufficient condition under which the Bayesian pre-
dictive distribution is better than the plug-in predictive distribution asymptotically. In fact,
we can rewrite (22) as

lim
n→∞

tr
[
Bn (−Hn)

−1
]
−P = lim

n→∞
tr
[
Bn (−Hn)

−1 − IP

]
= lim

n→∞
tr
[
(Bn +Hn) (−Hn)

−1
]
≥ 0.

Thus, a sufficient condition to ensure (22) is that Bn +Hn is positive definite uniformly

in n.9

9Let P × P matrices A and B be symmetric and positive definite. Hence, there exists a P × P matrix Q such

that B = QQT , and

tr (AB) = tr
(
AQQT

)
= tr

(
QAQT

)
=

P∑
j=1

q′jAqj > 0,

where qj is the j-th column vector of Q.
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REMARK 4: When the model is correctly specified, we have limn→∞ tr
[
Bn (−Hn)

−1
]
=

P and hence,

Risk(d1) =−2Eg(y)

[
lnp

(
y|θn

)]
+ 2P + o (1) , (23)

Risk(d2) =−2Ey

[
lnp

(
y|θn

)]
+ P (1 + ln2) + o (1) . (24)

Since P ln 2<P , we have

lim
n→∞

(Risk(d2)−Risk(d1))< 0.

This suggests the predictive distribution p (yrep|y) has a lower asymptotic risk than the

plug-in predictive distribution. The limitation of the plug-in predictive distributions stems

from their failure to account for parameter uncertainty, as they treat parameters as the esti-

mated quantities. In contrast, the Bayesian method embrace this uncertainty by integrating

out parameters with respect to their posterior distribution. For detailed discussions of the

parameter uncertainty, readers may refer to Barberis (2000) and George and Xu (2010). It

is easy to show that replacing θn with θ̂n in (23) and (24) does not change the results.

Under the assumption of correct model specification, the comparison of the Bayesian

predictive distributions and the plug-in alternatives in terms of the frequentist risk has been

extensively studied in the statistics literature. Most of them focus their attention to specific

model setups or to specific prior distributions.

For example, in finite samples, Aitchison (1975) showed that the MLE-plug-in predic-

tive distribution for Gamma and normal models are uniformly dominated by Bayesian pre-

dictive distribution with uniform priors. Murray (1977) and Ng (1980) showed that the

Bayesian predictive density with uniform priors is the best predictive distribution that is

invariant under the translation group. Levy and Perng (1986) proved that the Bayesian pre-

dictive distribution with a diffuse prior dominates the plug-in predictive distribution for

normal linear models.

From an asymptotic point of view, Komaki (1996) showed that, for the multidimensional

curved exponential family, the plug-in predictive distribution with the asymptotically effi-

cient estimators can generate the frequentist risk that asymptotically coincide with that

of the Bayesian predictive distributions. For multivariate normal models with unknown
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means, Komaki (2001) proved that the Bayesian predictive distribution with Stein’s prior

dominates both the Bayesian predictive distribution with a uniform prior and the plug-in

predictive distribution. George et al. (2006) showed that any Bayes predictive density is

minimax if it is obtained by a prior yielding a marginal that is superharmonic or whose

square root is superharmonic for multivariate normal models with unknown means. For

multivariate normal linear models, George and Xu (2008) obtained sufficient conditions

of the Bayesian predictive distribution with different priors for minimaxity and dominance

over the Bayes predictive distribution with uniform priors and the plug-in predictive dis-

tribution. For multivariate models with unknown means and variances, Kato (2009) pro-

posed to use an improper shrinkage prior with which the Bayesian predictive distribution

dominates the Bayes predictive distribution with uniform priors and the plug-in predictive

distribution. For multivariate normal models with unknown means whose parameter space

restricted to a convex set, Fourdrinier et al. (2011) showed that the Bayesian predictive

distribution with a uniform prior on the convex set dominates the plug-in predictive distri-

bution. Matsuda and Komaki (2015) developed singular value shrinkage priors for the mean

matrix parameters in the matrix variate normal model with known covariance matrices and

showed that the Bayesian predictive distributions based on these priors are minimax and

dominate those based on uniform priors and the plug-in predictive distributions. For multi-

variate normal models with additional information for means and variances, Marchand and

Sadeghkhani (2018) gave the conditions under which the Bayesian predictive distribution

with uniform prior defined on the information set dominates the plug-in predictive distribu-

tion. For Type-II censored data that is generated by ordered observations, Nishi et al. (2024)

prove that the Bayesian predictive distribution with an improper Gamma prior dominates

the plug-in predictive distribution.

Almost all of these works are about normal models or normal linear models, but our

work give an asymptotic results for much general class of models. Moreover, none of these

studies allow model misspecification. When the model is misspecified, the claim of domi-

nance of the Bayesian predictive distribution using the standard posterior over the plug-in

predictive distribution may not valid.

REMARK 5: When the model is misspecified, we argue that in Corollary 3 the condition

limn→∞ tr
[
Bn (−Hn)

−1
]
≥ P can be satisfied in most cases. To see this, note that the
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asymptotic covariance matrix of QMLE is H−1
n BnH

−1
n , while the asymptotic covariance

matrix of MLE is −H−1
n . QMLE is more robust than MLE, while the price we pay is the

loss of efficiency. Thus, we expect that H−1
n BnH

−1
n − (−H−1

n ) =H−1
n (Bn +Hn)H

−1
n ≥

0, that is Bn +Hn ≥ 0 and tr
[
Bn(−H−1

n )
]
≥ P . This argument is based on the empirical

phenomenon that “robust standard error is often larger than simple standard error” which

is often observed in empirical research; for instance, White’s robust standard errors and the

cluster-robust standard errors are typically larger than the simple OLS standard errors in

most cases (Angrist and Pischke (2009)).

COROLLARY 4: Under Assumptions 1-9, it can be shown that

lim
n→∞

(Risk(d3)−Risk(d2))≤ 0.

REMARK 6: Corollary 4 shows that when the model is misspecified, the risk of Müller’s

sandwich predictive posterior distribution is always less (weakly) than that of the origi-

nal Bayesian predictive distribution in terms of KL loss function asymptotically. This can

explained by the arguments in Remark 2. The original Bayesian predictive distribution

only considers the parameter uncertainty, while the sandwich Bayesian predictive distribu-

tion considers both parameter uncertainty and model uncertainty by replacing the posterior

p(θ|y) by the sandwich posterior ps(θ|y). The result in Corollary 4 extends the result of

Müller (2013) to model comparison.

COROLLARY 5: Under Assumptions 1-9, when the model is misspecified such that

lim
n→∞

tr
[
(Bn +Hn)

(
−Hn +Σ−1

n

)−1
]
≥ 0, (25)

it can be shown that

lim
n→∞

(Risk(d3)−Risk(d1))≤ 0.

REMARK 7: This theorem gives sufficient conditions under which the sandwich

Bayesian predictive distribution can achieve a lower risk than the plug-in predictive distri-

bution asymptotically. In fact, a sufficient condition for ( 25) is that Bn +Hn is positive

definite uniformly in n, which is consistent with the trace condition in Theorem 3.
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REMARK 8: Under Assumptions 1-9, when the model is correctly specified, the infor-

mation equality holds. Consequently„

lim
n→∞

(Risk(d2)−Risk(d3)) = 0,

lim
n→∞

(Risk(d3)−Risk(d1))< 0.

This suggests that, when model is correctly specified, the sandwich Bayesian predictive

distribution is asymptotic equivalent with the Bayesian predictive distribution, while both

of them are better than the plug-in predictive distribution.

3.3. A Toy Model

To illustrate the risks associated with the three predictive distribution, we consider the

following toy model. The data {yi}ni=1 are observed and the k-dimensional explanatory

variable {Xi}ni=1 are fixed for simplification. Suppose the true DGP is a linear model with

heteroskedasticity:

yi =X ′
iβ + εi, εi ∼N(0, σ2i ).

The k-dimension regression coefficient β is of interest. However, since we do not know the

true DPG, we assume the following misspecified linear regression model with homoskedas-

ticity is used to fit the data:

yi =X ′
iβ + εi, εi ∼N(0, σ2). (26)

The variance σ2 =
∑n

i=1 σ
2
i /n is assumed to be known.10 Let y = (y1, ..., yn)

′, X =

(X1,X2, ...,Xn)
′ , then the log-likelihood function is given as

lnp(y|X, β) =−n

2
ln(2πσ2)− 1

2σ2

n∑
i=1

(yi −X ′
iβ)

2.

The QMLE of β is given by β̂ =
(∑n

i=1XiX
′
i

)−1 (∑n
i=1Xiyi

)
, which is also the ordinary

least square (OLS) estimator and the posterior mean under standard priors.

10If σ2 is unknown, it can be shown that (β,
∑n

i=1 σ
2
i /n) is the pseudo-true value. This simplification will not

affect the key conclusion.
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Denote Qn =
(∑n

i=1XiX
′
i

)
/n and Vn =

(∑n
i=1 σ

2
iXiX

′
i

)
/n. We then have

Bn = V ar

(
n−1/2d lnp(y|X, β)

dβ

)
= V ar

(
1
√
nσ2

n∑
i=1

Xiεi

)
= Vn/σ

4,

Hn =E

(
1

n

d2 lnp(y|X, β)

dβdβ
′

)
=−Qn/σ

2.

In our model (26), the variance structure is misspecified. If the heteroskedasticity is absent,

i.e., if σ21 = ...= σ2n = σ2, then Vn =
(∑n

i=1 σ
2
iXiX

′
i

)
/n= σ2Qn . In this case, the infor-

mation equality Bn +Hn = 0 holds. However, heteroskedasticity breaks the information

equality, that is,

Bn +Hn =
1

σ4

[
1

n

n∑
i=1

σ2iXiX
′
i −

(
1

n

n∑
i=1

σ2i

)(
1

n

n∑
i=1

XiX
′
i

)]
̸= 0.

When the condition tr[Bn(−Hn)
−1]≥ k holds, note that the covariance matrix of

√
n(β̂−

β) is

H−1
n BnH

−1
n =

(
1

n

n∑
i=1

XiX
′
i

)−1(
1

n

n∑
i=1

σ2iXiX
′
i

)(
1

n

n∑
i=1

XiX
′
i

)−1

,

which is White’s heteroskedasticity robust covariance matrix for QMLE in White (1980).

Note that the covariance matrix of
√
n(β̂ − β), ignoring heteroskedasticity, is

−H−1
n = σ2

(
1

n

n∑
i=1

XiX
′
i

)−1

,

which should be smaller than White’s heteroskedasticity robust covariance matrix.11 That

is,

H−1
n BnH

−1
n ≥−H−1

n ,

that is Bn + Hn ≥ 0. So we expect the trace condition tr[Bn(−Hn)
−1] ≥ k holds and

Corollary 3 can be applied. Hence, the Bayesian predictive distribution has smaller risk

than the plug-in predictive distribution. What is more, Corollary 4 guarantees the sandwich

11A sufficient condition is that σ2
i = σ2(Xi) and XiX

′
i are positively correlated.
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Bayesian predictive distribution has a smaller risk than the Bayesian predictive distribution.

That is,

Risk(d3)≤Risk(d2)≤Risk(d1).

for sufficient large n.

In this toy model, we can verify this result hold exactly for every n, because we can

directly derive the risk of all three predictive distributions and compare them. Consider the

independent replication data:

yrep,i =X ′
iβ + εrep,i, εrep,i ∼N(0, σ2i ), i= 1,2, ..., n.

where εrep,1, ..., εrep,n is independent of ε1, ..., εn.

Let yrep = (yrep,1, ..., yrep,n)
′, the plug-in predictive distribution is

p(yrep|X, β̂) =N(β̂, σ2In), β̂ =

(
n∑

i=1

XiX
′
i

)−1 n∑
i=1

Xiyi.

Then we get the risk of the loss associated with the plug-in predictive distribution:

Risk(d1) =Eg(y)Eg(yrep)

[
−2 lnp(yrep|X, β̂)

]
=Eg(y)Eg(yrep)

[
n ln(2πσ2) +

1

σ2

n∑
i=1

(yrep,i −X ′
iβ̂)

]

= n[ln(2πσ2) + 1] + tr
[
σ−2Q−1

n Vn
]
. (27)

Note that tr
[
σ−2Q−1

n Vn
]
= tr

[
Bn (−Hn)

−1
]
, and that

Eg(y)

[
−2 lnp(y|X, β̂)

]
= n[ln(2πσ2) + 1]− tr

[
σ−2Q−1

n Vn
]
.

The asymptotic expansion (17) holds, that is

Risk(d1) =Eg(y)

[
−2 lnp(y|X, β̂)

]
+ 2tr

[
Bn (−Hn)

−1
]
.

For the Bayesian predictive distribution, we should calculate the posterior distribution

p(β|y,X). For simplification, we use the flat prior p(β)∝ 1. Then the posterior distribution
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is

β|y,X∼N(β̂, σ2Q−1
n /n).

So the Bayesian predictive distribution is given by

p(yrep|y,X) =

∫
p(yrep|X, β)p(β|y,X)dβ.

Let

β̂rep =

(
n∑

i=1

XiX
′
i

)−1 n∑
i=1

Xiyrep,i.

It can be shown that

lnp(yrep|y,X) =−n

2
ln(2πσ2) +

1

2
ln

∣∣∣∣12Ik
∣∣∣∣

+
1

4σ2

(
β̂rep + β̂

)′

nQn

(
β̂rep + β̂

)
− 1

2σ2

[
n∑

i=1

(yrep,i)
2 + β̂

′
nQnβ̂

]
.

Taking expectation with respect to y and yrep, we get the risk associated with the Bayesian

predictive distribution:

Risk(d2) =Eg(y)Eg(yrep) [−2 lnp(yrep|y,X)] = n[ln(2πσ2) + 1] + k ln 2. (28)

So the asymptotic expansion in Lemma 1 holds exactly, that is

Risk(d2) =Eg(y)

[
−2 lnp(y|X, β̂)

]
+ tr

[
Bn (−Hn)

−1
]
+ k ln 2.

Given the trace condition tr[Bn(−Hn)
−1] ≥ k, we have Risk(d2) ≤ Risk(d1) exactly

holds in this example.

The sandwich Bayesian predictive distribution is given by

ps(yrep|y,X) =

∫
p(yrep|X, β)ps(β|y,X)dβ,

where ps(β|y,X) is the density of N(β̂,Q−1
n VnQ

−1
n /n) evaluated at β. Hence,

lnps(yrep|y,X) =−n

2
ln(2πσ2)− 1

2
ln
∣∣σ−2VnQ

−1
n Ik

∣∣
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+
n

2

(
σ−2β̂rep + V −1

n Qnβ̂
)′ (

σ−2Q−1
n + V −1

n

)−1
(
σ−2β̂rep + V −1

n Qnβ̂
)

− 1

2σ2

n∑
i=1

(yrep,i)
2 − n

2
β̂

′
QnV

−1
n Qnβ̂.

Taking expectation with respect to y and yrep, we get

Risk(d3) =Eg(y)Eg(yrep) [−2 lnp
s(yrep|y,X)]

= n[ln(2πσ2) + 1] + ln
∣∣σ−2VnQ

−1
n + Ik

∣∣
− tr

[
σ2(σ−2Vn −Qn)(σ

−2Qn +QnV
−1
n Qn)

−1
]
. (29)

So the asymptotic expansion in Lemma 2 holds exactly. It can be verified that Risk(d3)≤
Risk(d2) because of Bn + Hn ≥ 0. This is easy to understand, because the sandwich

Bayesian predictive distribution is based on the sandwich posterior, which is adjusted for

the model misspecification.

4. BAYESIAN PREDICTIVE INFORMATION CRITERIA FOR COMPARING MISSPECIFIED MODELS

4.1. Statistical Decision Theory for Model Selection

In this section, from the predictive viewpoint, we develop new information criteria for

Bayesian model comparison. Suppose there are k candidate models M1,M2, · · · ,MK that

are all potentially misspecified and we hope to select a model from the pool.

To begin, we define some notations. For Pk-dimension candidate model Mk, the vec-

tor of parameters is θk ∈ Θk ⊂ RPk and p (y|θk,Mk) is applied to fit the data. The

posterior distribution of model Mk is denoted as p (θk|y,Mk), the pseudo-true value,

QMLE, posterior mean of model Mk are denoted as θkn, θ̂
k

n and θ̄
k
n, respectively.

Bk
n,H

k
n,Σ

k
n, B̂

k
n, Ĥ

k
n, Σ̂

k
n, p

s (θk|y,Mk) can be defined in the same way.

The traditional model selection argument considers how to choose the ‘best’ model

among them. However, we propose to choose the best model and the best predictive distri-

bution, that is,

min
a∈{1,2,3},k∈{1,··· ,K}

Risk (Mk, da) =Eg(y) (2×KL [g (yrep) , p (yrep|y,Mk, da)]) . (30)
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Note that p (yrep|y,Mk, da) denotes the predictive distribution under predictive decision

da and model Mk, Risk (Mk, da) denotes the corresponding predictive risk. To be specific,

p (yrep|y,Mk, d1) = p
(
yrep|θ

k
n,Mk

)
(31)

p (yrep|y,Mk, d2) =

∫
p (yrep|θk,Mk)p (θk|y,Mk)dθk (32)

p (yrep|y,Mk, d3) =

∫
p (yrep|θk,Mk)p

s (θk|y,Mk)dθk (33)

The optimization problem (30) simultaneously solve the best model and the best predictive

distribution.

To the best of our knowledge, there are two information criteria that allow for model

misspecification in the literature, TIC of Takeuchi (1976) and DICM of Li et al. (2020),

both of which assume that the predictive distribution is the plug-in distribution. DICM (k)

takes the form of

DICM (k) =−2 lnp(y|θkn,Mk) + 2P k
M , with P k

M = tr
{
nΩ

k
nV

k
n

}
, (34)

where nVk
n = nE

[(
θk − θ̄

k
n

)(
θk − θ

k
n

)′
|y,Mk

]
is a consistent estimator of (Hk

n)
−1;

see Li et al. (2020). Vk
n can be directly calculated from Markov chain Monte Carlo

(MCMC) samples. In (34), Ω
k
n is in fact a robust choice of B̂n. Li et al. (2020) used

Ω
k
n =

1

n

n∑
t=1

n∑
τ=1

st

(
θ
k
n

)
sτ

(
θ
k
n

)′
k

(
t− τ

γn

)
, (35)

which is a heteroskedasticity and autocorrelation consistent (HAC) estimator of Bk
n, where

k(·) is a kernel function and γn is the bandwidth; see Newey and West (1987) and Andrews

(1991) for more details.

Under some regularity conditions, Li et al. (2020) show that

Ey [DICM (k) + 2C] =Risk (Mk, d1) + o(1). (36)

where C =
∫
lng (yrep)g (yrep)dyrep is a constant that is independent on model. If the

candidate model Mk is correctly specified or a good approximation to DGP, DICM (k)



LI ET AL. 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

becomes

DICM (k) =−2 lnp(y|θkn,Mk) + 2P k
D with P k

D =

∫
2
[
lnp(y|θkn,Mk)− lnp(y|θk,Mk)

]
dθk.

(37)

TIC is defined by

TIC(k) =−2 lnp
(
y|θ̂

k

n,Mk

)
+ 2P k

T with P k
T =−tr

{
Ω̄n

(
θ̂
k

n

)
Ĥ−1

n

(
θ̂
k

n

)}
. (38)

Li et al. (2020) established the relationship between TIC(k) and DICM (k) by showing that

Ey [DICM (k) + 2C] =Ey [TIC(k) + 2C] + o(1) =Risk (Mk, d1) + o(1). (39)

Hence, DICM (k) can be explained as Bayesian version of TIC(k). When the candidate

model is correctly specified or a good approximation to DGP, it was shown in Li et al.

(2025) that

Ey [DICM (k) + 2C] =Ey [AIC(k) + 2C] + o(1) =Risk (Mk, d1) + o(1), (40)

where

AIC(k) =−2 lnp(y|θ̂
k

n,Mk) + 2Pk, (41)

with Pk being the number of parameters in Mk.

4.2. Information criterion for comparing misspecified models

It should be noted that these penalty-based information criteria generally comprise two

parts. The first part involves evaluating the log-likelihood at the certain point estimators,

which measures the model fit. The second part is the penalty term, which measures the

model complexity. What is more, these information criteria are in fact asymptotic unbiased

estimators of the corresponding statistical decision risks.

Follow the same logic, we now develop two new information criteria that can be used to

estimate Risk(Mk, d2) and Risk(Mk, d3). For completeness, we also state the correspond-

ing result of Risk(Mk, d1) of Li et al. (2020).

When the misspecification is considered, we define three information criteria for model

Mk as

IC1(k) =−2 lnp(y|θ
k
n,Mk) + 2P 1

k ,
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IC2(k) =−2 lnp(y|θ
k
n,Mk) + 2P 2

k ,

IC3(k) =−2 lnp(y|θ
k
n,Mk) + 2P 3

k ,

where

P 1
k = ntr

[
Ω

k
nV

k
n

]
,

P 2
k = (P 1

k + Pk ln 2)/2,

P 3
k = P 1

k /2 + ln
(∣∣∣nΩk

nV
k
n + IP

∣∣∣)/2−
tr

[(
Ω

k
n −

(
nVk

n

)−1
)((

nVk
n

)−1
+
[(

nVk
n

)
Ωn

(
nVk

n

)]−1
)−1

]
/2,

with Pk being the number of parameters in Mk and Ω
k
n being a HAC estimator of Bk

n

defined in (35).

Note that IC1 is DICM in Li et al. (2020), while IC2 and IC3 are new to the literature. Li

et al. (2020) showed that IC1(k) is an asymptotic unbiased estimator of the risk associated

with the plug-in predictive distribution when model Mk is potentially misspecified. IC2

estimates the risk associated with the Bayesian predictive distribution. IC3 estimates the

risk associated with the sandwich Bayesian predictive distribution. In the following, for

convenience of description, we use IC1 to stand for DICM .

Consistent with the existing information criteria such as AIC, TIC and DIC, our new in-

formation criteria IC2 and IC3 consist of two parts: the model fitness and penalty for model

complexity. The penalty terms in IC2 and IC3 are proposed to capture ‘complexity’ un-

der the Bayesian predictive distribution and the sandwich Bayesian predictive distribution.

In fact, the following theorem guarantees that IC2(k) and IC3(k) are asymptotic unbiased

estimators for Risk(Mk, d2) and Risk(Mk, d3).

THEOREM 6: Under Assumptions 1-9, we have,

Eg(y)(IC2(k)) =Risk (Mk, d2) + o(1),

Eg(y)(IC3(k)) =Risk (Mk, d3) + o(1).

REMARK 9: When the model is correctly specified, IC3 reduces to IC2. That is because

IC2 is based on the Bayesian predictive distribution, while IC3 is based on the sandwich
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Bayesian predictive distribution. When the model is correctly specified, the two predictive

distributions are asymptotic equivalent and hence, their corresponding information criteria

are the same.

REMARK 10: Based on Risk(Mk, d1), Risk(Mk, d2) and Risk(Mk, d3), we can use

IC1, IC2 and IC3 to do model selection. Let the corresponding optimal model be k∗1 , k∗2 and

k∗3 . Model k∗1 has the lowest prediction risk under the plug-in predictive distribution. Model

k∗2 has the lowest prediction risk under the Bayesian predictive distribution. Model k∗3 has

the lowest prediction risk under the sandwich Bayesian predictive distribution. It should be

noted that k∗1 , k∗2 and k∗3 may be different in practice.

COROLLARY 7: Let the optimal decision under risk Risk(Mk, d2) and Risk(Mk, d3)

be k∗2 and k∗3 , respectively. By Corollary 4 and Theorem 6,

lim
n→+∞

Risk(Mk∗2
, d2)≥ lim

n→+∞
Risk(Mk∗3

, d3).

REMARK 11: Therefore, the risk associated with the sandwich predictive posterior can-

not be higher than that with the regular Bayesian posterior. This corollary again confirms

the importance of the sandwich posterior distribution of Müller (2013).

REMARK 12: It should be noted that our goal is not simply to choose a ‘best’ model un-

der one predictive distribution. Based on Risk(Mk, d1), Risk(Mk, d2) and Risk(Mk, d3),

we can get three ‘optimal’ models k∗1 , k∗2 and k∗3 , which can be estimated by IC1, IC2 and

IC3. By comparing Risk(Mk∗1
, d1), Risk(Mk∗2

, d2), Risk(Mk∗3
, d3), which are estimated

by IC1(k
∗
1), IC2(k

∗
2) and IC3(k

∗
3), we can further decide which predictive distribution is the

best for the purpose of prediction. We then obtain the optimal model and the corresponding

optimal predictive distribution from all 3×K combinations of K candidate models and the

three different predictive distributions. Hence, from a predictive viewpoint, more informa-

tion can be obtained from our model selection framework. This is the important advantage

of our proposed method compared with other existing popular information criteria.

REMARK 13: Table I lists and compare alternative information criteria. We also list the

estimation methods and the predictive distribution that these information criteria based on,

as well as whether or not they need to assume the candidate model is correctly specification

or at least a good approximation to the true data generating process.
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TABLE I

ALTERNATIVE INFORMATION CRITERIA

Estimation Method Specification Predictive Distribution Literature

AIC MLE Correct Plug-in Predictive Distribution Akaike (1974)

TIC MLE Misspecified Plug-in Predictive Distribution Takeuchi (1976)

DIC Posterior Mean Correct Plug-in Predictive Distribution Spiegelhalter et al. (2002)

DICL Posterior Mean Correct Plug-in Predictive Distribution Li et al. (2020)

IC1/DICM Posterior Mean Misspecified Plug-in Predictive Distribution Li et al. (2020)

IC2 Posterior Mean Misspecified Bayesian Predictive Distribution New

IC3 Posterior Mean Misspecified Sandwich Predictive Distribution New

5. SIMULATION STUDIES

We now design two simulation studies to check the performance of the new criteria. In

both studies, we compare misspecified models. In the first simulation study, we use the

polynomial regression to fit a nonlinear model. In the second simulation study, we try to

choose a ‘better’ model between the logit model and the probit model while the true model

is a mixture of logit and probit. We also use other well-known criteria as benchmarks.

5.1. Polynomial Regression

In this subsection, we design a simple experiment to compare alternative model selection

criteria when the true DGP is not included in the set of candidate models. In other words,

all candidate models are misspecified. Following Li et al. (2020), we generate data from

the following model

yi = ln (1 + 46xi) + ei, ei ∼N(0,1), i= 1, . . . , n

where xi = 0.7(i − 1)/n which is fixed under repeated sampling by design. In practice,

researchers do not know the functional form. Suppose the following set of polynomial

regressions is considered,

Mk : yi =
k−1∑
j=0

βk,j+1x
j
i + ui
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where k = 1, . . . ,
⌊
n1/3

⌋
and ui is assumed to be N

(
0, σ2

)
. When k →∞ as n→∞,

the polynomial regression is related to the sieve estimator that uses progressively more

complex models to estimate an unknown function as more data becomes available. In our

experiment, we estimate and compare all the candidate models
{
Mk, k = 1, . . . ,

⌊
n1/3

⌋}
.

In Mk,
∑k−1

j=0 βk,j+1x
j
i is used to approximate ln (1 + 46xi). Let βk = (β1, . . . , βk)

′ so that

θk =
(
β′
k, σ

2
)

and the number of parameters is k + 1. Let xj =
(
xj1, x

j
2, . . . , x

j
n

)′
,Xk =(

x0,x1, . . . ,xk−1
)
, and X=

(
x0,x1, . . . ,x

[
n1/3

]
−1
)

.

Three different sample sizes are considered, n = 100,500,1000. For each candidate

model Mk, we obtain the MLE of θk, denoted by θ̂k =
(
β̂
′
k, σ̂

2
)

, and then calculate AIC

and TIC. θ̂k, which is also the OLS estimate, has a closed-form expression for this model.

The following g-prior is used for θk do conduct the Bayesian analysis,

π
(
σ2
)
∝ 1

σ2
, βk ∼N

(
βk,0, gσ

2
(
X′

kXk

)−1
)
,

where g = n denotes the unit information prior of Kass and Wasserman (1995) in the nor-

mal regression case. The posterior mean and the posterior variance of θk are

E (βk | y,X) =
g

g + 1

(
βk,0

g
+ β̂k

)
,

E
(
σ2 | y,X

)
=

s2 +
1

g + 1

(
β̂k −βk,0

)′
X′

kXk

(
β̂k −βk,0

)
n− 2

,

Var (βk | y,X) =
g

g + 1

(
X′

kXk

)−1
E
(
σ2 | y,X

)
,

Var
(
σ2 | y,X

)
=

2E
(
σ2 | y,X

)2
n− 4

,

Cov
(
βk, σ

2 | y,X
)
= 0.

These closed-form expressions are used to calculate DIC, DICL, IC1, IC2 and IC3.

We replicate the simulation experiment for 1000 times. In every experiment, we simulate

y from the true model and calculate seven criteria for each candidate model Mk with k =

1, . . . ,
⌊
n1/3

⌋
. Each of the seven criteria is used to select a best model (call it Mk∗ may

differ across different criteria), we record this model and the corresponding IC.
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Note that for AIC and TIC, we take MLE under their best model as the estimator and

use the plug-in density p(yrep|θ̂k∗ ,Mk∗) to predict new data. For DIC, DICM and IC1, we

use the plug-in predictive distribution p(yrep|θ̄k∗ ,Mk∗) under the best model Mk∗ to pre-

dict new data. For IC2, we use the regular Bayesian predictive distribution p(yrep|y,Mk∗)

under the best model Mk∗ to predict new data. For IC3, we use the sandwich predictive dis-

tribution ps(yrep|y,Mk∗) under the best model Mk∗ to predict new data. Then we replicate

the experiment 1000 time and estimate each of the seven risk functions using the average

of the corresponding ICs.

Table II reports the relative frequencies of the selected models by each of seven criteria

(namely AIC, TIC, DIC, DICL, IC1, IC2, IC3), the average values of k∗, and the average

value of the estimated risks for each of seven criteria, all across 1000 replications.12

Several interesting results can be found in Table II. First, the models selected by the

BIC tend to be more parsimonious than those selected by other criteria. This result is not

surprising as BIC has a larger penalty term than other criteria. Second, the average k∗s

selected by AIC, TIC, DIC, DICL and IC1 are very similar, suggesting that they tend to

select the same model. This is not surprising because AIC, TIC, DIC, DICL and IC1 all use

the plug-in predictive distribution to calculate the predictive loss. Third, IC2 tends to choose

more complex model than all the criteria based on the plug-in predictive distribution while

IC3 tends to choose even more complex model then IC2. Of course the complex model is

closer to the true model. Fourth, as the sample size increases, the average k∗s selected by

all criteria tend to increase.

Now let us focus on the estimated risk of IC1, IC2 and IC3. IC3 has a smaller risk than

IC2, and IC2 has a smaller risk than IC1. Results obtained from this Monte Carlo study

indicate that if one’s objective is to get a best prediction for future data, we should not only

consider how to choose the ‘best’ model and estimator, but also consider what predictive

distribution we should use.

12We report (R̂isk/n− 1− ln(2π))× 103 instead of R̂isk to better highlight differences in the estimated risk

functions under different criteria.
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TABLE II

SIMULATION RESULTS FOR THE FIRST EXPERIMENT

AIC TIC DIC DICL IC1/DICM IC2 IC3

Relative frequency of the polynomial order selected by alternative (n= 100)

k = 2 0.064 0.061 0.065 0.063 0.052 0.042 0.041

k = 3 0.510 0.491 0.504 0.510 0.468 0.451 0.441

k = 4 0.426 0.448 0.431 0.427 0.480 0.507 0.518

Relative frequencies of the polynomial order selected by different criteria (n= 500)

k = 3 0.062 0.062 0.063 0.062 0.059 0.044 0.042

k = 4 0.348 0.334 0.341 0.346 0.327 0.287 0.283

k = 5 0.318 0.321 0.323 0.318 0.322 0.323 0.321

k = 6 0.167 0.174 0.168 0.168 0.180 0.200 0.200

k = 7 0.105 0.109 0.105 0.106 0.112 0.146 0.154

Average value of the estimated risk under alternative IC (n= 100)

Risk 49.436 48.602 50.573 50.935 44.418 35.901 33.917

Standard Error (4.732) (4.746) (4.708) (4.711) (4.743) (4.722) (4.724)

Average value of the estimated risk under alternative IC (n= 500)

Risk 12.128 12.020 12.131 12.178 11.704 8.330 8.167

Standard Error (1.989) (1.990) (1.988) (1.989) (1.990) (1.990) (1.990)

5.2. The mixture of logit and probit

The logit model and the probit model are widely used for discrete choices. In the second

experiment, we simulate data from the mixture of the two models and use alternative IC to

choose between the logit model and the probit model.

Suppose y = (y1, y2, ..., yn)
′ be a vector of dependent variables, yi takes values 0 or 1

for i= 1,2, ..., n, the independent variable matrix X = [x1,x2, ...,xN ]′ where xi is a P × 1

vector. The probability of yi = 1 conditional on xi is

P (yi = 1|xi, β) = F (x′
iβ), (42)
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where β is a P × 1 vector and (yi,xi) are identical and independent distributed. If we

choose F (x′
iβ) = Φ(x′

iβ) with Φ(·) be the CDF of standard normal distribution, (42) is the

probit model. If choosing F (x′iβ) be the CDF of logistic distribution

F (x′iβ) =
exp(x′

iβ)

1 + exp(x′iβ)
,

(42) becomes the logit model. The latent variable representation of (42) is as follows

yi = I (zi > 0) , zi = x′
iβ + εi,

where I(·) is the indicator function, the density function of εi is f(εi) = ϕ(εi) with ϕ(·) be

the PDF of the standard normal distribution for the probit model, and

f(εi) =
exp(εi)

(1 + exp(εi))
2

for the logit model. For model comparison, we denote the probit and logit model as Model

1 and Model 2, named by M1 and M2, respectively.

We simulate from a mixture of the probit model and the logit model, so that both M1 and

M2 are misspecified. We generate i.i.d. data from the following model

ε1i ∼N(0,1), ε2i ∼ logistic(0,1), U ∼ U(0,1),

εi = I(U ≤ q)ε1i + I(U > q)ε2i,

yi = I(zi > 0), zi = x′
iβ + εi,

where q ∈ [0,1] is a given parameter. For simplicity we write εi ∼ q×N(0,1) + (1− q)×
logistic(0,1).

In this model, to simulate εi, we generate a random number ε1i from N(0,1) and a

random number ε2i from the standard logistic distribution. Then we let εi = ε1i with prob-

ability q and let εi = ε2i with probability 1− q. If we specify q = 1, i.e., εi ∼N(0,1), then

we get a probit model (we denote it as M1). If we specify q = 0, i.e., εi ∼ logistic(0,1),

then we get a logit model (we denote it as M2). Thus, we simulate data from the mixture

of probit and logit where parameter q controls the proportions of probit and logit. When q

is closed to 1, the model is closer to a probit model than to a logit model.



LI ET AL. 31

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

Now suppose we do not know the true DGP. We choose between M1 and M2. Thus, we

use the seven criteria to make model selection. To compare M1 and M2, we need to estimate

them first. The calculation of AIC and TIC requires QMLE, which is easily obtained by

a standard statistical software. However, the other information criteria need the posterior

mean, which is harder to get.

Albert and Chib (1993) proposed a Gibbs Sampling algorithm for the probit model based

on data augmentation of Tanner and Wong (1987). It draws samples from the joint posterior

distribution of the parameters and the latent variables. The latent variables can be drawn

form a conditionally normal distribution since they follow a linear model of parameters with

a normal error term. Zens et al. (2023b) applied marginal data augmentation (Liu and Wu

(1999)) to boost the convergence of the Gibbs Sampling algorithm for the probit model.

For the logit model, the latent variable follows a linear model with a logistic error term.

Holmes and Held (2006) used the scale mixture normal representation of the logistic error

with the Kolmogorov-Smirnov distribution. Polson et al. (2013) proposed a new mixture

representation of the logistic error with Pólya-Gamma distribution that can largely improve

the efficiency of the Gibbs Sampling algorithm. Zens et al. (2023b) proposed a ultimate

Pólya-Gamma (UPG) samplers with marginal data augmentation to further improve the

efficiency of the Gibbs Sampling algorithm for the logit model. In this paper, we use UPG

for the probit model and the logit model, which is implemented by the UPG package in R.

To conduct the Bayesian analysis, we specify a vague prior distribution

β ∼N(0,10× Ik),

We use the UPG package in R and draw 11000 MCMC samples from the posterior

distribution. The first 1000 is used as the burn-in sample, and the next 10,000 iterations is

collected as effective MCMC draws. With the posterior samples, we can obtain the posterior

mean β̄ and DIC, DICL, IC1, IC2 and IC3.

We simulate for q = 0,0.1,0.2, ...,0.9,1. For each q, we simulate data with sample size

n = 500 and calculate AIC, TIC, DIC, DICL, IC1, IC2, IC3. Then replicate this experi-

ment for 1000 times. The performance of these criteria is compared based on these 1000

replications. We calculate the risks of every criterion using the same method as in Section

5.1. Table III reports the risks of all seven criteria, the corresponding standard errors are
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reported in the parentheses. AIC, TIC, DIC, DICL and IC1 have similar risks, while the

risk of IC3 is lower than those of IC1 and IC2 for every q. This indicates that the sandwich

predictive distribution can reduce the risk of statistical decision. Compared with other cri-

teria, even if IC3 chooses the same model, we can use the sandwich predictive distribution

to improve the prediction.

TABLE III

THE AVERAGE RISKS UNDER DIFFERENT CRITERIA

Criteria AIC TIC DIC DICL IC1/DICM IC2 IC3

q = 0 520.071 520.066 520.066 520.104 520.106 519.172 519.159

s.e. (0.651) (0.651) (0.651) (0.651) (0.651) (0.651) (0.651)

q = 0.1 508.725 508.719 508.720 508.760 508.760 507.826 507.813

s.e. (0.663) (0.664) (0.663) (0.663) (0.664) (0.663) (0.664)

q = 0.2 500.129 500.137 500.121 500.163 500.177 499.237 499.223

s.e. (0.654) (0.654) (0.654) (0.654) (0.654) (0.654) (0.654)

q = 0.3 489.133 489.162 489.124 489.167 489.202 488.251 488.236

s.e. (0.680) (0.680) (0.680) (0.680) (0.680) (0.680) (0.680)

q = 0.4 477.076 477.103 477.064 477.109 477.142 476.193 476.177

s.e. (0.667) (0.667) (0.667) (0.667) (0.667) (0.667) (0.667)

q = 0.5 463.546 463.568 463.537 463.583 463.611 462.663 462.645

s.e. (0.690) (0.690) (0.690) (0.690) (0.690) (0.690) (0.690)

q = 0.6 453.332 453.367 453.319 453.366 453.406 452.453 452.435

s.e. (0.693) (0.693) (0.693) (0.693) (0.693) (0.693) (0.693)

q = 0.7 437.997 438.023 437.977 438.023 438.054 437.110 437.092

s.e. (0.716) (0.716) (0.716) (0.716) (0.716) (0.716) (0.716)

q = 0.8 424.242 424.225 424.224 424.268 424.258 423.335 423.314

s.e. (0.700) (0.700) (0.700) (0.700) (0.700) (0.700) (0.700)

q = 0.9 408.538 408.481 408.517 408.559 408.511 407.609 407.589

s.e. (0.686) (0.687) (0.687) (0.687) (0.687) (0.687) (0.687)

q = 1 393.119 392.961 393.096 393.136 392.990 392.139 392.118

s.e. (0.653) (0.654) (0.654) (0.653) (0.654) (0.653) (0.654)
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6. EMPIRICAL STUDIES

6.1. Discrete choice models

In the empirical research, discrete choice models have been widely used. In this section,

we consider a model comparison between a binary probit model (M1) and a binary logit

model (M2). The data set is the female labor force participation from the US Panel Study

of Income, including a binary dependent variable takes the value of 1 if the woman is

participating in the labor force, the number of children under the age of 5, the number of

children between 6 and 18 years, a standardized age index, two binary indicators capturing

whether a college degree was obtained by the wife and the husband, the expected log wage

of the woman, the logarithm of family income exclusive of the income of the woman. There

are 753 observations in the data set. For more details about the data, see Zens et al. (2023a).

Then there are 8 parameters in both models including the intercepts.

To obtain MCMC output, we first specify a vague prior distribution for parameters as

β ∼N(0k×1, λ× Ik),

where λ= 100 in both models. Then we use more informative priors with λ= 10 or 1. To

draw MCMC samples, we use the same method as that in Section 5.2. We draw 510,000

random draws from the joint posterior distributions of parameters in each model. The first

10,000 is used as the burn-in sample, and the next 500,000 iterations is collected as effective

observations. Hence, there are 500,000 effective draws.

To compare the two models, based on 500,000 effective draws, we calculate AIC, TIC,

DIC, DICL, IC1, IC2 and IC3 for two candidate models under different priors.

Table IV reports the model selection results under various prior. Several interesting re-

sults may be found in the table. First, it is unsurprising to see AIC and DIC take similar

values in all cases as they are asymptotically equivalent as shown in Li et al. (2025). How-

ever, we are surprised to see AIC, DIC, DICL, IC3 take similar values in all cases because

while AIC and DIC assume the models are correctly specified while DICM and IC3 allow

model misspecification.

Second, TIC takes very different values from AIC in all cases, suggesting both models

are misspecified, and hence TIC is more applicable. Interestingly, AIC suggests M2 is

preferred, TIC suggests M1 is preferred.
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TABLE IV

MODEL SELECTION RESULTS FOR MODEL 1 AND 2 UNDER DIFFERENT PRIOR

λ AIC TIC DIC DICL IC1/DICM IC2 IC3

M1

1 921.3899 948.9662 921.2682 921.2658 948.8300 932.6584 921.6041

10 921.3899 948.9662 921.3975 921.4283 949.0664 932.7751 921.6842

100 921.3899 948.9662 921.3958 921.4302 948.8273 932.6563 921.6876

M2

1 921.2659 950.7182 920.9610 920.9141 950.7100 933.5714 921.5698

10 921.2659 950.7182 921.2944 921.4513 950.9292 933.6507 921.7726

100 921.2659 950.7182 921.3576 921.5378 951.0234 933.7023 921.8164

Third and most importantly, IC3 takes much lower values than IC2 that in turn takes much

lower values than IC3. This is consistent with our theoretical results. Since IC3 is smaller

than IC1 and IC2, it suggests the sandwich predictive distribution leads to the smallest KL

losses in all case. According to IC3, M1 is preferred to M2 when a moderately vague or a

vague prior is used (i.e., λ= 10,100). However, M2 is preferred to M1 when an informative

prior is used (i.e., λ= 1),

6.2. SV models

Stochastic volatility (SV) models have been found very useful for pricing derivative se-

curities and modeling time-varying volatility. The discrete-time basic log-normal SV model

is composed of two equations. One is the measurement equation, the other is state equa-

tion where the logarithmic volatility is the state variable. The state equation is assumed to

follow an AR(1) model. The basic log-normal SV model is of the form:

yt = exp(ht/2)ut, ut ∼N(0,1), t= 1, ..., n,

ht = µ+ ϕ(ht−1 − µ) + τvt, vt ∼N(0,1), h0 = µ,
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where yt is the continuously compounded return, ht is the unobserved log-volatility, ut and

vt are serially independent for all t, corr(utvs) = 0 for any t, s. In this paper, we denote

this model M1.

To carry out Bayesian analysis, following Meyer and Yu (2000) , the prior distributions

are specified as follows:

µ∼N(0,100), ϕ∼Beta(1,1), 1/τ2 ∼ Γ(0.001,0.001).

An important and well documented empirical feature in many financial time series is the

leverage effect. Following Yu (2005), the leverage effect SV model allows for correlation

between the two error terms, that is, corr(ut, vs) = ρ. In this model, ρ captures the leverage

effect if ρ < 0. We denote this model M2 and specify the prior distribution of ρ as ρ ∼
Uniform(−1,1).

SV models are difficult to estimate by ML, and hence, it is hard to calculate AIC and

TIC. Our goal is to compare the two models using DICL, IC1, IC2 and IC3. Note that

both models are nonlinear non-Gaussian state-space models, the state variable ht is latent.

Thus, the likelihood function p(y|θ) is not available in close-form . That is why a popular

estimation and inferential method is Bayesian MCMC.

The dataset consists of 945 daily mean-corrected returns on Pound/Dollar exchange

rates, covering the period between 01/10/81 and 28/06/85. For MCMC, after a burn-in

period of 10,000 iterations, we save every 20th value for the next 100,000 iterations to get

5,000 effective draws. The same dataset was used in Kim et al. (1998) and Meyer and Yu

(2000).

Table V gives the posterior mean and the posterior standard error of parameters in the

basic SV model (M1) and the leverage SV model (M2). Also note that in M1 and M2, the

posterior mean and the posterior standard error of µ, ϕ and τ are all similar. Moreover,

the posterior mean of ρ is very close to zero, relative to its posterior standard error. This

indicates that the leverage effect may be no significant. From the point of simplification,

the basic SV model may be a better choice.

Table VI reports 2PL, 2P1, 2P2, 2P3, DICL, IC1, IC2, and IC3. First, all four criteria

choose the basic SV model (M1), which coincides with our analysis in Table V. Judged by

the difference among DICL, IC1, IC2 and IC3 and the difference among 2PL, 2P1, 2P2,
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TABLE V

POSTERIOR MEAN AND STANDARD ERROR OF PARAMETERS IN M1 AND M2

M1 M2

Parameter Mean SE Mean SE

µ -0.7158 0.3008 -0.6711 0.3529

ϕ 0.9767 0.0145 0.9771 0.0143

ρ NA NA -0.0104 0.1381

τ 0.1771 0.0161 0.1806 0.0144

2P3, we can tell that the difference of information criteria is mainly caused by the penalty

term. Because the leverage SV model M2 has one more parameter ρ, its penalty terms are

larger than those of M1. The extra parameter ρ does not improve the model fitting a lot.

That explains why a parsimonious model is selected.

Moreover, among IC1, IC2 and IC3, IC3 of M1 is the smallest. This observation suggests

that we prefer not only the basic SV model (M1) but also the sandwich Bayesian predictive

distribution for the purpose of predicting future data.

TABLE VI

MODEL SELECTION RESULTS FOR M1 AND M2

Model 2PL DICL 2P1 IC1/DICM 2P2 IC2 2P3 IC3

M1 4.935 1843.784 8.658 1847.507 6.409 1845.257 6.088 1844.936

M2 6.510 1845.406 10.451 1849.346 7.998 1846.894 7.710 1846.606

7. CONCLUSION

It is well known that in Bayesian literature, when the model is misspecified, the posterior

distribution still has an asymptotic normal distribution which centered at the maximum

likelihood estimator (MLE) with Hessian information matrix which is in general, different

than the "sandwich" covariance matrix. In a recent literature, Müller (2013) showed that

due to this discrepancy between the Hessian information matrix and sandwich covariance

matrix, an artificial normal posterior centered at MLE with sandwich covariance matrix
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(sandwich posterior, hereafter) can yield lower asymptotic frequentist risk than the original

normal posterior. On the basis of these two different posteriors, from predictive viewpoint,

three are three different predictive distributions for candidate use, that is, Plug-in predictive

distribution, Bayesian predictive distribution, and Müller’s Bayesian predictive distribution

based on the sandwich posterior distribution.

In this paper, the main contributions are least threefold. First, from predictive viewpoint,

we investigate the theoretical properties how these three predictive distributions work and

which can actually outperform best in a variety of settings. On the basis of Kullback-Leibler

(KL) loss function, we show that the sandwich Bayesian predictive distribution also can

yield lower asymptotic risk than the standard posterior distribution. Furthermore, we give

the conditions from the asymptotic risk that the sandwich Bayesian predictive distribution is

better or not than the plug-in predictive distribution. Second, based on the Bayesian predic-

tive distribution and sandwich Bayesian predictive distribution, we proposed two important

information criterion for comparing misspecified models which can be unbiased estimators

for the risks based on corresponding predictive distributions. Third, we established the re-

lationship between the propose information criterion and the existing information criterion

such as the popular AIC, TIC, and DIC, etc. At last, we illustrate the proposed new infor-

mation criteria using some real studies in economics and finance.

APPENDIX

A.1. Notations

:= definitional equality
←→
θ n posterior mode

o(1) tend to zero θ̂n QML estimator

op(1) tend to zero in probability θp
n pseudo true parameter

p→ converge in probability θn posterior mean

A.2. Proof of Theorem 1

We provide a proof sketch in this Appendix, details are given in the Supplement. Denote

θ̃n := argmax
θ

lnp (yrep|θ) + lnp (y|θ) + lnp (θ) .

These three lemma are useful to prove our result.
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LEMMA 8: Under Assumptions 1-9, θ̃n − θp
n

p→ 0,
←→
θ n − θp

n
p→ 0.

LEMMA 9: Under Assumptions 1-9, the following asymptotic expansions hold:

√
n
(
θ̂n − θpn

)
=−H−1

n
1√
n

∂ lnp (y|θpn)
∂θ

+RT 0
n(y),

√
n
(
θ̃n − θpn

)
= (−2Hn)

−1

(
1√
n

∂ lnp (y|θpn)
∂θ

+
1√
n

∂ lnp (yrep|θpn)
∂θ

)
+RT 1

n(y,yrep),

√
n
(←→
θ n − θpn

)
=−H−1

n
1√
n

∂ lnp (y|θpn)
∂θ

+RT 2
n(y),

where E|RT 0
n(y)|2 = o(1), E|RT 1

n(y,yrep)|2 = o(1), E|RT 2
n(y)|2 = o(1).

LEMMA 10: Under Assumptions 1-9, the following moment conditions hold

E
∥∥∥√n(θ̂n − θp

n

)∥∥∥4 ≤C, E
∥∥∥√n(θ̃n − θp

n

)∥∥∥4 ≤C, E
∥∥∥√n(←→θ n − θpn

)∥∥∥4 ≤C,

E
∥∥√ns(θp

n)
∥∥2 ≤C, E

∥∥√n(Hn(θ
p
n)−Hn)

∥∥2 ≤C.

LEMMA 11: Under Assumptions 1-9,

E

[√
n
(
θ̃n − θpn

)√
n
(
θ̃n − θpn

)′]
= 2−1Σn + o(1),

where Σn =H−1
n BnH

−1
n .

We are now in the position to prove Theorem 1. By the Laplace approximation (Tierney

et al., 1989, Kass et al., 1990) and Lemma 9, we have

p (yrep|y) =
∫

p (yrep|θ)p (θ|y)dθ=

∫
p (yrep|θ)p (y|θ)p (θ)dθ∫

p (y|θ)p (θ)dθ

=

∣∣∣∇2hN

(
θ̃n

)∣∣∣−1/2
exp

(
−nhN

(
θ̃n

))
∣∣∣∇2hD

(←→
θ n

)∣∣∣−1/2
exp

(
−nhD

(←→
θ n

)) (1 +Op

(
1

n

))
+Op

(
1

n2

)
,

where

hN (θ) =− 1

n
(lnp (yrep|θ) + lnp (y|θ) + lnp (θ)) ,
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hD (θ) =− 1

n
(lnp (y|θ) + lnp (θ)) .

Then we have

lnp (yrep|y)

=−1

2

(
ln
∣∣∣∇2hN

(
θ̃n

)∣∣∣− ln
∣∣∣∇2hD

(←→
θ n

)∣∣∣)︸ ︷︷ ︸
T1

+
[
−nhN

(
θ̃n

)
+ nhD

(←→
θ n

)]
︸ ︷︷ ︸

T2

+RT 3
n .

where E|RT 3
n |= 0.

The first term can be approximated by

T1 =−
1

2

(
ln
∣∣∣∇2hN

(
θ̃n

)∣∣∣− ln
∣∣∣∇2hD

(←→
θ n

)∣∣∣)
=−1

2
ln |−Hn −Hn|+

1

2
ln |−Hn|+RT 4

n =−1

2
P ln 2 +RT 4

n , (43)

where E|RT 4
n |= 0. The second term can be approximated by

T2 =−nĥN
(
θ̃n

)
+ nĥD

(←→
θ n

)
= lnp

(
yrep|

←→
θ n

)
+E1 +E2 +RT 5

n , (44)

where RT 5
n = lnp

(
θ̃n

)
− lnp

(←→
θ n

)
satisfies E|RT 5

n |= o(1), and

E1 = lnp
(
yrep|θ̃n

)
− lnp

(
yrep|

←→
θ n

)
, E2 = lnp

(
y|θ̃n

)
− lnp

(
y|
←→
θ n

)
.

We can further decompose E1 as E1 =E11 +E12, where

E11 = lnp
(
yrep|θ̃n

)
− lnp (yrep|θp

n) , E12 = lnp (yrep|θp
n)− lnp

(
yrep|

←→
θ n

)
.

For E11, we have

E11 =
1√
n

∂ lnp (yrep|θpn)
∂θ′

√
n
(
θ̃n − θpn

)
︸ ︷︷ ︸

E111

+
1

2

√
n
(
θ̃n − θpn

)′ 1
n

∂2 lnp (yrep|θ∗n)
∂θ∂θ′

√
n
(
θ̃n − θpn

)
︸ ︷︷ ︸

E112

.

(45)

where θ∗
n lies between θ̃n and θp

n . By Lemma 11, we can show

E(E111) =EyEyrep

[
tr

[
(−2Hn)

−1 1√
n

∂ lnp (yrep|θpn)
∂θ

1√
n

∂ lnp (yrep|θpn)
∂θ′

]]
+ o(1)

= tr
[
(−2Hn)

−1Bn

]
+ o (1) =

1

2
tr
[
Bn (−Hn)

−1
]
+ o (1) . (46)
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Moreover,

E112 =
1

2
tr
(
Hn
√
n
(
θ̃n − θp

n

)√
n
(
θ̃n − θpn

)′)
+RT 6

n . (47)

Then, using Lemma 11, we have

E(E112) =
1

2
tr(Hn2

−1Σn) + o(1) =−1

4
tr(Bn(−Hn)

−1) + o(1).

Then we have

EyEyrep (E11) =E(E111) +E(E112) =
1

4
tr
[
Bn (−Hn)

−1
]
+ o (1) .

For E12, we have

E12 =−
1√
n

∂ lnp (yrep|θp
n)

∂θ′
√
n
(←→
θ n − θp

n

)
− 1

2

(←→
θ n − θp

n

)′ ∂2 lnp (yrep|θ∗
n)

∂θ∂θ′

(←→
θ n − θp

n

)
.

(48)

Taking expectation with respect to both y and yrep, the first term is exactly 0 because of the

independence between y and yrep. The second term can be treated similarly as E(E112).

Then we have

EyEyrep (E12) =
1

2
tr
[
Bn (−Hn)

−1
]
+ o (1) .

Then

EyEyrep (E1) =EyEyrep (E11 +E12) =
3

4
tr
[
Bn (−Hn)

−1
]
+ o (1) . (49)

By applying the similar method to E2 =− lnp
(
y|
←→
θ n

)
+ lnp

(
y|θ̃n

)
, we get

EyEyrep (E2) =EyEyrep (E21 +E22) =−
1

4
tr
[
Bn (−Hn)

−1
]
+ o (1) . (50)

Recall (44) and we have

EyEyrep(T2) =EyEyrep

[
lnp

(
yrep|

←→
θ n

)]
+

1

2
tr
[
Bn (−Hn)

−1
]
+ o(1).

Break EyEyrep

[
lnp

(
yrep|

←→
θ n

)]
into three terms, we get

EyEyrep

[
lnp

(
yrep|

←→
θ n

)]
=Ey

[
lnp

(
y|
←→
θ n

)]
+Ey(E31) +EyEyrep(E32),
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where

E31 = lnp (y|θp
n)− lnp

(
y|
←→
θ n

)
,E32 = lnp

(
yrep|

←→
θ n

)
− lnp (yrep|θp

n) .

Following the similar argument of E111 and E112, we have

Ey(E31) =−
1

2
tr
[
Bn (−Hn)

−1
]
+ o(1),

EyEyrep(E32) =−
1

2
tr
[
Bn (−Hn)

−1
]
+ o(1).

So we have

EyEyrep

[
lnp

(
yrep|

←→
θ n

)]
=Ey

[
lnp

(
y|
←→
θ n

)]
− tr

[
Bn (−Hn)

−1
]
+ o(1).

Then we get

EyEyrep(T2) =Ey

[
lnp

(
y|
←→
θ n

)]
− 1

2
tr
[
Bn (−Hn)

−1
]
+ o(1). (51)

Combining (43) and (51), we have

EyEyrep [lnp (yrep|y)] =EyEyrep(T1) +EyEyrep(T2) + o(1)

=Ey

[
lnp

(
y|
←→
θ n

)]
− 1

2
tr
[
Bn (−Hn)

−1
]
− 1

2
P ln 2 + o(1).

We finally get the desired result:

Risk(d2) =EyEyrep [−2 lnp (yrep|y)]

=Ey

[
−2 lnp

(
y|
←→
θ n

)]
+ tr

[
Bn (−Hn)

−1
]
+ P ln 2 + o(1).

Note that
←→
θ n = θn + Op(1) (see Li et al. (2025)), the first term can be replaced by

Ey

[
−2 lnp

(
y|θn

)]
without changing the result.

A.3. Proof of Theorem 2

Denote

θ̃
s

n := argmax
θ

lnp (yrep|θ)−
n

2

(
θ̂n − θ

)′
Σ̂−1

n

(
θ̂n

)(
θ̂n − θ

)
,
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where Σ̂n

(
θ̂n

)
is a consistent estimator of Σn. By the Laplace approximation,

ps (yrep|y) =
∫

p (yrep|θ)ps (θ|y)dθ

=

(
1

2π

)P
2

∣∣∣∣∣Σ̂n(θ̂)

n

∣∣∣∣∣
− 1

2 ∫
exp

[
lnp (yrep|θ)−

n

2

(
θ̂n − θ

)′
Σ̂−1

n

(
θ̂n

)(
θ̂n − θ

)]
dθ

=

∣∣∣∣ 1nΣ̂n

(
θ̂
)∣∣∣∣− 1

2 ∣∣∣n∇2hsN

(
θ̃
s
n

)∣∣∣−1/2
exp

(
−nhsN

(
θ̃
s
n

))(
1 +Op

(
1

n

))
,

where

hsN (θ) =− 1

n

(
lnp (yrep|θ)−

n

2

(
θ̂n − θ

)′
Σ̂−1

n

(
θ̂n

)(
θ̂n − θ

))
,

∇2hsN

(
θ̃
s

n

)
=− 1

n

∂ lnp
(
yrep|θ̃n

)
∂θ∂θ′

+ Σ̂−1
n

(
θ̂n

)
.

So we get the following expansion

lnps (yrep|y) =−
1

2
ln
∣∣∣Σ̂n∇2hsN

(
θ̃
s

n

)∣∣∣− nhsN

(
θ̃
s

n

)
+RT 8

n (52)

= L1 +L2 +L3 + lnp
(
yrep|θ̂n (yrep)

)
+RT 8

n , (53)

where

L1 =−
1

2
ln

∣∣∣∣∣∣Σ̂n

(
θ̂n

)− 1

n

∂ lnp
(
yrep|θ̃n

)
∂θ∂θ′ + Σ̂−1

n

(
θ̂n

)∣∣∣∣∣∣ , (54)

L2 = lnp
(
yrep|θ̃

s

n

)
− lnp

(
yrep|θ̂n (yrep)

)
, (55)

L3 =−
n

2

(
θ̂n − θ̃

s

n

)′
Σ̂−1

n

(
θ̂n

)(
θ̂n − θ̃

s

n

)
. (56)

By the same argument as in the proof of Theorem 1, we can show that

E(L1) =−1

2
ln
∣∣∣Bn (−Hn)

−1 + IP

∣∣∣+ o (1) , (57)

E(L2) = tr
[
(−Hn +Σ−1

n )−1Bn

]
+

1

2
tr [HnDn]−

1

2
tr[Bn(−H−1

n )] + o(1), (58)

E(L3) = tr
[
−Σ−1

n (−Hn +Σ−1
n )−1Bn(−Hn +Σ−1

n )−1
]
+ o(1), (59)
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where Dn = (−Hn +Σ−1
n )−1(Bn +Σ−1

n )(−Hn +Σ−1
n )−1. The details are given in the

Supplement.

Combine (53) and (54)-(56), we finally get the desired result.
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