
Realized Volatility Forecasting: Continuous versus Discrete Time

Models*

Shuping Shi†, Jun Yu††, Chen Zhang†††

† Macquarie University

††University of Macau

†††Sun Yat-sen University

October 21, 2025

Abstract

Forecasting realized volatility (RV) is central to financial econometrics, with important implications for risk

management, asset allocation, and derivative pricing. Motivated by the ongoing debate on volatility modeling,

this paper provides a comprehensive empirical comparison of many alternative models. We evaluate leading

continuous time models estimated using state-of-the-art methods from the rough volatility literature, together

with both standard long-memory autoregressive fractionally integrated moving average (ARFIMA) models and

their rough-volatility extensions, as well as several variants of the heterogeneous autoregressive (HAR) model

and their logarithmic counterparts. The models are applied to a large panel of equities and cryptocurrencies, with

performance assessed using both statistical and economic criteria. Our results show that for equities, continu-

ous time models consistently outperform discrete time alternatives across all evaluation criteria and forecasting

horizons. The fractional Brownian motion model for log RV performs best at short horizons, while the frac-

tional Ornstein Uhlenbeck model for log RV dominates in the long run. For cryptocurrencies, a mild divergence

emerges between economic and statistical performance: based on realized utility, the quarticity-augmented het-

erogeneous autoregressive (HARQ) model for RV leads in the short term and the Brownian semistationary

models prevail at longer horizons, whereas the HAR-type models for log RV deliver superior statistical accu-

racy.
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1 Introduction

Volatility is a fundamental concept in financial economics. Since the seminal work of Engle (1982), extensive ef-

forts have been devoted to modeling and forecasting the dynamics of financial market volatility (Poon and Granger,

2003; Hansen and Lunde, 2005). Early studies relied on daily returns to estimate volatility, but it is now well

recognized that daily returns provide noisy and inefficient measures. Andersen and Bollerslev (1998) demonstrate

the advantages of using intraday returns to measure, model, and forecast daily volatility. The realized volatility

(RV), defined as the sum of squared intraday returns, offers a much more accurate estimate of daily volatility than

the squared daily return. Consequently, the literature on modeling and forecasting realized volatility has expanded

rapidly.

Forecasting realized volatility is a central and extensively explored topic in financial econometrics, with direct

implications for risk management, portfolio allocation, and derivative pricing. Empirical studies have documented

that realized volatility exhibits long memory (Bollerslev et al., 2000; Andersen et al., 2001, 2003), characterized

by slowly decaying autocorrelations and a persistent response to past shocks. To capture this feature, most exist-

ing studies rely on discrete time frameworks, particularly long-memory models like Autoregressive Fractionally

Integrated Moving Average (ARFIMA) models (Granger, 1980; Granger and Joyeux, 1980) with d > 0 where d

is the memory parameter and Heterogeneous Autoregressive (HAR) variants (Corsi, 2009), due to their simplicity

and empirical success (Andersen et al., 2003; Corsi and Renò, 2012; Bollerslev et al., 2016; Patton and Sheppard,

2015).

More recently, a growing body of literature has provided evidence supporting the rough volatility paradigm in

log RV (see, e.g., Gatheral et al., 2018; Bolko et al., 2022; Wang et al., 2023; Chong and Todorov, 2025). This

line of research, grounded in continuous time modeling, suggests that log volatility follows trajectories similar to

those generated by a fractional Brownian motion (fBm) or a fractional OU (fOU) process with the Hurst parameter

(denoted by H) below 0.5, whose Hölder continuity is less than that of a standard Brownian motion, thereby giving

the name of roughness. This line of results seems to be contradicting with that of long-memory ARIFMA models

in the lens of weak convergence.1 While the debate over whether volatility is fundamentally rough or exhibits long

memory remains unresolved (Shi and Yu, 2023; Li et al., 2025), this paper shifts the focus away from theoretical

distinctions toward practical considerations: namely, which class of models (discrete or continuous) delivers better

out-of-sample forecasts of realized volatility.

Despite their theoretical appeal and widespread applications in the rough volatility literature and the option

pricing literature (see, e.g., Sundaresan, 2000; Gatheral et al., 2018), rough continuous time models have been less

1As shown in Tanaka (2013) and Wang and Yu (2023), under an infill scheme, ARFIMA(1,d,0) weakly converges to fOU(H) with
H = d +0.5, implying that d > 0 and H < 0.5 cannot co-exist.
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commonly applied to forecast RV, with some notable exceptions. Wang et al. (2023) and Wang et al. (2024) examine

the predictive performance of continuous time models such as fBm and fOU process. In particular, Wang et al.

(2023) compares the fOU model to fBm, ARFIMA and HAR models in forecasting realized volatility. However,

the scope of that analysis is limited. It considers only a narrow set of models, some of which are estimated by

inefficient methods.

Moreover, the weak identification problem in ARFIMA models was recently reported in (Shi and Yu, 2023; Li

et al., 2025), suggesting that it is difficult to distinguish a stationary near unit root ARFIMA(1,d,0) model with

d ∈ (−0.5,0) from a nonstationary near zero root ARFIMA(1,d,0) model with d ∈ (0.5,1). Hence, it important

to examine the forecasting performance of discrete-time models with long-memory and rough features, as well

as those exhibiting stationary and nonstationary properties. Since the a stationary near unit root ARFIMA(1,d,0)

model weakly converges to a rough fOU process, such an extension is natural given the strong evidence of rough-

ness in the continuous time literature.

We also evaluate several variants of the heterogeneous autoregressive (HAR) model. Since the seminal paper by

Corsi (2009), numerous interesting HAR variants have been proposed (see, e.g., Patton, 2011; Patton and Sheppard,

2015; Laurent et al., 2024). However, empirical comparisons are often benchmarked at the traditional HAR or log

HAR models (see, e.g, Clements and Preve, 2021), leaving it unclear how far the literature has progressed relative

to the best HAR-type model. Finally, much of the existing forecasting literature relies on suboptimal estimation

methods. For instance, Andersen et al. (2003) estimate ARFIMA models using semiparametric techniques that

yield inefficient estimators, while Wang et al. (2023) estimate the fOU process via the method of moments, which

is also inefficient. It is therefore essential to reassess model performance when all competing frameworks are

estimated using efficient and comparable methods.

In this paper, we examine four major continuous time models: fBm, fOU, and two Brownian semi-stationary

(BSS) processes (Bennedsen et al., 2022). These are compared against seven discrete time models, including

stationary ARFIMA, non-stationary ARFIMA, RV-HAR, RV-HARQ (quarticity-augmented HAR), RV-HAR-SV

(semivariance-based HAR), and the log-transformed counterparts of the HAR-type models. These models are il-

lustrated below and classified into two categories: continuous time models, as developed in the rough volatility

literature, and all remaining models, which are labeled as discrete time models. To ensure a fair and robust compar-

ison, we apply state-of-the-art estimation techniques to all models. Forecasting performance is assessed using both

statistical and economic criteria. Statistically, we employ the model confidence set (MCS, Hansen et al., 2011) test

to identify superior models. Economically, we evaluate realized utility from the perspective of a risk parity investor

as in Bollerslev et al. (2018).

The analysis spans a broad range of financial assets (including 11 major index ETFs, 30 Dow Jones Industrial
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Average stocks, and 30 cryptocurrencies), covering the period from 2010 to 2024 for equities and from 2017 to

2024 for cryptocurrencies. This diverse and extensive dataset enables a robust evaluation across asset classes and

market conditions.

Our findings reveal several important patterns across asset classes. For equities, continuous time models con-

sistently outperform all discrete time alternatives, achieving higher realized utility and lower forecast losses across

horizons. The fBm model for log RV estimated via the approximate Whittle maximum likelihood method performs

best at short and medium horizons, while the mean-reverting fOU models for log RV dominate in the long run. For

cryptocurrencies, the HARQ model for RV delivers the highest short-term utility, whereas the continuous time BSS

models for log RV prevail at medium and long horizons. Interestingly, while the continuous time models for log

RV yield greater economic gains at these horizons, the HAR-type models for log RV exhibit superior statistical ac-

curacy across all forecast horizons, highlighting a subtle yet important distinction between economic and statistical

forecasting performance.

Five key innovations distinguish our study from prior studies. First, we consider a substantially broader set of

both continuous time and discrete time models, enabling a more comprehensive comparison of alternative models

for RV. In this sense, our study can be viewed as an extension of Poon and Granger (2003) from the GARCH

literature to the realized volatility literature. Second, we employ advanced estimation techniques to improve esti-

mation accuracy. Third, in the context of the ARFIMA literature, we explicitly address the identification problem

by considering the long-memory ARFIMA model and the ARFIMA model that is rough and stationary. Fourth,

we complement conventional statistical evaluation with an economic utility-based criterion, offering a more prac-

tical and investor-relevant perspective on forecasting performance. Fifth, we evaluate model performance across

a wide-ranging empirical dataset that includes both traditional financial assets and non-traditional ones such as

cryptocurrencies, enhancing the generalizability of our findings.

The remainder of the paper is structured as follows. Section 2 introduces the continuous time models considered

in our analysis, while Section 3 presents the discrete time models. Section 4 describes the forecasting methods and

evaluation criteria. The empirical results are reported in Section 5, where we compare model performance across

asset classes and forecast horizons. Section 6 concludes.

2 Continuous time Models for Volatility Dynamics

This section introduces four major continuous time models including fBm, fOU, and BSS, all used to model log

RV. For each model, we outline its defining features and present the corresponding estimation methods.
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2.1 Fractional Brownian motion process

The fBm process {yt : t ∈ R} is

yt = σBH(t) with H ∈ (0,1) . (1)

It is a continuous time Gaussian process with zero mean and the autocovariance function of the following:

Cov(yt ,ys) =
1
2

σ
2
(
|t|2H + |s|2H −|t − s|2H

)
, ∀t,s ∈ (−∞,+∞) , (2)

where σ > 0 is a constant and H ∈ (0,1) is called the Hurst parameter. When H = 0.5, BH(r) = B(r) becomes a

standard Brownian motion.

Suppose that yt is sampled at grids ∆,2∆, · · · ,T ∆, where ∆ is the sampling interval. Let xi∆ = yi∆ − y(i−1)∆

denote the increment of fBm, where i = 1,2, . . . ,T . The variable xi∆ is known in the literature as the fractional

Gaussian noise (fGn). Both fBm and fGn are Gaussian processes. While fBm is nonstationary, fGn is stationary.

The autocovariance of xi∆ is given by

Cov
(
xi∆,x(i− j)∆

)
=

σ2

2
∆

2H [( j+1)2H +( j−1)2H −2 j2H] , for any j ≥ 0 (3)

∼ σ
2
∆

2HH(2H −1) j2H−2 for large j,

where ∼ denotes asymptotic equivalence. The near-zero-frequency behavior of Cov
(
xi∆,x(i− j)∆

)
for fGn is the

same as that for ARFIMA(0,d,0) when d = H −0.5 ∈ (−0.5,0.5). Hence, fBm yt is expected to have similar low

frequency behavior as ARFIMA(0,d +1,0).

Equation (3) shows that when H ∈ (0.5,1), xi∆ has positive serial dependence, and the autocovariances of xi∆

are not absolutely summable. As a result, xi∆ has long memory when H > 0.5. In contrast, if H ∈ (0,0.5), it can be

proved that, xi∆ has negative autocovariances and the long variance is zero, i.e.,

+∞

∑
j=−∞

Cov
(
xi∆,x(i− j)∆

)
= 0.

In this case, xi∆ is anti-persistent. The fGn generates short-term reversal, and hence, the corresponding fBm has

sample paths that are rougher than those of the standard Brownian motion. When H gets closer to 0, the sample

path becomes rougher.
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Estimation Methods

The fBm process has two unknown parameters, H and σ2. Gatheral et al. (2018) and Bennedsen et al. (2022) use

ordinary least squares and nonlinear least squares, respectively, to estimate the fractional parameter. Meanwhile,

Lang and Roueff (2001), Barndorff-Nielsen et al. (2013), and Brouste et al. (2020) propose using the change-of-

frequency (CoF) estimators. Although these estimators are not efficient since they only utilize partial information

from the process, fBm models with these estimators still yield more accurate forecasts of RV compared to the HAR

model of Corsi (2009), as shown by Gatheral et al. (2018), Bennedsen et al. (2022), and Wang et al. (2024).

Parameters of the fBm process can be estimated from fGn. Fukasawa and Takabatake (2019) propose an

approximate Whittle maximum likelihood (AWML) method that utilizes an approximated spectral density, demon-

strating asymptotic efficiency in the Fisher sense when ignoring approximation errors. Shi et al. (2025) develop

a computationally feasible expression for the spectral density, resulting in the exact Whittle maximum likelihood

(EWML) method. Since the autocovariances are available in closed-form and fGn is a Gaussian process, a time-

domain maximum likelihood (TDML) method can also be implemented. Although the time-domain likelihood and

the Whittle likelihood are asymptotically equivalent, they may differ in finite sample. The difference can be further

exacerbated by approximation errors in the spectral density. Their simulation study reveals that the TDML method

yields the most accurate estimates. AWML is comparable to the EWML but slightly less accurate. In terms of

computational cost, the ranking of methods is AWML, then TDML, and finally EWML. We now introduce the

TDML and AWML methods for fGn.

TDML Let X = (x∆,x2∆, · · · ,xT ∆)
′ and ϕ = (H,σ). Under the model specification, X ∼ N(0,σ2ΣX), where the

elements of σ2ΣX is from (3). The log likelihood function of fGn is,

l(ϕ;X) =−T lnσ − 1
2

ln |ΣX |−
1

2σ2 X ′
Σ
−1
X X . (4)

Since ΣX only depends on H, the parameter σ2 is estimated by

σ̂
2
ML(H) =

1
T

X ′
Σ
−1
X X .

The TDML estimator ĤML is then computed as

ĤML = argmax
ϕ

l(H, σ̂2
ML(H);X).

See Appendix A.1 for implementation details.
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AWML Let λ be the spectral frequency and fx (λ ) be the spectral density of the fGn process. The spectral density

f (λ ) is given by Sinai (1976) and takes the form of the following:

f ∆
x (λ ;ϕ) =

σ2

π
∆

2HCH (1− cosλ )
∞

∑
k=−∞

|2πk+λ |−1−2H := σ
2g∆

X (λ ;H)

for λ ∈ (0,π], where CH = Γ(2H +1)sin(πH) with Γ(·) being the Gamma function.

The Whittle log likelihood function for parameters in fGn is

lW (H;X) =− 1
2π

∫
π

0

(
lnσ

2g∆
X(λ ;H)+

I(λ )
σ2g∆

X(λ ;H)

)
dλ , (5)

where I (λ ) is the periodogram is defined as

I (λ ) =
1

2πT

∣∣∣∣∣ T

∑
s=1

xs∆ exp(−isλ )

∣∣∣∣∣
2

. (6)

Since σ 2 is functionally independent of H, these two parameters can be estimated separately. The profiled log

likelihood of the Whittle method is given by

l̃W (H;X) =− ln
(

1
π

∫
π

0

I(λ )
g∆

X(λ ;H)
dλ

)
− 1

π

∫
π

0
lng∆

X(λ ;H)dλ . (7)

and σ2 = 1
π

∫
π

0
I(λ )

g∆
X (λ ;H)

dλ . Note that the spectral density diverges to infinity as λ → 0 when H > 1/2. To address

this singularity issue, we divide the integrand in the objective function (7) into two segments: one ranging from 0

to ε , and the other from ε to 2π , as in Fukasawa et al. (2022) and Shi et al. (2024). The log likelihood function can

be further reformulated as the follows. We first consider the estimation of H.

Lemma 2.1 The Whittle log likelihood function for estimating H in fGn is given by l+W (H;X) = l̃W (H;X) when

H ≤ 1/2; when H > 1/2,

l+W (H;X) =−
{

log
[

1
π

(∫
π

ε

In(λ )

g∆
X(λ ;H)

dλ +B‡(H,ε)

)]
+

1
π

(∫
π

ε

lng∆
X(λ ;H)dλ +B†(H,ε)

)}

where

B†(H,ε) = ln
(

1
2π

CH∆
2H
)

ε +(1−2H)(ε lnε − ε) ,

B‡(H,ε) = δH(0,ε)γ̂n(0)+
n−1

∑
τ=1

δH(τ,ε)γ̂n(τ),
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with δH(0,ε)≈ ε2H

2HCH ∆2H and δH(τ,ε)≈ 1
CH ∆2H ∑

J
j=0

(−1) jτ2 j

(2 j)!
ε2( j+H)

2( j+H) for τ > 1.2

Moreover, the spectral density g∆
X (λ ;H) involves infinite summation which brings challenges computationally.

A Paxson approximation of the spectral density is considered by Paxson (1997); Fukasawa and Takabatake (2019),

which approximates g∆
x (λ ;H) with the average of its upper and lower bounds. The Paxson approximated spectral

density is denoted by g̃∆
x (λ ;H) and given by

g̃∆
x (λ ;H) =

1
π

CH(1− cos(λ ))∆2H

{
|λ |−γH +

K

∑
j=1

b( j,λ )+
1
2
[a(K,λ )+a(K +1,λ )]

}
, (8)

where K is a pre-specified integer, γH = 2H +1,

a(k,λ ) =
1

4πH

[
(2πk+λ )1−γH +(2πk−λ )1−γH

]
,

b( j,λ ) = (2π j+λ )−γH +(2π j−λ )−γH .

The AWML estimator ĤAW is computed as

ĤAW = argmax
ϕ

l+AW (H;X),

where l+AW (H;X) is the objective function of the approximate Whittle method, where we replace g∆
X (λ ;H) in

l+W (H;X) with g̃∆
X(λ ;H) and set K = 50. The volatility parameter σ2 is estimated by

σ̂
2
AW =

1
π

[∫
π

ε

In(λ )

g∆
X(λ ; ĤAW )

dλ +B‡(ĤAW ,ε)

]
.

2.2 Fractional Ornstein-Uhlenbeck process

The fOU process {yt : t ∈ R} is given by

dyt = κ (µ − yt)dt +σdBH
t with y0 = Op (1) ,

where κ , σ > 0, µ is a constant, and BH
s is a fBm process with H ∈ (0,1). The fOU process has a unique path-wise

solution:

yt = e−κty0 +
(
1− e−κt)

µ +
∫ t

0
σe−κ(t−u)dBH

u ,

2We set J = 100 and ε = 2π/n in practice.
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where E (yt) = µ and Var (yt) = σ2κ−2HHΓ(2H). The fOU process reduces to the traditional OU process when

H = 0.5 and to a fractional Brownian motion process when κ = 0.

Suppose that {yi∆}T
i=1 are sampled from the fOU process. The autocovariance of yi∆ is (Garnier and Sølna,

2018)

Cov
(
yi∆,y(i− j)∆

)
=

σ2

2κ2H

(
1
2

∫
∞

−∞

e−|s| |κ j∆+ s|2H ds−|κ j∆|2H
)

. (9)

Cheridito et al. (2003) show that for any κ > 0, autocovariances of fOU behave like that of fGn when the lag

length j is large. When H ∈ (0.5,1), the autocovariances are not absolutely summable. Unlike fBm that is always

nonstationary, the fOU process is stationary as long as κ > 0. Of course, when κ is positive and close to zero, fOU

should have similar properties to fBm in finite sample.

Estimation Method

The fOU model includes two additional parameters, κ and µ , compared to the fBm process. Wang et al. (2023)

propose a two-stage estimation method: first, they estimate H and σ from second-order differences, followed by

estimating µ using the sample mean and κ based on the previously estimated parameters. When modelling log

RV, Wang et al. (2023) find that the fOU model provides more accurate forecasts for RV than both ARFIMA and

HAR models, as well as fBm. However, the comparison between fOU and fBm may be biased, as Wang et al.

(2023) employed sub-optimal forecasting formulas for both models, as noted by Wang et al. (2024). Additionally,

the estimation methods used for both fOU and ARFIMA may not be optimal.

For the fOU model, Bennedsen et al. (2022) propose a Maximum Composite Likelihood (MCL) method that

outperforms the CoF method in simulation studies. However, both approaches use only partial information from

the process, limiting their efficiency. Shi et al. (2024) introduce an AWML method for estimating κ , σ , and H in

fOU, yielding more accurate estimates than the MCL and CoF methods. To estimate µ , Shi et al. (2024) use the

sample mean. Additionally, Wang et al. (2024) propose the TDML method to estimate all four parameters in fOU,

showing improved estimation accuracy. We now introduce the TDML and AWML methods.

TDML Let y = (y1∆,y2∆, · · · ,yT ∆)
′ and θ = (µ,σ ,κ,H). Under the fOU process, y ∼ N

(
0,σ 2Σy

)
. The log

likelihood function of fOU can be written as

l(θ ;y) ∝ −T lnσ − 1
2

ln |Σy|−
1

2σ2 (y−µ1)⊤ Σ
−1
y (y−µ1) . (10)

One important task is to compute the variance-covariance matrix σ2Σy using (9) which involves an integral.
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Wang et al. (2024) provide an analytical expression for elements in σ2Σy:

Cov
(
yi∆,y(i− j)∆

)
=

σ2

2κ2H

[
cosh(κ j∆)Γ(2H +1)− (κ j∆)2H

1F2

(
1;H +

1
2
,H +1;

(κ j∆)2

4

)]
, (11)

where cosh(x) = [exp(x)+ exp(−x)]/2 is the hyperbolic cosine function and 1F2(·; ·; ·) denotes the generalized

hypergeometric function as

1F2

(
1;H +

1
2
,H +1;

(κ j∆)2

4

)
=

∞

∑
n=0

Γ(H +1/2)Γ(H +1)
Γ(H +1/2+n)Γ(H +1+n)

(
κ j∆

2

)2n

. (12)

Note that the elements in Σy depend on κ and H only. We can profile the log likelihood by

µ(κ,H) =
1⊤Σ−1

y y
1⊤Σ

−1
y 1

, (13)

which leads to

σ
2(κ,H) =

1
T

[
y⊤Σ

−1
y y−

(
1⊤Σ−1

y y
)2

1⊤Σ
−1
y 1

]
. (14)

Substituting (13) and (14) into (10) yields the following profile log likelihood function

l(κ,H;y) ∝ −T lnσ(κ,H)− 1
2

ln |Σy| . (15)

Therefore, the TDML estimators of κ and H are obtained as

(
κ̂ML, ĤML

)
= argmax

κ,H
l(κ,H;y). (16)

Consequently, using (13) and (14), the TDML estimators of µ and σ are

µ̂ML = µ(κ̂ML, ĤML) and σ̂ML = σ(κ̂ML, ĤML). (17)

AWML Let β = (H,κ,σ). The discrete time spectral density of the fOU process is provided by Hult (2003) and

takes the form of

f ∆
y (λ ;β ) =

σ2

2π
C (H)∆

2H
∞

∑
k=−∞

|λ +2πk|1−2H

(κ∆)2 +(λ +2πk)2 for λ ∈ (0,2π) .
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The spectral density of fOU involves infinite sum and hence is computationally challenging. Shi et al. (2024)

provides a modified Paxson approximation of the spectral density, given by

f̃ ∆
y (λ ;β ) =

σ2

2π
C (H)∆

2H

[
K

∑
k=1

Q1,k (λ )+
K

∑
k=1

Q2,k (λ )+
λ 1−2H

(∆κ)2 +λ 2 (18)

+
1
2

a(K,H,λ )+
1
2

b(K,H,λ )+ c(K,H,λ )

]
,

where K is a pre-specified integer,

Q1,k (λ ) =
(2πk−λ )1−2H

(∆κ)2 +(2πk−λ )2 ,Q2,k (λ ) =
(λ +2πk)1−2H

(∆κ)2 +(λ +2πk)2 ,

a(K,H,λ ) ≡ 1
4π

[2π (K +1)−λ ]−2H

{
1
H

− (∆κ)2

(1+H) [2π (K +1)−λ ]2

}
,

b(K,H,λ ) ≡ 1
4π

[2π (K +1)+λ ]−2H

{
1
H

− (∆κ)2

(1+H) [2π (K +1)+λ ]2

}
,

c(K,H,λ ) ≡ 1
8πH

(2πK −λ )−2H +
1

8πH
(2πK +λ )−2H .

We set K = 200 in the application.

The approximated Whittle log likelihood function is given by

lAW (β ;y) =− 1
2π

∫
π

0

(
ln f̃ ∆

y (λ )+
I(λ )
f̃ ∆
y (λ )

)
dλ , (19)

where I (λ ) denotes the periodogram at frequency λ computed as

I (λ j) =
1

2πT

∣∣∣∣∣ T

∑
s=1

(ys∆ − µ̂)exp(−isλ j)

∣∣∣∣∣
2

, (20)

where µ̂ is obtained as the sample mean. The spectral density diverges to infinity at the near zero frequencies (i.e.,

λ → 0) when H > 1/2. To address the singularity problem, and given that σ is functionally independent of κ and

H, the objective function can be reformulated as the following:

l+AW (κ,H;y) =−

{
log

[
1
π

∫
π

0

In(λ )

g̃∆
y (λ ;H,κ)

dλ

]
+

1
π

∫
π

0
ln g̃∆

y (λ ; ,H,κ)dλ

}
, if H ≤ 1/2,

l+AW (κ,H;y) =−

{
log

[
1
π

(∫
π

ε

In(λ )

g̃∆
y (λ ;H,κ)

dλ +B‡(κ,H,ε)

)]
+

1
π

(∫
π

ε

ln g̃∆
y (λ ; ,H,κ)dλ +B†(κ,H,ε)

)}
, if H > 1/2,
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where

g̃∆
y (λ ;H,κ) = f̃ ∆

y (λ ;H,κ)/σ
2,

B†(κ,H,ε) = ln
(

CH∆2H

2π(∆κ)2

)
ε + ε(lnε −1)(1−2H),

B‡(κ,H,ε) = δ
∗(0,ε)γ̂n(0)+

n−1

∑
τ=1

δ
∗(τ,ε)γ̂n(τ),

with γ̂n(τ) = n−1
∑

n−τ

j=1 y j∆y j−τ∆, δ ∗(0,ε) = ∆2−2H κ2ε2H

2HCH
,

δ
∗(τ,ε) =

∆2−2Hκ2

CH

J

∑
j=0

(−1) jτ2 j

(2 j)!
ε2( j+H)

2( j+H)
,

and J being a large number. See Shi et al. (2024) for details.

The AWML estimator is computed as

(
κ̂AW , ĤAW

)
= argmax

κ,H
l+AW (κ,H;y).

The estimator is shown to be efficient in Fisher’s sense (Shi et al., 2024). To estimate µ , Shi et al. (2024) use the

sample mean of yt∆.3 The volatility parameter σ̂2
AW is estimated by

σ̂
2
AW =

1
π

∫
π

ε

In(λ )

g∆
y (λ ; ĤAW )

dλ if H < 1/2,

and

σ̂
2
AW =

1
π

(∫
π

ε

In(λ )

g∆
y (λ ; ĤAW )

dλ +B‡(ĤAW ,ε)

)
if H ≥ 1/2.

2.3 Brownian Semi-Stationary process

The Brownian Semi-Stationary (BSS) process was introduced to model volatility by Bennedsen et al. (2022). The

process is defined as the Gaussian moving averages:

yt = µ +σ

∫ t

−∞

g(t − s)dB(s),

3We utilize a continuous time specification of the Whittle log likelihood function. An unreported analysis indicates that when µ is
known, the estimator obtained by maximizing the discrete Whittle log likelihood function performs slightly worse than the one from the
continuous version. However, when µ is unknown and estimated using the sample mean, the performance of both estimators is nearly
identical.
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where B(s) is Brownian motion on R and g : (0,∞)→ R is a square-integrable kernel function. Bennedsen et al.

(2022) give two specific examples: Power-BSS process and Gamma-BSS process.

The kernel function of the power-BSS process takes the form of the following:

g(v) = vα(1+ v)−α−γ , t > s,

with α ∈ (−1
2 ,

1
2) and γ > 1

2 . The parameter α controls the roughness of the process, while γ controls the long

memory of the process. Therefore, it enables the decoupling of roughness and long memory, offering a more general

framework than the fOU and ARFIMA models. See Proposition 1.2 of Bennedsen et al. (2022) for explanations.

The autocovariance of yi∆ is given by

Cov(yi∆,y(i− j)∆) = σ
2
∫ i∆

−∞

g(i∆− s)g(i∆− s+ j∆)ds, for j > 0, (21)

Var(yi∆) = σ
2B(2α +1,2γ −1), (22)

where B(x1,x2) =
∫ 1

0 tx1−1 (1− t)x2−1 dt is the beta-function.

The kernel function of the Gamma-BSS process takes the form of

g(v) = vα̃e−γ̃v, t > s,

with α̃ ∈ (−1
2 ,

1
2) and γ̃ > 0. The parameter α̃ controls the roughness of the process and γ̃ controls the persistence

of the process. See Proposition 1.3 of Bennedsen et al. (2022) for explanations. The autocovariance is given by

Cov(yi∆,y(i− j)∆) = σ
2 Γ(α̃ +1)√

π

(
j∆
2γ̃

)α̃+1/2

Kα̃+1/2(γ̃ j∆), for j > 0, (23)

where Kv(·) is the modified Bessel function of the third kind with index v (see, for example Gradshteyn and Ryzhik,

2014, Section 8.4). The variance of yi∆ is given by

Var(yi∆) = σ
2(2γ̃)−2α̃−1

Γ(2α̃ +1). (24)

Let δ = (α,γ) for the power-BSS process and δ = (α̃, γ̃) for the Gamma-BSS process. Denote the autocor-

relation function (ACF) of yt implied by the model as ρ(h;δ ) := Corr(yi∆,yi∆−h). The BSS process is considered

rough if its ACF satisfies the following asymptotic relationship:

1−ρ(h;δ )∼ c|h|2α+1, |h| → 0, (25)
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where c > 0 is a constant, and the roughness parameter α ∈
(
−1

2 ,
1
2

)
. The process has long memory if:

ρ(h;δ )∼ c|h|−β , |h| → ∞,

for some β ∈ (0,1). Both the power-BSS and Gamma-BSS processes satisfy these two conditions. For further

details, see Bennedsen et al. (2017).

Estimation Methods

Barndorff-Nielsen et al. (2013) examine the CoF estimator for Brownian semi-stationary (BSS) processes when

H ∈ (0,1/2)∪ (1/2,3/4). Corcuera et al. (2013) introduce a modified CoF estimator suitable for BSS processes

with H ∈ (3/4,1). Bennedsen et al. (2022) employ a two-stage procedure (including nonlinear least squares (NLS)

and the method of moments (MM)) to estimate parameters, concluding that BSS models outperform ARFIMA and

HAR models and are strong competitors to the fBm model. However, the comparison between the BSS model and

the fBm may be flawed due to the use of sub-optimal forecasting formulas for the fBm model. In an earlier version,

Bennedsen et al. (2017) apply the MCL method to BSS models for modeling realized volatilities, with simulation

results indicating that MCL for the BSS process outperforms the CoF method.

Method of Moments The mean parameter µ is estimated using the sample mean. For the remaining model pa-

rameters, Bennedsen et al. (2022) propose a two-step procedure. First, the roughness parameter α or α̃ is estimated

semi-parametrically based on the scaling relationship in (25). Then, the remaining parameters are estimated using

a parametric method of moments.

Let (δ1 = α,δ2 = γ) for the power-BSS process and (δ1 = α̃,δ2 = γ̃) for the Gamma-BSS process. From (25),

the second-order variogram, denoted by γ2 (.), satisfies:

γ2 (h) := E
[
(yi∆ − yi∆−h)

2
]
∼ c|h|2δ1+1, |h| → 0.

This motivates OLS regression of the form:

ln γ̂2 ( j∆) = a0 +a1 ln( j∆)+ ε j, j = 1,2, . . . ,m

where m ∈ N is a bandwidth parameter, ε j is an error term, and γ̂2 ( j∆) = 1
n− j ∑

n− j
i=1

(
yi∆ − y(i− j)∆

)2 is the empirical

variogram corresponding to γ2 (h). The OLS estimate of δ1 is then given by δ̂1 = (â1 −1)/2, where â1 is the OLS

estimator of a1 from the regression. Following Bennedsen et al. (2022), the bandwidth parameter is set to m = 6.
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The second step estimates the long memory parameter δ2 based on the parametric ACF. The empirically es-

timated ACF, yi∆, is fitted to the model implied parametric ACF ρ(h;δ ), using the first-step estimate of α . The

estimator of δ2 is defined as:

δ̂2 = argmin
δ2

K

∑
k=1

[
ρ̂( j∆)−ρ( j∆; δ̂1,δ2)

]2
,

where K = ⌊T 1/3⌋ and δ̂1 is the first-step estimator of α . The parameter σ is estimated as the sample standard

deviation of yi∆ divided by ρ( j∆; δ̂1, δ̂2). Bennedsen et al. (2022) show the asymptotic consistency of δ̂1 and δ̂2.

MCL Despite its asymptotic efficiency, the TDML method can be computationally intensive, which makes it

unsuitable for large dimensional datasets.Bennedsen et al. (2024) proposes the MCL method, which aims to reduce

computational cost while retaining some of the favorable theoretical properties of MLE. Let θBSS = (µ,σ ,δ ). The

log likelihood function of the MCL is given by:

lc(θBSS;y) =
K

∑
j=1

T− j

∑
i=1

lnω
(
y(i+ j)∆,yi∆;θBSS

)
,

where ω
(
y(i+ j)∆,yi∆;θBSS

)
is the pairwise joint probability density function (pdf) of

(
y(i+ j)∆,yi∆

)
. Since

(
y(i+ j)∆,yi∆

)
follows a bivariate normal distribution, its log-density function is given by:

lnω(y(i+ j)∆,yi∆;θBSS) =−1
2

lndet(Σz)− log(2π)− 1
2

z⊤Σ
−1
z z,

where z =
(
y(i+ j)∆ −µ,yi∆ −µ

)⊤ and Σz is the covariance matrix of z. We set K = 5 and replace µ by the sample

mean of the observations in applications. The computation of Σz is based on the variance and covariance formulas

provided in (21) -(24). The indefinite integral in the covariance of the power-BSS is again evaluated by numerical

integral using quadgk in Matlab. The MCL estimator is defined as

θ̂
BSS
MCL = argmax

θBSS
lc(θBSS;y).

3 Discrete time Models

We consider two types of discrete time models: the ARFIMA(1,d,0) model and HAR-type models. In contrast to

continuous time models, where t ∈ R+ represents continuous time and {i∆}T
i=1 indicates discrete observations, we

use t to denote discrete time points for our discrete time models, i.e., t = 1,2, · · · ,T .
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3.1 ARFIMA(1,d,0)

For notation simplicity, we refer to the ARFIMA(1,d,0) model as FAR(α ,d) subsequently. The FAR(α ,d) model

is specified as

(1−αL)(yt −µ) = σ(1−L)−d
εt with |α|< 1, (26)

where L is the lag operator, d is the memory parameter, and εt ∼iid N(0,1). It reduces to a standard autoregressive

process when d = 0.

When d ∈ (−1/2,1/2), the process is stationary (Bloomfield, 1985). Let ut = (1−L)−dεt be the fractionally

integrated process. Let γu( j) =Cov(ut ,ut− j) be the jth order autocovariance of ut . According to Hosking (1981),

the autocovariance function of ut is

γu( j) =
(−1) jΓ(1−2d)

Γ( j−d +1)Γ(1− j−d)
. (27)

The long run variance covariance ∑
∞
j=−∞ γu( j) → ∞ when d ∈ (0,1/2) and ∑

∞
j=−∞ γu( j) = 0 when d ∈ (−1/2,0).

Therefore, ut has a long memory if d ∈ (0,1/2) and is anti-persistent if d ∈ (−1/2,0). The covariance function for

the stationary process can be written as (Brockwell and Davis, 2009):

γy (k) =
∞

∑
s=−∞

γ̃ (s)γu (k− s) , (28)

where γ̃ (s) is the autocovariance of the pure AR component, i.e., γ̃ (s) = σ2αs/
(
1−α2

)
for s > 0.4

When d ∈ (1/2,3/2) in FAR(α,d), yt is nonstationary. Multiplying both sides of (26) by 1−L, we obtain

(1−L)(1−αL)(yt −µ) = σ(1−L)−(d−1)
εt with |α|< 1,

which leads to

(1−αL)(yt − yt−1) = σ(1−L)−d∗
εt with |α|< 1 and d∗ = d −1 ∈ (−0.5,0.5). (29)

Hence, FAR(α,d) with d ∈ (0.5,1.5) for yt is equivalent to FAR(α,d∗) with d∗ ∈ (−0.5,0.5) for yt − yt−1. In this

case, although yt is nonstationary, yt − yt−1 is stationary. Interestingly, µ is superfluous in the latter model.

4In practice, the summation is truncated at value S. We follow the rule recommended by Shi and Yu (2023) for the selection of S to ensure
accurate estimation of the variance-covariance matrix particularly for processes with an autoregressive root close to unity. Specifically, for
α ≤ 0.9, S = 200 is sufficient, but larger values are needed as α increases: S = 300 for 0.9 < α ≤ 0.95, S = 1,700 for 0.95 < α ≤ 0.99,
S = 3,000 for 0.99 < α ≤ 0.995, and S = 7,000 for 0.995 < α < 1.
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Model Specifications and Estimation

Several estimation techniques have been proposed, including semi-parametric methods, the TDML method, and

the EWML methods. Semi-parametric approaches, such as the local Whittle method (Künsch, 1987; Robinson,

1995a) and the log periodogram method (Geweke and Porter-Hudak, 1983; Robinson, 1995b), leverage features

of the spectral density at low frequencies, which is robust to short-run dynamics of the data series asymptotically.

The autoregressive coefficient α can be estimated from pre-filtered data based on the estimated d, and µ can be

estimated by the sample mean. Shi and Yu (2023) point out that semi-parametric methods struggle to differentiate

between persistence arising from the autoregressive coefficient and that from the fractional parameter when the

autoregressive coefficient is close to unity.

The parametric ML method generally performs well when α is far away from unity and zero. However, if α is

near unity or zero, there is a weak identification problem documented in Shi and Yu (2023) and Li et al. (2025). The

weak identification problem arises because the spectral density of this model is asymptotically indistinguishable

in two key regions: (1) as α → 1 with d = d∗ ∈ (−1/2,0) (which is a stationary model, representing rough

dynamics), and (2) as α → 0 with d = 1+d∗ ∈ (1/2,1) (which is a nonstationary model, indicating long memory).

The autoregressive coefficient α → 1 and the fractional parameter d > 0 both play a similar role in capturing the

slow decay pattern of ACF.

We consider three specifications of FAR(α ,d). First, we assume the process is stationary and exhibits long

memory, with d ∈ [0,0.5), as in the traditional long memory literature (see, e.g., Granger and Joyeux, 1980;

Granger, 1980; Hosking, 1981), and estimate it using the modified profile likelihood (MPL) method that will

be reviewed later (labeled ARFIMA-LM-S (MPL)). Second, we maintain the stationarity assumption but allow the

process to exhibit rough behavior, with d ∈ (−0.5,0), also estimated using MPL (labeled ARFIMA-R-S (MPL)).

Third, we consider a long memory process that may be nonstationary, with d ∈ (0,1), and estimate it using the

Whittle maximum likelihood method that will be reviewed later (labeled ARFIMA-LM-NS (Whittle)).

MPL Let θFAR =
(
µ,σ ,δ †

)
with δ † =(α,d). Under the model specification, y−µ1 follows a normal distribution

with mean zero and variance-covariance matrix σ2Σy. The objective function of the ML estimator is as in (10).

Elements of the variance covariance matrix σ 2Σy is computed from (28), where the summand is truncated at S. In

case of unknown µ , one could use the plug-in method, which substitutes µ by a consistent estimator of the mean

(e.g., the sample mean). Although the method provides a
√

T consistent and asymptotically normal estimator, it is

contaminated by an additional second-order negative bias (Lieberman, 2005) due to the need of estimating µ .

The MPL estimator of Cox and Reid (1987) is obtained by modifying the standard profile likelihood function

to address the second-order bias. The modification introduces an adjustment term derived from the information
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matrix of the nuisance parameters, which penalizes the likelihood heavier when the plug-in estimator of these

parameters is noisier. This adjustment reduces the second-order bias while preserving asymptotic efficiency (An

and Bloomfield, 1993; Hauser, 1999). The resulting modified profile likelihood function is

lM
(
δ

†;y
)
=

(
1
T
− 1

2

)
ln |Σy|−

1
2

ln
(

1⊤Σ
−1
y 1
)
+

3−T
2

ln
[
T−1 (y− µ̂)⊤ Σ

−1
y (y− µ̂)

]
, (30)

where µ̂ =
1⊤Σ−1

y y
1⊤Σ

−1
y 1 . The MPL estimator is denoted by δ̂

†
MPL and defined as

δ̂
†
MPL = argmax

δ †
lM
(
δ

†;y
)
.

The parameter µ is estimated by

µ̂MPL =
1⊤Σ̂−1

y y
1⊤Σ̂

−1
y 1

with Σ̂y = Σy(δ̂
†
MPL),

while the variance σ2 is estimated as

σ̂
2
MPL =

1
T
(y− µ̂MPL1)⊤Σ

−1
y (y− µ̂MPL1).

MPL requires that the process be stationary, ensuring the variance-covariance matrix remains time-invariant.

Whittle MLE Let δ † = (α,d). The spectral density of FAR(α,d) is given by

fy
(
λ ;δ

†,σ
)
=

σ2

2π

(2−2cos(λ ))−d

1−2α cos(λ )+α2 for −π ≤ λ ≤ π. (31)

When the data series is nonstationary (i.e., d > 0.5), fy(λ ;δ †,σ) is not integrable over the interval [−π,π]. How-

ever, it can be interpreted as the limit of the expected sample periodogram (Hurvich and Ray, 1995; Velasco and

Robinson, 2000). Consequently, it is referred to as a ‘pseudo spectral density’. The standard Whittle ML method is

shown to yield
√

T -consistent, asymptotically normal, and efficient parameter estimates when d ∈ (0,1/2) (Han-

nan, 1973; Fox and Taqqu, 1986; Giraitis and Surgailis, 1990). Velasco and Robinson (2000) proposes using the

Whittle MLE with tapering to account for potential nonstationarity, i.e., d ∈ [1/2,1) in the data series.

The parameter µ is estimated by the sample mean µ̂ . Define the tapered periodogram by

Ip (λ j) =
1

2π ∑
T
t=1 h2

t

∣∣∣∣∣ T

∑
t=1

ht (yt − µ̂)exp(−itλ j)

∣∣∣∣∣
2

,
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where ht is the data taper series. Let fy
(
λ ;δ †,σ

)
= σ2

2π
ηy
(
λ ;δ †

)
. The profiled Whittle objective function is given

by:

lp
W (δ †;y) =

2π p
T ∑

j∈J(p)

Ip(λ j)

η∗
y (λ j;δ †)

. (32)

where J (p) = {p,2p, . . . ,T − p} (assuming that T/p is an integer) and η∗
y
(
λ j;δ †

)
= ηy

(
λ ;δ †

)
/Z with Z :=

exp
( p

T ∑ j∈J(p) lnηy
(
λ j;δ †

))
. Note that η∗

y
(
λ j;δ †

)
is the normalized spectral density which satisfies

∫
π

−π
lnη∗

y
(
λ ;δ †

)
dλ =

0. See the appendix for the derivation of the profiled Whittle objective function. The tapered Whittle estimator is

δ̂
†p
W = argmin

θ
lp
W (δ †;y) and

(
σ̂

p
W

)2
=

2π p
T ∑

j∈J(p)

Ip(λ j)

ηy

(
λ j; δ̂

†p
W

) .
Under certain regularity conditions, the tapered Whittle estimator is shown to have asymptotic normality for

d ∈ (−0.5,1):
√

m
(

δ̂
†p
W −δ

†
0

)
→ N

(
0,4π pΦpΣ

−1
0

)
,

where δ
†
0 is the true model parameter,

Σ0 =
∫

π

−π

{
∂

∂δ † lnη(λ ;δ
†
0 )

}{
∂

∂δ †′ lnη(λ ;δ
†
0 )

}
dλ ,

and Φp = limn→∞ ∑k∈J(p) φ 2(λk) is the taper variance inflator, with φ(λ ) =
(
∑

n
t=1 h2

t
)−1 (

∑
n
t=1 h2

t cos(tλ )
)
. The

estimation method includes the standard Whittle method as a special case with ht = 1 and p = 1, leading to a taper

inflator of Φp = 1 and an asymptotic variance of 4πΣ
−1
0 . In our implementation, the taper series and ht is assume

to be the Kolmogorov weights (Žurbenko, 1979) with order p = 3, which takes the form of the full cosine bell

ht = 0.5
(
1− cos 2πt

n

)
. The parameter µ is estimated by its sample mean.

3.2 HAR-type models

HAR-type models have gained significant attention in financial econometrics for their ability to capture the dynam-

ics of volatility and also for their simplicity in estimation and forecasting. This section introduces three models in

this category: the HAR model Corsi (2009), the HARQ model of Bollerslev et al. (2016), and the semi-variance

HAR (HAR-SV) model of Patton and Sheppard (2015).

The HAR model proposed by Corsi (2009) for RV serves as a widely used benchmark for forecasting. This

model effectively captures the long memory dynamics of volatility through a straightforward linear specification,
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incorporating lagged daily, weekly, and monthly average RV as regressors. Specifically,

RVt+h = β0 +β1RVt +β2RVt|t−4 +β3RVt|t−21 + εt+h, (33)

where RVt− j|t−k =
1

k− j+1 ∑
k
i= j RVt−i with j ≤ k and εt is a disturbance term. The quantity RVt|t−4 and RVt|t−21 repre-

sent the weekly and monthly average RV, respectively. The HAR-RV specification can be viewed as a constrained

version of an AR(21) model and its parameters can be estimated using the OLS method.

To take the measure errors of RV into consideration, Bollerslev et al. (2016) proposes to directly adjust the

daily coefficient based on the magnitude of its measurement error. The HARQ model proposed by Bollerslev et al.

(2016) is specified as follows:

RVt+h = β0 +
(

β1 +β1Q
√

RQt

)
RVt +β2RVt|t−4 +β3RVt|t−21 + εt+h, (34)

where RQ is the realized quardicity which serves as a proxy for the measure error of RV. The measurement error

variance for the weekly and monthly (normalized) realized volatility is much smaller, so these coefficients are kept

constant. The realized quarticity is calculated from intraday observations as: RQ = M
3 ∑

M
i=1 r4

t,i, where M is the

number of observations within the day, and rt,i represents the ith return on day t. The HARQ is found to significant

improvements in the accuracy of the resulting forecasts compared to the forecasts from other HAR-type models

(Bollerslev et al., 2016)

The HAR-SV model extends the traditional HAR framework by incorporating realized semivariances to capture

the asymmetric impact of positive and negative returns on future volatility. The realized semivariances are defined

as

RS+t =
n

∑
i=1

r2
i,tI{ri,t > 0}, RS−t =

n

∑
i=1

r2
i,tI{ri,t < 0},

where ri,t denotes the intraday return at time i on day t with n being the number of observations within the day, and

I{·} is the indicator function. The forecasting equation for the h-step ahead realized variance is specified as

RVt+h = β0 +β
+
1 RS+t +β

−
1 RS−t +β2RVt|t−4 +β3RVt|t−21 + εt+h.

To address non-normality for the distribution of RV, we apply the HAR, HARQ, and HAR-SV models to the log

RV. That is, we replace RV with log RV, and substitute log RSV+ and log RSV− for RSV+ and RSV−, respectively,

in each HAR-type model. We refer to the original specifications as RV-HAR, RV-HARQ, and RV-HAR-SV, and

denote their log counterparts as logRV-HAR, logRV-HARQ, and logRV-HAR-SV.
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4 Forecasting Method

We begin by discussing forecasting methods for continuous time models. In the seminal paper, Gatheral et al.

(2018) forecast future realized volatility (RV) by discretizing an infinite-past forecasting formula derived by Nuz-

man and Poor (2000). Several subsequent studies (Gatheral et al., 2018; Bennedsen et al., 2017; Wang et al., 2023)

have followed this approach when applying the fractional Brownian motion (fBm) model to RV forecasting. The-

oretically, the infinite-past forecasting formula is optimal when a continuous, infinite record is available. However,

when applied to empirical data, it fails to yield optimal forecasts due to the discrete and finite nature of observed

samples. With discrete time observations and assuming the variable follows a Gaussian process, the optimal fore-

cast of the target variable (in term of minimizing root mean squared error (RMSE)) is given by its conditional

expectation.5 The conditional expectation approach for forecast is applicable to both the continuous time models

and the FAR(α ,d) model.

4.1 Optimal Forecast

Let zt be a generic process of interest. If yt is a stationary process (e.g., fOU, BSS, or FAR model with d ∈ (0,1/2)),

then

zt = yt −µ.

Conversely, if yt is nonstationary (e.g., fBm or FAR with d ∈ [1/2,1)),

zt = yt − yt−1.

The h-step-ahead optimal prediction of zT is achieved at the conditional mean since zt is Gaussian. Let z =(z1, ...,zT )
′.

The optimal forecast ẑT+h = E(zT+h|z), which is a linear combination of the past observations, i.e.,

ẑT+h = φ
(h)′z with φ

(h) = Σ
−1
z Γh,

where φ (h) is the optimal weight assigned to each past observations with Γh = (γz (T +h−1) , . . . ,γz (h))
′, γz ( j) =

Cov
(
zi∆,z(i− j)∆

)
, and Σz being the T ×T dimension variance-covariance matrix of z. The theoretical mean squared

prediction errors of zT+h is given by

E
[
(zT+h − ẑT+h)

2
]
= γz (0)+Γ

′
hΣ

−1
z Γh.

5Wang et al. (2024) assess the efficiency loss of the infinite-past forecasting approach against the conditional expectation method using
RMSE. They find that Gatheral et al. (2018)’s method underestimates the fBm model’s performance by 5% for both simulated data and
daily realized volatility.
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For stationary processes,

ŷ(T+h)∆ = µ̂ + ẑ(T+h)∆,

whereas for nonstationary processes,

ŷT+h = yT +
h

∑
j=1

ẑT+ j.

Consequently, for nonstationary processes, the mean squared prediction error of y(T+h)∆ is the following:

E
[
(yT+h − ŷT+h)

2
]
=

h

∑
j=1

E
[
(zT+ j − ẑT+ j)

2
]
= 1′hΣz1h −

(
h

∑
j=1

Γ
′
j

)
Σ
−1
z

(
h

∑
j=1

Γ j

)
.

When yt represents log RV, which is assumed to follow a Gaussian distribution, RV follows a lognormal distri-

bution. Therefore, the h-step-ahead forecast for the RV is given by

R̂V T+h = exp
(

ŷT+h +
1
2

ĈV T+h

)
, (35)

where ĈV T+h = γz,0 +Γ′
hΣ−1

z Γh for stationary processes and ĈV T+h = 1′hΣz1h −
(

∑
h
j=1 Γ′

j

)
Σ−1

z
(
∑

h
j=1 Γ j

)
for non-

stationary processes.

For the HAR-type models, the h-step-ahead forecast of RV is simply the fitted value of the regression model

with RVt+h as the dependent variable. For the logRV models, we apply the same transformation as in equation (35)

to convert log forecasts back to the RV scale. The HAR and HARQ model can sometimes generate implausibly

large or small forecasts. To mitigate this issue, Bollerslev et al. (2016) implement an ‘insanity filter’ for all forecasts.

Specifically, any forecast that exceeds the maximum or falls below the minimum of the dependent variable observed

during the estimation period is replaced with the sample average from that period. We adopt this approach in our

analysis.

4.2 Performance Evaluation

We perform a rolling forecasting exercise for RV using a five-year window, resulting in T0 = 251×5 = 1,255 data

points. Three forecasting horizons (h) are considered: h = 1, h = 5, and h = 21.

Statistical Measures The loss functions used in the analysis include squared forecast error (SFE) and QLIKE

given by

SFE : LS
t,h =

(
R̂V t+h −RVt+h

)2
,
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QLIKE : LQ
t,h = ln(R̂V t+h)+RVt+h/R̂V t+h,

where t = T0, · · · ,T −h. Patton (2011) shows that unlike absolute forecast errors, SFE and QLIKE yield inferences

that are invariant to the choice of units.

We use the model confidence set (MCS) approach by Hansen et al. (2011) to assess the statistical differences

between competing models. The MCS provides a confidence set containing the best models with a probability

greater than or equal to a specified level (e.g., 25%). It also assigns a p-value to each individual model, allowing

for a comprehensive evaluation of their statistical significance.

Suppose we have a set of competing models indexed by M0 = {i = 1, . . . ,M}. The loss function can be either

squared error, absolute error, or QLIKE. We calculate the relative performance as di j,t = Li,t −L j,t for all i, j ∈M0.

The MCS procedure involves an iterative process to identify the best model set. For iteration s, the null and

alternative hypotheses are as follows:

H0,Ms : E(di j,t) = 0for all i, j ∈Ms ⊂M0,

and the alternative

HA,Ms : E(di j,t) ̸= 0for some i, j ∈Ms.

We perform a model equivalence test using the Tmax,M statistic with a bootstrapped implementation (block

length of 20 and 5,000 replications), as recommended by Hansen et al. (2011). This statistic measures the maxi-

mum absolute difference between the empirical distribution functions of the two models, offering insights into their

overall dissimilarity. The block bootstrapping procedure is implemented to account for potential serial correlation

and heteroskedasticity in the loss differences. If H0,Ms is not rejected, the best model confidence set is Ms. Oth-

erwise, we apply an elimination rule to remove models from Ms according to the guidelines specified in (Hansen

et al., 2011) and repeat the test.

Let PH0,Ms
denote the p-value associated with the null hypothesis H0,Ms , and let eMs represent the model elimi-

nated from the set Ms when H0,Ms is rejected. The MCS p-value for model eMs is defined as

p̂eMs
= max

k≤s
PH0,Mk

,

where M1 ⊃M2 ⊃ . . .⊃Ms.

Economic Measures To assess the economic value of various forecasting models, we adopt a risk parity trading

strategy following Bollerslev et al. (2018). In this framework, a risk parity investor dynamically allocates wealth
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between a risky asset and a risk-free asset. Given a fraction ωt of wealth Wt invested in the risky asset with return

rt , and the remainder in the risk-free asset with return r f , the investor’s wealth evolves as:

Wt+1 =Wt(1+ r f )+Wtωtre
t+1,

where re
t+1 = rt+1 − r f represents the excess return. The investor’s conditional expected utility is modeled as:

Et(U (Wt+1)) = Et(Wt+1)−
γA

2
Vt(Wt+1),

where γA =−u′′/u′ denotes the absolute risk aversion of the investor. Given that the risk parity investor maintains

a constant Sharpe ratio SR = Et(re
t+1)/

√
Vt(re

t+1), the expected utility function simplifies to:

U(ωt) =Wt

[
1+ r f +ωtSR

√
Vt(re

t+1)−
γ

2
ω

2
t Vt(re

t+1)
]

(36)

where γ = γAWt represents relative risk aversion. The investor optimally selects ω∗
t to maximize expected utility,

yielding:

ω
∗
t =

SR/γ√
Vt(re

t+1)
≈ SR/γ√

RVt+1
,

where realized volatility (RVt+1) is used as a proxy for the conditional variance of excess returns. The investment

decision adjusts based on volatility predictions: if the predicted volatility exceeds the risk tolerance threshold

(SR/γ), the investor reduces exposure to the risky asset (ω∗
t < 1); otherwise, the investor takes leveraged positions

(ω∗
t > 1).

The key objective is to forecast RVt+1, for which we employ both continuous and discrete time models. Com-

peting forecasting models are denoted by M0 and the forecast from model m ∈ M0 is represented as R̂V
m
t+1. The

optimal portfolio weight based on model m is given by:

ω
∗m
t =

SR/γ√
R̂V

m
t+1

. (37)

Substituting this into the utility function, we derive the per unit of wealth utility (UoW) for each model at period

t +1:

UoW m
t+1 =

SR2

γ

 √
RVt+1√
R̂V

m
t+1

− 1
2

RVt+1

R̂V
m
t+1

 ,

where the constant term 1+ r f is omitted for direct comparison across models. The cumulative realized utility is
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then computed as:

UoW m =
T−1

∑
t=T0

UoW m
t+1.

Following Bollerslev et al. (2018), we assume an annualized Sharpe ratio of SR = 0.4 and a risk aversion parameter

of γ = 2. In the ideal scenario where R̂V
m
t+1 = RVt+1, the realized utility UoW m reaches 4%. Thus, the forecasting

performance is evaluated based on how closely the realized utility approaches this benchmark, with higher accuracy

indicating superior predictive ability.

5 Empirical Findings

The data consist of daily realized volatilities (RVs) for the Nasdaq Composite Index ETF, the S&P 500 Index

ETF, nine industry index ETFs, the 30 Dow Jones Industrial Average stocks, and 30 cryptocurrencies. Equity

index ETFs and individual stock prices are sourced from Refinitiv Tick History, while cryptocurrency prices are

obtained from Binance. All data are sampled at 5-minute intervals. For the ETFs, we exclude observations outside

standard trading hours (9:30 a.m. to 4:00 p.m.) and remove any trading days with less than 50% of the expected

5-minute observations. Individual stock prices are adjusted for splits. The sample period for equity index ETFs and

individual stocks spans from January 4, 2010, to December 30, 2024 (with some exceptions). Summary statistics

are reported in Tables 2. In contrast, cryptocurrencies trade continuously, 24 hours a day. The sample periods vary

by currency, depending on their launch dates, which range from 2017 to 2023. The end date for all cryptocurrency

series is also set to December 30, 2024. See Table 3 for details. Note that a five-year rolling window is used in

the forecasting exercise.6 Accordingly, several assets with data histories shorter than five years – namely, HON,

SHIBI, ICP, LDO, QNT, APE, and ARB – are excluded from the analysis. Models considered are listed in Table 1.

Figures 1 present the forecasting performance comparison of all candidate models for equities based on UoW

ratios, mean square forecast error (MSFE) ratios, and QLIKE ratios relative to the chosen benchmark model,

namely, fOU (AWML). The benchmark is selected primarily for clarity of presentation. Each panel reports model

performance relative to the benchmark, where values above one for the UoW ratio indicate superior utility compared

to fOU (AWML), while values below one for MSFE and below minus one for QLIKE ratios indicate higher forecast

accuracy.7 The dots represent ratios for all assets, and the black cross (red diamond) denotes the mean (median)

ratio across all assets.

The results reveal distinct differences in forecasting performance across model classes. Overall, for equities,

the discrete time specifications, namely the ARFIMA, HAR-type, and log-HAR families, tend to underperform

6Robustness checks using a two-year rolling window yield similar results.
7The QLIKE ratio is defined as the ratio of a given model’s QLIKE value to the absolute value of the QLIKE of the benchmark model.
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Table 1: Model Abbreviations and Full Names

Abbreviation Full Name
ARFIMA-LM-S (MPL) ARFIMA: α ∈ (−1,1) & d ∈ (0,0.5) estimated by MPL
ARFIMA-R-S (MPL) ARFIMA: α ∈ (−1,1) & d ∈ (−0.5,0) estimated by MPL
ARFIMA-LM-NS (Whittle) ARFIMA : α ∈ (−1,1) and d ∈ (0,1) estimated by Whittle method
RV-HAR HAR model using raw RV
RV-HARQ HARQ model using raw RV
RV-HAR-SV HAR-SV model using raw RV
logRV-HAR HAR model using log-transformed RV
logRV-HARQ HARQ model using log-transformed RV
logRV-HAR-SV HAR-SV model using log-transformed RV
fOU (MLE) fOU estimated by MLE
fOU (AWLE) fOU estimated by AWMLE
fBm (MLE) fBm estimated by MLE
fBm (AWLE) fBm estimated by AWMLE
BSSP (MM) BSSP estimated by method of moments
BSSP (MCL) BSSP, estimated by MCL
BSSG (MM) BSSG estimated by method of moments
BSSG (MCL) BSSG estimated by MCL

relative to the continuous time counterparts across all evaluation criteria and horizons. They tend to produce lower

UoW values, larger values for MSFE and QLIKE for all three horizons. Moreover, the dispersion of the dots in

Figure 1 shows that discrete time models exhibit larger cross-sectional variability and occasional extreme outliers,

reflecting unstable predictive accuracy across assets. Within this group, the logRV-HAR and logRV-HAR-SV

variants stand out as the most competitive, offering relatively higher realized utilities and lower MSFE and QLIKE

ratios, especially at short horizons. However, their median and mean performances remain below those of the

continuous time benchmarks.8

As the differences among alternative continuous time models are not easy to see in Figure 1, in Figure 2, we

consider only continuous time models. In this figure, finer contrasts emerge across horizons. At shorter and medium

horizons (h = 1 and h = 5), the fBm model estimated via the maximum approximate Whittle likelihood method,

i.e., fBm (AWML), delivers consistently higher mean UoW ratio and lower mean forecast losses, reflecting its

strength in capturing short-run persistence and roughness in volatility. However, the variability is large in all cases.

The fOU model follows closely in terms of mean ratios with much smaller variability. By contrast, as the forecast

horizon lengthens (h = 21), the fOU models (estimated by both AWML and MLE) become dominant, achieving

superior mean realized utility, the lowest mean MSFE and QLIKE ratios, and the smallest variability. This pattern

suggests that the mean reverting structure of the fOU models better captures long-horizon reversion and memory

decay in volatility dynamics, yielding more accurate long-term forecasts. Judged by the mean performance and

8Although the average realized utilities of the HAR-type models are close to one when h = 21, the dispersion remains large, and their
statistical accuracy measures remain inferior to the continuous time benchmarks.
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variability in all three horizons, it is reasonable to claim that fOU for log RV is an overall choice to predict RV for

equities.

For the 26 valid cryptocurrencies, the benchmark model is the logRV HAR specification. Figure 3 reveals that

the HARQ model achieves the highest realized utility at the short horizon (h = 1), suggesting that incorporating

realized quarticity enhances short run risk and return trade offs. At medium and long horizons (h = 5 and h = 21),

the continuous time BSS models, including both BSSP and BSSG, dominate, reflecting their ability to capture

persistent volatility and long memory dynamics.

In contrast, the statistical measures (MSFE and QLIKE ratios) convey a different message. The logHAR type

models (including logRV-HAR, logRV-HARQ, and logRV-HAR-SV) consistently outperform other specifications

in terms of forecast accuracy, with similar performance across horizons and followed closely by the BSS models.

This contrast indicates that while the continuous time models deliver higher realized utility and thus stronger eco-

nomic gains, the log-HAR type models achieve greater statistical precision, revealing a subtle distinction between

economic and statistical forecasting performance. In Appendix C, we also report the results of the model confi-

dence set tests (detailed in Section 4.2) based on both SFE and QLIKE. Similar conclusions are obtained for both

equities and cryptocurrencies.

In light of the weak identification problem associated with the ARFIMA model Shi and Yu (2023); Li et al.

(2025), our model specification mitigates this concern by constraining the parameter space to plausible ranges.

Interestingly, we find that, within the ARFIMA family, the rough specification yields the best performance for

equities, whereas the long-memory variants perform better for cryptocurrencies.

6 Conclusion

This paper provides a comprehensive evaluation of alternative models to forecast RV, comparing a broad set of

continuous time and discrete time approaches across traditional equities and cryptocurrencies. By applying state-of-

the-art estimation techniques and assessing performance using both statistical loss functions and economic utility,

we offer a robust and practical perspective on model effectiveness.

The comparative analysis reveals a clear hierarchy of forecasting performance across assets and evaluation cri-

teria. For equities, continuous time models clearly dominate, with the fBm (AWML) model for log RV performing

best at short and medium horizons and the fOU (AWML and MLE) models for log RV taking the lead at the long

horizon. These models deliver both higher realized utility and lower forecast losses, reflecting their strength in cap-

turing volatility persistence and mean-reverting dynamics. Among the discrete time specifications, the logRV-HAR

and logRV-HAR-SV variants perform best but remain below the continuous time benchmarks.
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Figure 1: Forecasting performance comparison for equities: realized utility (UoW) ratios, SE ratios, and QLIKE
ratios relative to fOU (AWML) for forecast horizons h = 1,5,21. A higher UoW ratio indicates better performance,
whereas lower SE and QLIKE ratios indicate better accuracy. The rolling window size is five years.

(a) UoW

(b) SE

(c) QLIKE
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Figure 2: Forecasting performance comparison for equities: realized utility (UoW) ratios, SE ratios, and QLIKE
ratios relative to fOU (AWML) for forecast horizons h = 1,5,21. A higher UoW ratio indicates better performance,
whereas lower SE and QLIKE ratios indicate better accuracy. The rolling window size is five years.

(a) UoW

(b) SFE

(c) QLIKE
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Figure 3: Forecasting performance comparison for cryptocurrencies: realized utility (UoW) ratios, SE ratios, and
QLIKE ratios relative to fOU (AWML) for forecast horizons h = 1,5,21. A higher UoW ratio indicates better
performance, whereas lower SE and QLIKE ratios indicate better accuracy. The rolling window size is five years.

(a) UoW

(b) SFE

(c) QLIKE
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For cryptocurrencies, the HARQ model for RV achieves the highest realized utility at the short horizon, while

the continuous time BSS models (BSSP and BSSG) for log RV dominate at medium and long horizons. In contrast,

the statistical measures (MSFE and QLIKE) favor the log-HAR-type models, which exhibit the highest forecast ac-

curacy and closely match the BSS models’ performance. This divergence underscores the importance of evaluating

both economic and statistical criteria: while continuous time models yield greater economic gains, log-HAR-type

specifications remain statistically more precise.

Our study contributes to the literature by expanding the modeling scope, improving estimation accuracy, inte-

grating economic relevance into model evaluation, and leveraging a rich dataset that spans multiple asset classes

and market regimes.
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minimax rates. Statistical Inference for Stochastic Processes 4, 283–306. 6
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A Mathematical Annex

A.1 Implementation Details: TDML for fBm

The MLE method is known for its computational intensity, primarily due to the necessity of calculating the inverse

matrix of ΣX . To enhance computational efficiency without sacrificing asymptotic performance, we employ the

recursive approach introduced by Haslett and Raftery (1989) for the computation of the log likelihood function.

Since, conditional on X t−1 = (x∆,x2∆, · · · ,xT−1∆)
′, xt∆ has a normal distribution. The log likelihood function can

be rewritten as

l̃(ϕ;X) =−1
2

T

∑
t=1

logvt∆ −
1
2

T

∑
t=1

(xt∆ −ηt∆)
2

vt∆
, (38)

where ηt∆ is the conditional mean of xt∆ and vt∆ is the conditional variance. Let γx (k) be the autocovariance of xt∆

given in (3) and φt j be the partial linear regression coefficients. Using results in Ramsey (1974, Theorem 2) for

Guassian processes, we have

ηt∆ =
t−1

∑
j=1

φt jx(t− j)∆ and vt∆ = γx (0)Π
t−1
j=1

(
1−φ

2
j j
)
.

The log likelihood function is computed from the algorithm below.

Algorithm 1 Computation of the TDML Log-Likelihood

1: Compute autocovariances γx(k) for k = 0, . . . ,T −1.
2: Use the Durbin–Levinson recursion (with σ2 = 1) to obtain:

• Partial regression coefficients φt j,

• Scaled variances v̄t∆,

• Conditional means ηt∆ = ∑
t−1
j=1 φt jx(t− j)∆.

3: Estimate σ2 by σ̂2
ML = T−1

∑
T
t=1(xt∆ −ηt∆)

2/v̄t∆.
4: Form v̂t∆ = v̄t∆ σ̂2

ML.
5: Evaluate the log-likelihood

l̃(ϕ;X) =−1
2

T

∑
t=1

log v̂t∆ − 1
2

T

∑
t=1

(xt∆ −ηt∆)
2

v̂t∆
.

A.2 Proof of Lemma 2.1

By definition,

g∆
X (λ ;H) =

1
π

∆
2HCH (1− cosλ )

∞

∑
k=−∞

|2πk+λ |−1−2H
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≈ 1
2π

∆
2HCHλ

1−2H (1+o(1)) when λ → 0 and H > 1/2, (39)

since 1− cosλ ∼ 1
2 λ 2 for small λ . The derivation below follows closely of Fukasawa et al. (2022) and Shi et al.

(2024). First, note that

B†(H,ε) =
∫

ε

0
ln
(

1
2π

CH∆
2H

λ
1−2H

)
dλ

= ln
(

1
2π

CH∆
2H
)

ε +
∫

ε

0
ln
(
λ

1−2H)dλ ,

= ln
(

1
2π

CH∆
2H
)

ε +(1−2H)(ε lnε − ε) .

since for small λ , 1− cosλ ∼ 1
2 λ 2.

Second, note that the periodogram can be expressed as In(λ ) =
1

2π
∑

n−1
τ=−(n−1) γ̂n(τ)e−iλτ , where e−iλτ =

cos(λτ)− isin(λτ). Since the periodogram is real-valued, only the real part, cos(λτ), contributes to the inte-

gral below. Therefore,

B‡(H,ε) :=
∫

ε

0

In(λ )

g∆
X (λ ;H)

dλ = δH(0,ε)γ̂n(0)+2
n−1

∑
τ=1

δH(τ,ε)γ̂n(τ),

where

δH(τ,ε) :=
1

2π

∫
ε

0

cos(τλ )

g∆
X (λ ;H)

dλ ≈ 1
CH∆2H

∫
ε

0

cos(τλ )

λ 1−2H dλ .

It follows that

δH(0,ε)≈
1

CH∆2H

∫
ε

0
λ

2H−1 dλ =
ε2H

2HCH∆2H

and for τ ≥ 1,

δH(τ,ε)≈
1

CH∆2H

∞

∑
j=0

(−1) jτ2 j

(2 j)!

∫
ε

0
λ

2 j−1+2H dλ ≈ 1
CH∆2H

J

∑
j=0

(−1) jτ2 j

(2 j)!
ε2( j+H)

2( j+H)
,

using the Maclaurin series expansion for cosine, where J is chosen to be a large number to ensure accuracy.

A.3 Profiled Whittle Likelihood Function

Step 1: Rewrite the objective function Substituting f ∆
X (λ ;ψ) = σ2g∆

X(λ ;H), we get:

lW (H;x) =− 1
2π

∫
π

0

(
lnσ

2 + lng∆
X(λ ;H)+

I(λ )
σ2g∆

X(λ ;H)

)
dλ .
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Split the terms:

lW (H;x) =− 1
2π

∫
π

0
lnσ

2 dλ − 1
2π

∫
π

0
lng∆

X(λ ;H)dλ − 1
2π

∫
π

0

I(λ )
σ2g∆

X(λ ;H)
dλ .

Step 2: Profile out σ2. Let Q(H) = 1
2π

∫
π

0
I(λ )

g∆
X (λ ;H)

dλ . The objective function

lW (H;x) =−1
2

lnσ
2 − 1

σ2 Q(H)− 1
2π

∫
π

0
lng∆

X(λ ;H)dλ .

The derivative with respect to σ2 is:

− 1
2σ2 +

Q(H)

σ4 = 0 ⇒ σ
2 = 2Q(H).

Step 3: Substitute σ2 = 2Q(H) into the objective function. The profiled objective function is:

l̃W (H;x) =− 1
π

∫
π

0
lng∆

X(λ ;H)dλ − ln
(

1
π

∫
π

0

I(λ )
g∆

X(λ ;H)
dλ

)
.

A.4 Tapered Whittle Estimator

The Whittle objective function is as follows:

lp
W (δ †;y) =

p
T ∑

j∈J(p)
ln fy

(
λ j;δ

†,σ
)
+

p
T ∑

j∈J(p)

Ip(λ j)

fy (λ j;δ †,σ)
,

≃ lnσ
2 − ln(2π)+

p
T ∑

j∈J(p)
lnηy

(
λ j;δ

†)+ p
T

2π

σ2 ∑
j∈J(p)

Ip(λ j)

ηy (λ j;δ †)
,

where J (p) = {p,2p, . . . ,T − p} (assuming that T/p is an integer). Take the derivative with respect to σ2,

1
σ2 −

p
T

2π

σ4 ∑
j∈J(p)

Ip(λ j)

ηy (λ j;δ †)
= 0 =⇒ σ

2 =
2π p

T ∑
j∈J(p)

Ip(λ j)

ηy (λ j;δ †)
.

Substitute it back into the original objective function,

lp
W (δ †;y) = lnσ

2 − ln(2π)+
p
T ∑

j∈J(p)
lnηy

(
λ j;δ

†)+ p
T

2π

σ2 ∑
j∈J(p)

Ip(λ j)

ηy (λ j;δ †)
,

= ln

(
2π p

T ∑
j∈J(p)

Ip(λ j)

ηy (λ j;δ †)

)
+

p
T ∑

j∈J(p)
lnηy

(
λ j;δ

†)− ln(2π)+1,
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∝ ln

{
2π p

T ∑
j∈J(p)

Ip(λ j)

ηy (λ j;δ †)
exp

(
p
T ∑

j∈J(p)
lnηy

(
λ j;δ

†))} .

Let η∗
y
(
λ j;δ †

)
= ηy

(
λ j;δ †

)
/Z with Z ≡ exp

( p
T ∑ j∈J(p) lnηy

(
λ j;δ †

))
. The tapered Whittle estimator can be

rewritten as the following:

δ̂
†
W = argmin

δ †
ln

2π p
T ∑

j∈J(p)

Ip(λ j)

η∗
y (λ j;δ †)

,

and (
σ̂

p
W

)2
=

2π p
T ∑

j∈J(p)

Ip(λ j)

ηy (λ j;δ †)
.
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B Summary Statistics

Table 2: Summary Statistics: log RV

Name (RIC) Start date Nob Mean Std. Skew. Kurto.
EFTs

Nasdaq composite index ETF (QQQ) 23-Mar-2011 3232 -9.84 0.96 0.48 3.67
S&P 500 market ETF (SPY) 04-Jan-2010 3487 -10.38 1.02 0.40 3.69
Industry ETF: Material (XLB) 04-Jan-2010 3648 -9.69 0.88 0.68 4.27
Industry ETF: Energy (XLE) 04-Jan-2010 3648 -9.15 0.90 0.66 4.10
Industry ETF: Financial (XLF) 04-Jan-2010 3648 -9.65 0.87 1.01 6.12
Industry ETF: Industrial (XLI) 04-Jan-2010 3648 -9.90 0.92 0.85 5.68
Industry ETF: Technology (XLK) 04-Jan-2010 3648 -9.76 0.95 0.56 3.77
Industry ETF: Consumer staples (XLP) 04-Jan-2010 3648 -10.38 0.80 1.17 6.48
Industry ETF: Utilities (XLU) 04-Jan-2010 3648 -9.74 0.73 1.15 7.41
Industry ETF: Health care (XLV) 04-Jan-2010 3648 -10.08 0.84 1.11 6.75
Industry ETF: consumer discretionary (XLY) 04-Jan-2010 3648 -9.84 1.00 0.58 3.89

Dow Jones 30
Apple Inc (AAPL) 04-Jan-2010 3628 -9.09 0.86 0.50 3.80
Honeywell International Inc (ALD or HON) 11-May-2021 886 -9.29 0.62 0.48 3.15
Amgen Inc (AMGN) 04-Jan-2010 3628 -8.97 0.73 0.93 5.35
American Express Co (AEXP or AXP) 04-Jan-2010 3647 -9.16 0.86 0.74 4.62
Boeing Co (BA) 04-Jan-2010 3647 -8.82 0.96 0.74 4.53
Verizon Communications Inc (BEL or VZ) 04-Jan-2010 3647 -9.55 0.69 0.95 6.69
Caterpillar Inc (CAT) 04-Jan-2010 3647 -8.87 0.77 0.54 4.00
Chevron Corp (CHV or CVX) 04-Jan-2010 3647 -9.19 0.85 0.91 5.29
Salesforce.Com Inc (CRM) 04-Jan-2010 3647 -8.50 0.81 0.46 3.93
Cisco Systems Inc (CSCO) 04-Jan-2010 3628 -9.18 0.74 0.81 5.14
Walt Disney Co (DIS) 04-Jan-2010 3647 -9.21 0.84 0.76 4.76
Goldman Sachs Group Inc (GS) 04-Jan-2010 3647 -8.91 0.76 0.81 5.10
Home Depot Inc (HD) 04-Jan-2010 3647 -9.26 0.77 0.99 6.25
International Business Machines Corp (IBM) 04-Jan-2010 3647 -9.54 0.76 0.99 5.73
Intel Corps (INTC) 04-Jan-2010 3628 -8.79 0.80 0.58 4.20
Johnson & Johnson (JNJ) 04-Jan-2010 3647 -9.80 0.75 1.12 6.61
JPMorgan Chase & Co (JPM) 04-Jan-2010 3647 -9.09 0.82 0.76 4.87
Coca-Cola Co (KO) 04-Jan-2010 3647 -9.83 0.73 1.17 7.12
McDonald’s Corp (MCD) 04-Jan-2010 3647 -9.75 0.75 1.34 8.16
3M Co (MMM) 04-Jan-2010 3647 -9.45 0.85 0.61 4.51
Merck & Co Inc (MRK) 04-Jan-2010 3647 -9.37 0.71 0.91 5.68
Microsoft Corp (MSFT) 04-Jan-2010 3628 -9.13 0.79 0.64 4.42
Nike Inc (NIKE) 04-Jan-2010 3647 -9.12 0.73 1.06 6.20
Procter & Gamble Co (PG) 04-Jan-2010 3647 -9.80 0.74 1.27 8.15
Travelers Companies Inc (SPC or TRV) 04-Jan-2010 3646 -9.47 0.79 0.80 5.22
UnitedHealth Group Inc (UNH) 04-Jan-2010 3646 -9.07 0.78 0.85 5.20
Visa Inc (V) 04-Jan-2010 3647 -9.27 0.83 0.88 5.23
Walgreens Boots Alliance Inc (WAG or WBA) 02-Jan-2015 2412 -8.69 0.83 0.60 4.32
Walmart Inc (WMT) 04-Jan-2010 3647 -9.66 0.72 1.17 6.64
Exxon Mobile Co (XMO) 04-Jan-2010 3647 -9.27 0.89 0.77 4.77

Note: Since Dow Inc. (NYSE: DOW) is listed on NYSE only since 2019, its sample size is substantially shorter than all

the other stocks. For this reason we replace it with Exxon Mobil Co. (NYSE: XOM), which belonged to the Dow Jones

index until August 31, 2020.
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Table 3: Summary Statistics: log RV

Name (RIC) Start date Nob Mean Std. Skew. Kurto.
Cryptocurrency

Bitcoin (BTC) 18-Aug-2017 2571 -5.50 1.18 0.24 3.63
Ethereum (ETH) 18-Aug-2017 2571 -5.04 1.12 0.23 3.72
Binance Coin (BNB) 07-Nov-2017 2494 -4.99 1.20 0.55 3.89
XRP (XRP) 05-May-2018 2328 -4.93 1.13 0.63 3.68
Cardano (ADA) 18-Apr-2018 2344 -4.64 0.97 0.37 3.54
Dogecoin (DOGE) 06-Jul-2019 1923 -4.59 1.15 0.78 4.82
Polygon (MATIC) 27-Apr-2019 1870 -4.27 1.16 0.41 3.52
Solana (SOL) 12-Aug-2020 1541 -4.25 1.00 0.48 3.57
Polkadot (DOT) 19-Aug-2020 1534 -4.62 1.07 0.21 3.49
Litecoin (LTC) 14-Dec-2017 2459 -4.75 1.02 0.38 3.60
Tron (TRX) 12-Jun-2018 2291 -5.36 1.34 0.14 2.64
Shiba Inu (SHIB) 11-May-2021 1284 -4.44 1.08 0.85 4.04
Avalanche (AVAX) 23-Sep-2020 1500 -4.31 1.06 0.24 3.13
Chainlink (LINK) 17-Jan-2019 2084 -4.38 0.97 0.37 3.71
Cosmos (ATOM) 01-May-2019 1985 -4.41 1.03 0.10 3.27
Uniswap (UNI) 18-Sep-2020 1505 -4.43 0.99 0.22 3.55
Monero (XMR) 16-Mar-2019 1705 -4.84 0.91 0.46 4.01
Ethereum Classic (ETC) 13-Jun-2018 2290 -4.70 1.06 0.43 3.49
Internet Computer (ICP) 12-May-2021 1283 -4.27 0.94 0.40 3.72
Stellar (XLM) 01-Jun-2018 2302 -4.79 1.01 0.78 3.78
Bitcoin Cash (BCH) 29-Nov-2019 1784 -4.80 0.97 0.64 3.86
Filecoin (FIL) 16-Oct-2020 1478 -4.51 0.97 0.42 3.92
Hedera (HBAR) 01-Oct-2019 1840 -4.18 0.96 0.87 3.85
Lido DAO (LDO) 10-May-2022 934 -4.12 1.01 0.55 3.81
Arbitrum (ARB) 25-Mar-2023 626 -4.79 0.88 0.21 3.67
Near Protocol (NEAR) 15-Oct-2020 1479 -4.12 0.97 0.12 3.27
VeChain (VET) 26-Jul-2018 2251 -4.38 1.01 0.35 3.56
ApeCoin (APE) 18-Mar-2022 985 -4.39 0.90 0.59 4.16
Quant (QNT) 30-Jul-2021 1206 -4.53 1.01 0.53 3.12
Algorand (ALGO) 22-Jun-2019 1936 -4.28 1.01 0.41 3.13

C Model Confidence Set Tests

Figure 4 presents the forecasting performance comparison of all candidate models for equities based on each

model’s MCS p-value. The top (bottom) panel plots the MCS p-values based on MSFE (QLIKE). The dots represent

p-values for all assets, and the black cross (red diamond) denotes the mean (median) p-value across all assets. The

higher the p-value, the better the model performs. The overall results are the same as those based on Figure 1.

That is, in general, while the fBm (AWML) model for log RV performing best at short and medium horizons, the

fOU (AWML and MLE) models for log RV outperform at the long horizon. Taking into account of both the mean

p-value and variability of the p-values, we would like to recommend to use the fOU model for log RV to forecast

RV for equity.

Figure 5 presents the forecasting performance comparison of all candidate models for crypocurrencies based

on each model’s MCS p-value. A similar conclusion to that from Figure 3 can be drawn from Figure 5. That is,
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the three log-HAR-type models exhibit he highest forecast accuracy at the short and medium horizons. In the long

horizon, however, the ARFIMA-LM-S model outperforms other models.

Figure 4: Forecasting performance comparison for equities: p-values of the model confidence set tests based on
FSE and QLIKE. The rolling window size is five years.

(a) SFE

(b) QLIKE
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Figure 5: Forecasting performance comparison for cryptocurrencies: p-values of the model confidence set tests
based on FSE and QLIKE. The rolling window size is five years.

(a) SFE

(b) QLIKE
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