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 A B S T R A C T

Modeling multivariate stochastic volatility (MSV) can pose significant challenges, particularly 
when both variances and covariances are time-varying. In this study, we tackle these com-
plexities by introducing novel MSV models based on the generalized Fisher transformation 
(GFT) proposed by Archakov and Hansen (2021). Our model exhibits remarkable flexibility, 
ensuring the positive-definiteness of the variance–covariance matrix, and disentangling the 
driving forces of volatilities and correlations. To conduct Bayesian analysis of the models, we 
employ a Particle Gibbs Ancestor Sampling (PGAS) method, facilitating efficient Bayesian model 
comparisons. Furthermore, we extend our MSV model to cover leverage effects and incorporate 
realized measures. Our simulation studies demonstrate that the proposed method performs well 
for our GFT-based MSV model. Furthermore, empirical studies based on equity returns show 
that the MSV models outperform alternative specifications in both in-sample and out-of-sample 
performances.

1. Introduction

The characterization of the dynamic behavior of return volatility is crucial for asset pricing, portfolio allocation, and risk 
management. Univariate volatility models have been extensively studied in the literature since the seminal paper by Engle (1982). 
These models can be broadly categorized into two types: GARCH-based and stochastic volatility (SV) models. In recent decades, there 
has been a growing focus on multivariate financial data analysis. It is now widely recognized that analyzing asset returns individually 
is insufficient, and the dependence structure among assets must be taken into account. To address this, a plethora of multivariate 
extensions to univariate GARCH and SV models have been proposed and applied in practice. Multivariate GARCH (MGARCH) 
models have been extensively reviewed in Bauwens et al. (2006), while multivariate SV (MSV) models have been reviewed in Asai 
et al. (2006). These multivariate models enable us to capture the co-movements of volatilities and correlations among multiple 
assets, providing a more accurate representation of the underlying dependence structure. The development of multivariate models 
has significantly improved our understanding of asset return dynamics and has important practical implications for financial risk 
management and investment strategies.
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The first multivariate stochastic volatility (MSV) model, proposed by Harvey et al. (1994), is an extension of the constant 
conditional correlation (CCC) model in multivariate GARCH (MGARCH). In this basic setup, each asset’s volatility is modeled 
by a univariate stochastic volatility process, while the correlation matrix among all assets remains constant over time. However, 
this assumption is rather restrictive. Subsequent efforts have been devoted to relaxing this assumption in the MSV literature. For 
instance, Yu and Meyer (2006) proposed a model that mirrors the dynamic conditional correlation (DCC) model of Engle (2002) in 
MGARCH. The DCC-based model allows for time-varying correlation among assets while still assuming that each asset’s volatility 
follows a univariate stochastic volatility process. Another parameterization based on DCC can be found in Asai and McAleer (2009b). 
Other studies have proposed even more flexible models that allow for both time-varying volatilities and correlations among assets.

In this paper, we propose a new MSV model that builds upon a recently developed parameterization of the correlation matrix. 
This parameterization, first introduced in Archakov and Hansen (2021), is a generalization of the well-known Fisher z-transformation 
(GFT hereafter) from the bivariate case to the multivariate case. It has been successfully used in other models, such as the 
multivariate realized GARCH model of Archakov et al. (2024a) and the dynamic conditional score model of Hafner and Wang (2023). 
It has also been suggested for the purpose of generating random correlation matrices in Archakov et al. (2024b) and macroeconomic 
forecasting in Arias et al. (2023). Recent simulation and empirical evidence in Bucci et al. (2022) shows that this parameterization 
provides more accurate forecasts of the realized covariance matrix than other existing methods. Our paper is among the first studies 
that introduce GFT to the MSV literature.4

Our new MSV model allows the underlying latent variables that determine the correlations among assets to have an unrestricted 
domain because the correlation matrix is always valid by construction. In addition, the shocks to the volatility dynamics and the 
correlation dynamics are fully separated in our model. This is an appealing feature, as in practice, these two types of shocks may be 
determined by completely distinct factors. Finally, our model is invariant to the reordering of assets, which eliminates the need for 
an ex-ante ordering of assets. All of these features indicate that our model is highly flexible and imposes a minimal level of ex-ante 
restrictions.

Beyond our basic model, we also propose two extensions that have been proved to be beneficial in modeling multivariate 
volatility. The first one includes asymmetric effects in our model and the second incorporates information from realized measures 
when high-frequency data is available.

The importance of accommodating asymmetric effects in the volatility literature has long been recognized. For equity returns, 
it has been emphasized that bad news has a greater impact on future volatility than good news, known as the leverage effect. This 
has been incorporated in several existing MSV models, such as Asai and McAleer (2006) and Asai and McAleer (2009a). To allow 
for asymmetric effects across multiple assets in an MSV model, Ishihara et al. (2016) and Asai et al. (2022) propose to consider 
the lower-diagonal elements of the matrix logarithm of the covariance matrix and assume that the return vector is correlated with 
modeled variables, which they call cross-leverage. However, this approach is inconsistent with the original idea of leverage effect 
since the latent variables are generated by complex nonlinear transformations of the covariance matrix and correspond to both 
volatility and correlation. As argued in Asai et al. (2006), leverage should refer only to the negative correlations between the 
current return and future volatility. To address this issue, in the present paper, we extend the basic MSV model to allow explicitly 
for volatilities and returns to be correlated.

Classical MSV modeling relies solely on daily return data for estimation, thus not fully harnessing the available information. 
An additional valuable source for capturing return fluctuations is realized volatility (RV), computed from intra-day high-frequency 
data; for a comprehensive overview, refer to Andersen et al. (2010). Research indicates that models integrating realized measures 
can significantly enhance parameter estimation efficiency and model fit, as highlighted in works by Hansen et al. (2012) and Hurn 
et al. (2020). Motivated by these insights, literature has introduced SV models — termed RSV models — that leverage both return 
series and RV data. Prior studies integrating univariate SV models with realized measures include (Koopman and Scharth, 2012; 
Venter and de Jongh, 2014; Asai et al., 2017). Recent advancements in multivariate modeling along this line include (Shirota et al., 
2017; Kurose and Omori, 2020; Yamauchi and Omori, 2020; Asai et al., 2022). In our study, we extend this approach by integrating 
realized measures into our MSV model. This augmentation involves applying the new transformation to the realized covariance 
matrix, furnishing additional measurements to the latent variables. As suggested by Yamauchi and Omori (2020), this additional 
information plays a crucial role in stabilizing parameter estimation processes.

In our study, we introduce a Bayesian statistical framework for analyzing the proposed MSV models. Different from the 
conventional Bayesian MSV literature, which predominantly employs standard Markov chain Monte Carlo (MCMC) techniques, we 
adopt a recently developed Particle MCMC (PMCMC) algorithm. PMCMC algorithms have gained attraction following the seminal 
work by Andrieu et al. (2010) and have found applications across diverse domains. While theoretically versatile for a wide spectrum 
of models, the practical efficacy of PMCMC algorithms hinges on several factors and necessitates meticulous evaluation. In the 
present paper, we opt for the Particle Gibbs Ancestor Sampling (PGAS) method of Lindsten et al. (2014), a refined version of the 
Particle Gibbs (PG) sampler that offers enhanced mixing properties, even with a small number of particles.

Our inference procedure involves an inverse transformation that is generally time-consuming due to the lack of a closed-form 
solution. Inefficient handling of this transformation could impose constraints on the scalability of our model. To surmount this 
obstacle, we propose ways to improve the numerical method of Archakov and Hansen (2021). We present extensive simulation 
evidence to justify our choice of the estimation strategy and provide useful guidance for empirical applications.

4 While (Arias et al., 2023) introduce the Fisher transformation to a MSV model, both volatility and correlation are assumed to be non-stationary in Arias 
et al. (2023). This random walk assumption is well known to be violated for financial assets. In our model, we do not make the random walk assumption.
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The rest of the paper is organized as follows. Section 2 introduces the new parameterization of correlation matrix, and presents 
our basic MSV model. Section 3 introduces the estimation and inferential method based on the PGAS algorithm. Section 4 focuses on 
the efficient treatment of the inversion transform in our inference procedure. Section 5 reports simulation evidence to support our 
proposed method. Section 6 extends our basic model to incorporate the leverage effect and the realized measures. Empirical studies 
are provided in Section 7. Section 8 concludes. The Online Supplement includes additional details and materials that complement 
and support our main text.

Throughout the paper, we let 𝑑𝑖𝑎𝑔(𝐴) denote the column vector formed by the diagonal elements of a square matrix 𝐴 or the 
diagonal matrix whose diagonal elements are elements in 𝐴 if 𝐴 is a column vector;5 𝑣𝑒𝑐ℎ(𝐴) denote the 𝑝(𝑝 + 1)∕2 × 1 column-
vector obtained by vectorizing only the lower triangular part of a 𝑝-dimensional matrix 𝐴 (including the diagonal elements); 𝑣𝑒𝑐𝑙(𝐴)
denote the 𝑝(𝑝−1)∕2×1 column-vector containing all lower off-diagonal elements of 𝐴 (excluding the diagonal elements); 𝐼𝑝 denote 
a 𝑝-dimensional identity matrix, 1𝑝 denote a 𝑝-dimensional column vector of ones; 𝐼(𝑥) denote the indicator function.

2. A new multivariate stochastic volatility model

In this section, we introduce the generalized Fisher transformation (GFT) of Archakov and Hansen (2021) (AH hereafter), and 
propose a new MSV model that utilizes GFT. Section A.1 in Online Supplement provides a comprehensive review of existing MSV 
models, with a focus on the specification of dynamic covariance matrix.

2.1. Generalized Fisher transformation of correlation matrix

When the correlation coefficient between two random variables, say 𝜌, is to be modeled, an essential constraint is that its value 
must be within the interval (−1, 1). To avoid the complexity introduced by this constraint in modeling, one can instead model the 
Fisher z-transformation of 𝜌, defined as 

𝑔 = 1
2
log

1 + 𝜌
1 − 𝜌

∶= 𝐹 (𝜌) (1)

It is easy to show that 

𝜌 = 𝐹−1(𝑔) =
exp(2𝑔) − 1
exp(2𝑔) + 1

∈ (−1, 1),∀𝑔 ∈ (−∞,∞) . (2)

Therefore, one can impose any structure on 𝐹 (𝜌) and transform it back to obtain 𝜌 without worrying about the validity of the 
resulting correlation coefficient. This idea was first introduced to the MSV literature by Yu and Meyer (2006) when the number of 
assets is two.6 Unfortunately, it is acknowledged by Yu and Meyer (2006) that this approach “is not easy to be generalized into 
higher dimension situations”. In particular, a pairwise transformation applied to each entry in a high-dimensional correlation matrix, 
though seems to be natural, is not a valid choice as it fails to ensure the positive-definiteness of the resulting correlation matrix in 
general.

Clearly, it is desirable to obtain a valid high-dimensional extension to the Fisher z-transformation. This is the exact contribution 
made in AH. To fix the idea, let 𝑅 be a valid 𝑝 -dimensional correlation matrix and7

𝐺 = log𝑅 =
∞
∑

𝑘=1

(−1)𝑘(𝑅 − 𝐼)𝑘

𝑘
.

Note that the convergence of the infinite summation and hence, the existence of 𝐺 are ensured by the fact that 𝑅 is a correlation 
matrix. Furthermore, let 𝑞 = 𝑣𝑒𝑐𝑙(𝐺). In summary, GFT of 𝑅 is defined by the mapping 𝑞 = 𝑣𝑒𝑐𝑙(log𝑅). One of key theoretical 
contributions of AH is demonstrating that this mapping is bijective. Thus, given any 𝑝(𝑝−1)2 -dimensional vector 𝑞, there exists a 
unique and valid 𝑝-dimensional correlation matrix 𝑅. Although the inverse mapping from 𝑞 to 𝑅 does not have a closed-form 
expression when 𝑝 > 2, 𝑅 can be obtained numerically from 𝑞 using an iterative algorithm as shown in AH; see Section 4 below for 
more discussions on computational issues.

When 𝑝 = 2, AH show that the above-defined transformation reduces to the Fisher z-transformation. The new transformation 
retains the advantages of the Fisher z-transformation and enjoy some additional desirable properties. First and foremost, it is very 
flexible in the sense that, when modeling 𝑞, no algebraic constraint is needed. This suggests that we can consider any reasonable 
dynamics for 𝑞 without worrying about the positive-definiteness of the resulting correlation matrix. Second, compared with original 
elements in 𝑅, the sample distribution of elements in 𝑞 is often closer to Gaussian due to the use of log transformation. Hence, it is 
reasonable to model elements of 𝑞 via a Gaussian process. Third, this transformation is invariant to the order of the variables. This 
is in sharp contrast to that based on the Cholesky decomposition. Fourth, although elements of 𝑞 depend on 𝑅 in a nonlinear way, 
many interesting properties in 𝑅 carry over to 𝐺 = log(𝑅), including the equicorrelation structure and the block-equicorrelation 
structure; see Archakov and Hansen (2024). For the sake of notational simplicity, in the rest of the paper, we refer to the mapping 
𝑣𝑒𝑐𝑙(log(⋅)) as 𝐹 (⋅) and its inverse as 𝐹−1(⋅).

5 If 𝐴 is a square matrix, 𝑑𝑖𝑎𝑔(𝑑𝑖𝑎𝑔(𝐴)) is a diagonal matrix whose diagonal elements are the diagonal elements in 𝐴.
6 Note that the expression used in Yu and Meyer (2006) is slightly different from (1), with the latter one aligning with the definition of GFT in case 𝑝 = 2.
7 This formulation of matrix logarithm is correct only for 𝑅 sufficiently close to the identity matrix, for the sum to exist. See Higham (2008) for a more 

general definition of matrix logarithm.
3 
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2.2. Basic MSV-GFT model

To introduce our basic MSV model, for 𝑡 = 1,… , 𝑇 , let 𝑟𝑡 = (𝑟1𝑡,… , 𝑟𝑝𝑡)′ denote the 𝑝 × 1 vector of asset returns and 
ℎ𝑡 = (ℎ1𝑡,… , ℎ𝑝𝑡)′ the vector of latent log-volatilities of these returns at time 𝑡. Let 𝑉𝑡 = exp

(

𝑑𝑖𝑎𝑔(ℎ𝑡)
)

. Let 𝑞𝑡 = (𝑞1𝑡,… , 𝑞𝑑𝑡)′ denote the 
vector of latent variables at time 𝑡 that underlie all the correlation coefficients in 𝑅𝑡, where 𝑑 = 𝑝(𝑝−1)

2 . In particular, 𝑞𝑡 is connected 
to 𝑅𝑡 through the transformation detailed in Section 2.1. Our basic MSV model, which we refer to as MSV-GFT, is given by 

𝑟𝑡 = 𝑉 1∕2
𝑡 𝜖𝑡, 𝜖𝑡 ∼ 𝑁(0, 𝑅𝑡), (3a)

𝑉𝑡 = exp
(

𝑑𝑖𝑎𝑔(ℎ𝑡)
)

, (3b)

𝑞𝑡 = 𝐹 (𝑅𝑡), (3c)

ℎ𝑡+1 = 𝜇ℎ +𝛷ℎ(ℎ𝑡 − 𝜇ℎ) + 𝜂ℎ𝑡, 𝜂ℎ𝑡 ∼ 𝑁(0, 𝛴ℎ), (3d)

𝑞𝑡+1 = 𝜇𝑞 +𝛷𝑞(𝑞𝑡 − 𝜇𝑞) + 𝜂𝑞𝑡, 𝜂𝑞𝑡 ∼ 𝑁(0, 𝛴𝑞), (3e)

ℎ0 ∼ 𝑁
(

𝜇ℎ, (𝐼𝑝 −𝛷2
ℎ)

−1𝛴ℎ
)

, 𝑞0 ∼ 𝑁
(

𝜇𝑞 , (𝐼𝑑 −𝛷2
𝑞 )

−1𝛴𝑞
)

, (3f)

where 𝜖𝑡 = (𝜖1𝑡,… , 𝜖𝑝𝑡)′, 𝜂ℎ𝑡 = (𝜂ℎ1𝑡,… , 𝜂ℎ𝑝𝑡)′, 𝜂𝑞𝑡 = (𝜂𝑞1𝑡,… , 𝜂𝑞𝑑𝑡)′, 𝜇ℎ = (𝜇ℎ1,… , 𝜇ℎ𝑝)′, 𝜇𝑞 = (𝜇𝑞1,… , 𝜇𝑞𝑑 )′, 𝛷ℎ = 𝑑𝑖𝑎𝑔((𝜙ℎ1,… , 𝜙ℎ𝑝)′), 
𝛷𝑞 = 𝑑𝑖𝑎𝑔((𝜙𝑞1,… , 𝜙𝑞𝑑 )′), and 𝑡 = 1,… , 𝑇 . It is assumed that 𝜖𝑡, 𝜂ℎ𝑡 and 𝜂𝑞𝑡 are independent. This implies that no leverage (neither 
self-leverage or cross-leverage) effect is allowed. Such an assumption will be relaxed in Section 6.1. It also implies that the shocks 
to the volatility dynamics (i.e. 𝜂ℎ𝑡) are completely separated from those to the correlation dynamics (i.e. 𝜂𝑞𝑡). To reduce the number 
of parameters, we further assume that 𝛴ℎ = 𝑑𝑖𝑎𝑔((𝜎2ℎ1,… , 𝜎2ℎ𝑝)

′) and 𝛴𝑞 = 𝑑𝑖𝑎𝑔((𝜎2𝑞1,… , 𝜎2𝑞𝑑 )
′).

In MSV-GFT, ℎ𝑡 is a 𝑝-dimensional latent variable that determines the volatilities via the exponential transformation and 𝑞𝑡 is a 
𝑑-dimensional latent variable that determines the correlation coefficients via the 𝐹  transformation. Elements of two types of latent 
variables are assumed to follow independent Gaussian AR(1) processes.8 It is important to note that in MSV-GFT, persistence in 
elements of 𝑞𝑡 can be heterogeneous across pairs. This is in sharp contrast to models based on the idea of DCC or the Wishart 
autoregression, where persistence of all the correlation sequences is assumed to be the same. Yamauchi and Omori (2020) propose 
to model the dynamics of Fisher-transformed pairwise correlations by random walks without drift. This is equivalent to imposing 
𝜇𝑞 = 0 and 𝛷ℎ = 𝐼𝑑 in (3e). Our specification is apparently more flexible and realistic than theirs.

3. Inference of MSV-GFT model

Due to the difficulty of evaluating the likelihood function, the literature on MSV models relies on Bayesian methods to carry out 
statistical inference. In this section, we discuss in details the estimation of our MSV-GFT model within a Bayesian framework.

3.1. Gibbs sampler based on particle filter

In this paper, instead of using standard MCMC techniques,9 we apply a PMCMC method known as PG, due to Andrieu et al. 
(2010), to estimate the proposed MSV model.10 The intuition is to construct a high-dimensional efficient Markov kernel for latent 
processes using the particle filter. See Section B in Online Supplement for a brief introduction to PG.

As a PMCMC method, PG enjoys a few desirable properties compared with standard MCMC methods. First, relative to the 
single-move sampler, a significant improvement can be achieved in terms of efficiency by PG.

Second, unlike the multi-move samplers that are model dependent, PG requires a minimal modification across different models, 
as long as they could be cast into a state-space form.

Third, an important by-product of the filtering strategy is the evaluation of likelihood 𝑝(𝑟|𝜃), where 𝑟 = (𝑟1,… , 𝑟𝑇 )′. Once 𝑝(𝑟|𝜃)
is known, the marginal likelihood 𝑝(𝑟) can be calculated easily. Two popular approaches have been used in practice to compare 
competing Bayesian models. The first one is based on the Bayes factor and the second one on the Deviance Information Criterion 
(DIC).11 The computation of the Bayes factor requires 𝑝(𝑟) while the computation of DIC requires 𝑝(𝑟|𝜃). Hence, model comparison 
is straightforward in PG.

8 Section 7.3 provides empirical evidence based on high-frequency data that supports the independent Gaussian assumption for GFT-transformed correlations 
𝑞𝑡. See also Section 4.4 of Archakov et al. (2024a) for a similar finding.

9 See Section A.2 in Online Supplement for a review of other Bayesian estimation methods for MSV model, with discussions on their pros and cons.
10 Another PMCMC method potentially applicable here is Particle Metropolis–Hasting. See Xu and Jasra (2019) for its application in MSV model with constant 

correlation matrix and cross-leverage. It is not chosen, however, as it requires an accurate estimation of the likelihood and hence a very large number of particles.
11 When comparing two candidate models (nested or non-nested), the log marginal likelihood of the first model minus that of the second model leads to the 

log Bayes factor (BF); see Kass and Raftery (1995). DIC is a Bayesian version of AIC with the aim of favoring models that are likely to make good predictions; 
see Spiegelhalter et al. (2002) and Li et al. (2020). The smaller DIC, the better the model.
4 
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3.2. Particle Gibbs with ancestor sampling

As noted in Lindsten et al. (2014) and Chopin and Singh (2015), the mixing of the Markov kernel induced by PG can be rather 
slow when there is path degeneracy. For the high-dimensional problem, such as the one we consider in this paper, path degeneracy 
is inevitable. To overcome this problem, Lindsten et al. (2014) propose to use an additional step called ancestor sampling in PG. The 
PGAS algorithm enjoys fast mixing of the Markov kernel even only a seemingly small number of particles are used in the underlying 
particle filter. Informally, in the original PG, when degeneracy occurs, the particle system collapses toward the chosen reference 
trajectory. Whereas, in the PGAS, it degenerates toward something entirely different. As a consequence, the update rates of latent 
variables are much higher with the additional ancestor sampling step. Therefore, the mixing is much faster.12 This approach has 
also been used in Gong and Stoffer (2021) for efficient fitting of stochastic volatility. They show that, for univariate SV model, PGAS 
algorithm mixes well enough with only 20 particles.

For our purpose, a fast mixing under a small number of particles is highly desirable, as our likelihood function contains a 
component that has no closed-form solution and thus must be computed numerically. Although the cost for one-time computation 
is relatively low, it soon becomes infeasible when a vast number of particles are included in the system. Indeed, for MCMC with 𝑆
iterations, if the sample size is 𝑇  and 𝑁 particles are used, 𝐹−1(⋅) must be evaluated 𝑆 × 𝑇 ×𝑁 times. As 𝑆 and 𝑇  are usually quite 
large in practice, we can gain a lot in terms of computational efficiency by using the PGAS algorithm. In summary, we believe that 
PGAS is a suitable estimation tool given our model setup. Its performance will be further examined in simulation in Section 5.

3.3. Bayesian inference of MSV-GFT

We now present the Bayesian analysis of our MSV-GFT model. The first step is to specify the prior distributions of all the 
parameters 𝜃 = (𝜇ℎ, 𝜇𝑞 , 𝜙ℎ, 𝜙𝑞 , 𝜎2ℎ, 𝜎

2
𝑞 )

′. In this regard, our specification follows those adopted in Kim et al. (1998). For 𝜇ℎ and 𝜇𝑞 , 
we assume independent multivariate normal distributions. The persistence parameters 𝜙ℎ and 𝜙𝑞 are assumed to have Beta priors. 
The prior distribution of 𝜎ℎ and 𝜎𝑞 are chosen to be inverse gamma. In summary, for 𝑖 = 1,… , 𝑝 and 𝑗 = 1,… , 𝑑, we choose the 
following prior distributions:

• 𝜇ℎ𝑖 ∼ 𝑁(𝑚𝜇0, 𝑠2𝜇0) and 𝜇𝑞𝑗 ∼ 𝑁(𝑚𝜇0, 𝑠2𝜇0);

• 𝜙ℎ𝑖+1
2 ∼ 𝐵𝑒𝑡𝑎(𝑎, 𝑏) and 𝜙𝑞𝑗+12 ∼ 𝐵𝑒𝑡𝑎(𝑎, 𝑏);

• 𝜎2ℎ𝑖 ∼ 𝐼𝐺( 𝑛𝑚02 , 𝑑𝑚02 ) and 𝜎2𝑞𝑗 ∼ 𝐼𝐺( 𝑛𝑚02 , 𝑑𝑚02 ),

where 𝑚𝜇0, 𝑠2𝜇0, 𝑎, 𝑏, 𝑛𝑚0, 𝑑𝑚0 are hyperparameters.
To carry out the inference, we implement a Gibbs sampler with four blocks. In the following, we use 𝜃∕𝛼 to denote the parameters 

𝜃 excluding 𝛼. The algorithm proceeds as:

1. Initialize ℎ, 𝑞 and 𝜃.
2. Draw ℎ, 𝑞|𝑟, 𝜃.
3. Draw 𝜇ℎ, 𝜇𝑞|𝑟, ℎ, 𝑞, 𝜃∕(𝜇ℎ ,𝜇𝑞 ).
4. Draw 𝜙ℎ, 𝜙𝑞|𝑟, ℎ, 𝑞, 𝜃∕(𝜙ℎ ,𝜙𝑞 ).
5. Draw 𝜎2ℎ, 𝜎2𝑞 |𝑟, ℎ, 𝑞, 𝜃∕(𝜎2ℎ ,𝜎2𝑞 ).

Iteration over steps 2–5 consists of a complete sweep of MCMC sampler. We apply PGAS introduced in Section 3.2 to sample 
the latent variables ℎ and 𝑞 given all the observations 𝑟 and one particular set of parameter values. The detailed description of the 
algorithm is presented in Section C in Online Supplement. On the other hand, from the joint posterior density, it is straightforward 
to sample each element in 𝜃 given one realization of latent processes ℎ and 𝑞. The details are provided in Section E in Online 
Supplement.

4. Inverting GFT

4.1. Review of AH’s method

For the Bayesian method introduced in Section 3, the most time-consuming step is the evaluation of 𝐹−1(⋅). The scalability of 
our model depends critically on how this step is efficiently handled.

In general a closed-form expression for 𝐹−1(⋅) is not available. AH proposes a numerical solution to 𝐹−1(⋅) as a root-finding 
problem. The idea is as follows. Since log𝑅𝑡 must be symmetric, it is uniquely identified through its diagonal elements 𝑧𝑡 =
(𝑧1𝑡,… , 𝑧𝑝𝑡)′ given all the off-diagonal elements 𝑞𝑡. As 𝑅𝑡 = exp(log𝑅𝑡), finding a valid correlation matrix 𝑅𝑡 given 𝑞𝑡 is thus equivalent 

12 Lindsten et al. (2014) also show that for a state-space model, PGAS is probabilistically equivalent to the particle Gibbs sampler with a backward smoothing 
step under certain conditions.
5 



H. Chen et al. Journal of Econometrics 251 (2025) 106041 
to finding an appropriate 𝑝 × 1 vector 𝑧𝑡. Using the fact that all the diagonal elements of a correlation matrix must be one, 𝑧𝑡 can 
be found through solving the following equation 

𝑑𝑖𝑎𝑔
(

𝑒𝐴[𝑧𝑡]
)

= 1𝑝, (4)

where 𝐴 is a symmetric matrix with 𝑣𝑒𝑐𝑙(𝐴) = 𝑞𝑡 and 𝐴[𝑧𝑡] highlights the fact that 𝑑𝑖𝑎𝑔(𝐴) = 𝑧𝑡. As long as we find 𝑧∗𝑡  that solves 
(4), the correlation matrix 𝑅𝑡 is straightforwardly recovered through 𝑅𝑡 = exp(𝐴[𝑧∗𝑡 ]). AH point out that (4) is a system of nonlinear 
equations and propose a fixed-point iteration method to solve this root-finding problem.

Algorithm 1: AH’s method
Data: 𝑞 ; // 𝑝(𝑝−1)2 × 1 vector
Result: 𝑧 ; // 𝑝 × 1 vector

1 Set initial Value: 𝑧0 = 𝟎𝑝 and 𝑓 (𝑧0) = inf
2 for k = 0 : MaxIteration do
3 if ||𝑓 (𝑧)||2 < 𝜖 then
4 Return z
5 else
6 Update z: 𝑧𝑘+1 = 𝑧𝑘 − 𝑓 (𝑧𝑘) ; // Complexity: 𝑂(𝑝3)

We summarize AH’s method in Algorithm 1.13 The time complexity of this algorithm is 𝑂(𝑝3𝐾), which is determined by two 
factors. The first factor is the cost for each iteration, which is dominated by the matrix exponential operation with the 𝑂(𝑝3) time 
complexity. The second factor is the number of iterations (𝐾) before convergence. AH show that in general 𝐾 = 𝑂(log 𝑝). However, 
the exact value of 𝐾 is sensitive to the correlation structure. Simply put, when 𝑅 is nearly singular, a large 𝐾 is needed for the fixed-
point algorithm to converge. In the following section, we consider two modifications that may potentially reduce the computational 
cost of inverting GFT.

4.2. Newton’s method and Broyden’s method

It is well-known that faster convergence to find roots may be achieved by using the Jacobian matrix. This motivates us to consider 
two alternative methods to AH’s algorithm. The first approach is the classical Newton’s method. Specifically, in each iteration, we 
utilize the closed-form expression of the Jacobian matrix, whose analytic expressions are given in Appendix of Archakov and Hansen 
(2021). This approach is summarized in Algorithm 2 below with the definition of 𝐽 (𝑧) given in Section D of Online Supplement.

Algorithm 2: GFTI based on Newton’s method
Data: 𝑞 ; // 𝑝(𝑝−1)2 × 1 vector
Result: 𝑧 ; // 𝑝 × 1 vector

1 Set initial Value: 𝑧0 = −𝑓 (𝟎𝑝) and 𝑓 (𝑧0) = inf
2 for k = 0 : MaxIteration do
3 if ||𝑓 (𝑧𝑘)||2 < 𝜖 then
4 Return z
5 else
6 Compute Jacobian: 𝐽𝑘 = 𝐽 (𝑧𝑘) ; // Complexity: 𝑂(𝑝4)
7 Update z: 𝑧𝑘+1 = 𝑧𝑘 − 𝐽−1

𝑘 𝑓 (𝑧𝑘) ; // Complexity: 𝑂(𝑝3)

Unlike the fixed-point algorithm, Newton’s method converges only if the initial value is in the neighborhood of the true root. 
Therefore, we propose to first conduct a few fixed-point updates before starting Newton’s iteration. In practice, we find that running 
the fixed-point update just once is enough before implementing Newton’s method in almost all cases.14

While Newton’s method usually converges faster than the fixed-point iteration, it requires calculation of Jacobian, which increases 
the time complexity to 𝑂(𝑝4) and can be quite time-consuming if 𝑝 is very large. To avoid the substantial cost required in computing 
Jacobian, we consider a quasi-Newton approach known as Broyden’s method. The fundamental idea is to compute the Jacobian 
matrix only in the first iteration and then perform rank-one updates in subsequent iterations. Broyden’s method is reported in 
Algorithm 3.

13 When implementing all algorithms, we set the maximum number of iterations to 1000 and the convergence criterion 𝜖 to 1 × 10−6.
14 Indeed, in our experiment, only 3 out of 10000 cases require more than one updates.
6 
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Algorithm 3: GFTI based on Broyden’s method
Data: 𝑞 ; // 𝑝(𝑝−1)2 × 1 vector
Result: 𝑧 ; // 𝑝 × 1 vector

1 Set initial Value: 𝑧0 = −𝑓 (𝟎𝑝) and 𝑓 (𝑧0) = inf
2 for k = 0 : MaxIteration do
3 if ||𝑓 (𝑧𝑘)||2 < 𝜖 then
4 Return z
5 else
6 if k = 0 then
7 Compute Jacobian: 𝐽𝑘 = 𝐽 (𝑧𝑘) ; // Complexity: 𝑂(𝑝4)
8 else
9 Update Jacobian:
10 𝛥𝑓 (𝑧𝑘) = 𝑓 (𝑧𝑘) − 𝑓 (𝑧𝑘−1); // Complexity: 𝑂(𝑝3)
11 𝛥𝑧𝑘 = 𝑧𝑘 − 𝑧𝑘−1
12 𝐽𝑘 = 𝐽𝑘−1 +

𝛥𝑓 (𝑧𝑘)−𝐽𝑘−1𝛥𝑧𝑘
||𝛥𝑧𝑘||2

𝛥𝑧′𝑘
13 Update z: 𝑧𝑘+1 = 𝑧𝑘 − 𝐽−1

𝑘 𝑓 (𝑧𝑘) ; // Complexity: 𝑂(𝑝3)

As we only need to compute the Jacobian once in Broyden’s method, the total time complexity is close to 𝑂(𝑝3). In comparison 
to AH’s fixed-point technique, Broyden’s method exhibits accelerated convergence rates but demands a higher computational time 
per iteration. Relative to Newton’s method, when 𝑝 is sufficiently large, we anticipate a reduction in the computational time per 
iteration by Broyden’s method, albeit at the cost of slower convergence.

4.3. Comparison with AH’s algorithm

In line with AH’s analysis, the convergence rate in AH’s method depends upon the singularity level of the correlation matrix, 
a characteristic often gauged by the minimum eigenvalue denoted as 𝜆min.15 For a correlation matrix to be invertible, 𝜆min must 
fall within the range of zero to one. If the correlation matrix is near-singular (𝜆min ≈ 0), AH’s method requires a large number of 
iterations, potentially rendering alternative algorithms utilizing Jacobian information more computationally effective. Conversely, 
in scenarios where the correlation matrix approaches an identity matrix (𝜆min ≈ 1), the convergence in AH’s method is expedited, 
obviating the necessity for Jacobian matrix computations. Thus, the comparative computational efficiency gains or losses associated 
with the adoption of Jacobian-based methodologies demand meticulous evaluation through comprehensive empirical investigations. 
We design two experiments to compare the performance of three methods.

Following AH, we first compare three methods based on the following Toeplitz-type correlation matrix
𝑅 = [𝑅𝑖𝑗 ], 𝑖 = 1,… , 𝑝, 𝑗 = 1,… , 𝑝,

where 𝑅𝑖𝑗 = 𝜌|𝑖−𝑗| with 𝜌 = [0.5, 0.9, 0.99] and 𝑝 ∈ {3, 4,… , 100}. For the dimensions considered, three values of 𝜌 corresponds to 
log(𝜆min) ∈ [−0.9, 1.1], [−2.67,−2.94] and [−5.01,−5.29], respectively. In general, a larger value of 𝜌 implies that the correlation matrix 
has a smaller 𝜆min and hence is closer to singularity.

The top panels of Fig.  1 depict the average number of iterations required by the three methods as the model dimension 𝑝 changes. 
It can be seen that, for Newton’s method and Broyden’s method, the required number of iterations are insensitive to both 𝑝 and 𝜌. In 
almost all cases, both algorithms converge after 4 or 5 iterations. This stands in stark contrast to AH’s method, which is remarkably 
sensitive to 𝜌. For instance, AH’s method demands approximately 45 iterations for convergence, a figure that decreases to around 
20 iterations when 𝜌 = 0.9. Even in the least singular scenario (𝜌 = 0.5), AH’s algorithm necessitates a higher number of iterations 
to achieve convergence in comparison to the other two methods.

However, a lower iteration count does not necessarily translate to an overall reduction in computational expenses. As previously 
mentioned, both Newton’s method and Broyden’s method entail the computation of the Jacobian matrix. To assess the balance 
between convergence speed and Jacobian computation, the lower panels of Fig.  1 depict the CPU time taken by the three methods 
against 𝑝. We observe that, due to the 𝑂(𝑝4) time complexity at each iteration, Newton’s method encounters a sharp escalation in 
CPU time when 𝑝 increases. For example, when 𝜌 = 0.5 and 𝑝 = 100, the total CPU time required for Newton’s method surpasses that 
of the other two methods by more than threefold. Consequently, it is apparent that Newton’s method is ill-suited for scenarios with 
large 𝑝. Broyden’s method, on the other hand, exhibits significant computational advantage over AH’s method for 𝜌 = 0.99, but is less 
attractive when 𝜌 = 0.5. Intuitively, if the correlation matrix is close to singularity (i.e. a large 𝜌), Broyden’s method demands fewer 

15 An operational challenge arises from the fact that the exact value of 𝜆min remains unknown until after the GFT inversion is conducted. Nevertheless, as 
highlighted in AH, the maximum absolute value of transformed variables 𝑞 can serve as a dependable proxy for 𝜆 .
min
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Fig. 1. Comparison of alternative root-finding methods based on Toeplitz matrices.
Notes: This figure plots the average required iterations (top panels) and the computational time (bottom panels) for the three algorithms as a function of 𝑝. All 
plots are based on the Toeplitz matrices, which becomes more singular as the value of 𝜌 increases.

iterations. Given that it computes the Jacobian only once, the overall computational burden is lighter compared to AH’s method. 
However, when the correlation matrix veers away from singularity (i.e., at lower 𝜌 values), the fixed-point algorithm requires only 
marginally more iterations than Broyden’s method. In such scenarios, the expenses incurred due to Jacobian calculation outweigh 
the savings derived from a reduced iteration count.

Next, we make a comparison based on randomly generated correlation matrices. For each 𝑝 ∈ {5, 10, 15, 20}, we generate 100,000 
distinct correlation matrices and categorize them into different groups based on the log(𝜆min) value.16 The generating mechanism is 
akin to that in AH. Fig.  2 depicts the CPU time taken by the three methods against log(𝜆min). Notably, all three algorithms exhibit 
increased computational demands with higher 𝑝. However, the cumulative computational costs of Newton’s method and Broyden’s 
method demonstrate significantly lower sensitivity to log(𝜆min) in comparison to AH’s method. Conversely, the computational 
expenses associated with AH’s method surge notably as log(𝜆min) becomes more negative (i.e. the correlation matrix is closer to 
singularity). When log(𝜆min) approaches zero, signifying closeness to an identity matrix, Broyden’s method emerges as the most 
cost-effective option among the three methods, as depicted in the insets of each subplot.17

In conclusion, our experimental findings indicate that the performance advantages of the three algorithms hinge on both the 
dimensionality and singularity characteristics of the correlation matrix. Given the necessity to generate a substantial number of 
correlation matrices within the particle-filter-based method, with some matrices possessing small 𝜆min, we determine that Broyden’s 
method generally surpasses the other two options. Consequently, it has been selected for the inversion of GFT in both simulation and 
empirical studies. While it is important to note that Broyden’s method might become less advantageous compared to AH’s algorithm 
in scenarios with very high 𝑝, it is crucial to acknowledge that attempting to directly estimate the MSV model with a large 𝑝 remains 
unfeasible regardless of the algorithm utilized. For moderate values of 𝑝, our analysis reveals that Broyden’s method can potentially 
provide a substantial time-saving advantage, reducing computational time by approximately 85% in comparison to AH’s method.

5. Simulation studies

To investigate the performance of our estimation procedure, we conduct some simulation exercises in this section. The design 
of our experiment is frequentist in nature, as we fix the parameters at their true values and generate data from the same data 
generating process with 1000 replications. We use the posterior mean as a point estimator for all the parameters. Since the true 
values are known, we are thus able to calculate estimation bias (defined as the difference between the true values and the average 
value of the posterior means) and the standard deviation.18

16 The range of log(𝜆min) is set to [−20, 0], which is partitioned into 50 groups. For each group, we calculate the average CPU time for all matrices belonging 
to the same group.
17 This trend holds except in scenarios where log(𝜆min) is extremely close to zero, a scenario which is empirically not relevant.
18 Here, the standard deviation refers to the variation across replications, rather than the numerical standard error of MCMC sampler introduced below.
8 
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Fig. 2. Comparison of alternative root-finding methods based on randomly generated matrices.
Notes: This figure plots the average computational time for the three algorithms as a function of log(𝜆min) when 𝑝 ∈ {5, 10, 15, 20}. For each 𝑝 and log(𝜆min), a 
large number of correlation matrices are generated randomly. The inset in each subplot zooms in the area near zero.

For the purpose of evaluating the sampling efficiency of PGAS algorithm, following Kim et al. (1998), we calculate the average 
inefficiency factor (IF), which is defined as the variance of sample mean from MCMC sampling divided by that from a hypothetical 
sampler which draws independent samples. The variance of MCMC sample mean is the square of numerical standard error estimated 
by

𝑁𝑆𝐸 = 1 +
2𝐵𝑀
𝐵𝑀 − 1

𝐵𝑀
∑

𝑖=1
𝐾

(

𝑖
𝐵𝑀

)

�̂�(𝑖),

where �̂�(𝑖) is estimated autocorrelation at lag 𝑖, 𝐵𝑀  is the bandwidth and 𝐾(⋅) is the Parzen kernel. We choose the bandwidth 𝐵𝑀
to be 1000. A smaller IF indicates a better mixing of the Markov chain and thereby a higher sampling efficiency.

Our data generating process is the basic MSV-GFT model with 𝑝 = 4. There are 24 parameters in the model, whose true values 
are given by:

1. 𝜇ℎ1 = 𝜇ℎ2 = 𝜇ℎ3 = 𝜇ℎ4 = 0.3 and 𝜇𝑞1 = 𝜇𝑞2 = 𝜇𝑞3 = 𝜇𝑞4 = 0.7,
2. 𝜙ℎ1 = 𝜙ℎ2 = 𝜙ℎ3 = 𝜙ℎ4 = 0.9 and 𝜙𝑞1 = 𝜙𝑞2 = 𝜙𝑞3 = 𝜙𝑞4 = 0.8,
3. 𝜎2ℎ1 = 𝜎2ℎ2 = 𝜎2ℎ3 = 𝜎2ℎ4 = 0.05 and 𝜎2𝑞1 = 𝜎2𝑞2 = 𝜎2𝑞3 = 𝜎2𝑞4 = 0.05.

All the simulation results reported in this section are based on 5000 MCMC iterations, among which the first 1000 samples are 
discarded as burn-in period.19 We consider three different sample sizes, namely 𝑇 = 500, 1000, 2000, as well as three numbers of 
particles, namely 𝑁 = 50, 100, 200. It is worthwhile to mention that, the simulated data used across different particle numbers for 
given sample size are the same, while it changes when the sample size increases. To save the space, we only report the results for 
ℎ1 and 𝑞1. The results for other latent processes are similar and hence omitted.

Table  1 reports the average values of the posterior means, standard deviations and IFs across replications of 𝜇ℎ1, 𝜙ℎ1, 𝜎2ℎ1, 𝜇𝑞1, 
𝜙𝑞1 and 𝜎2𝑞1. It can be seen that even for a small sample size (such as 500) and a relatively small number of particles (such as 50), 
the posterior means for both 𝜇ℎ1 and 𝜇𝑞1 are reasonably close to their respective true values, although there is an downward bias 
for both 𝜇ℎ1 and 𝜇𝑞1. Nevertheless, it can be seen that the bias shrinks towards zero when 𝑇  expands. As expected, the standard 
deviations for both 𝜇ℎ1 and 𝜇𝑞1 substantially decrease as 𝑇  increases while an increasing number of particles has no effect in this 
regard. 

19 Examination of the autocorrelation function suggests that MCMC well converges after 1000 iterations.
9 
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Table 1
Simulation results for MSV-GFT with 𝑝 = 4.
 𝑇 𝑁 Volatility Correlation Time cost (h) 
 𝜇ℎ1 𝜙ℎ1 𝜎ℎ1 𝜇𝑞1 𝜙𝑞1 𝜎𝑞1  
 true 0.3 0.9 0.05 0.7 0.8 0.05  
 
500 50

Mean 0.295 0.899 0.047 0.676 0.811 0.048
0.49

 
 std 0.141 0.045 0.023 0.085 0.081 0.026  
 IF 22.536 123.418 218.199 33.591 143.971 245.731  
 
500 100

Mean 0.296 0.900 0.047 0.676 0.811 0.048
1.00

 
 std 0.142 0.045 0.023 0.085 0.081 0.026  
 IF 11.692 98.971 175.112 21.513 115.681 198.900  
 
500 200

Mean 0.296 0.900 0.047 0.676 0.811 0.048
2.09

 
 std 0.142 0.045 0.023 0.084 0.081 0.026  
 IF 6.735 80.288 142.103 15.589 94.680 160.444  
 
1000 50

Mean 0.296 0.900 0.049 0.688 0.803 0.050
1.00

 
 std 0.091 0.032 0.017 0.054 0.066 0.021  
 IF 17.709 136.979 219.401 32.800 179.264 279.643  
 
1000 100

Mean 0.296 0.900 0.049 0.688 0.803 0.050
2.00

 
 std 0.091 0.032 0.017 0.054 0.067 0.021  
 IF 9.051 107.458 170.971 23.102 147.555 229.836  
 
1000 200

Mean 0.297 0.900 0.049 0.688 0.803 0.050
4.25

 
 std 0.091 0.032 0.017 0.055 0.067 0.021  
 IF 5.377 88.112 139.847 17.727 128.492 196.301  
 
2000 50

Mean 0.298 0.901 0.049 0.692 0.800 0.050
1.99

 
 std 0.062 0.023 0.012 0.037 0.051 0.016  
 IF 15.464 139.000 216.425 32.151 208.696 303.972  
 
2000 100

Mean 0.298 0.900 0.049 0.693 0.799 0.050
4.01

 
 std 0.062 0.023 0.012 0.037 0.051 0.016  
 IF 8.205 106.982 165.828 23.064 174.045 252.155  
 
2000 200

Mean 0.298 0.901 0.049 0.692 0.801 0.050
8.51

 
 std 0.062 0.023 0.012 0.037 0.052 0.016  
 IF 4.853 91.032 140.521 18.461 154.004 220.199  
Notes: 𝑇  is the number of observations for each asset. 𝑁 is the number of particles used in PGAS. Mean, std and IF are the average value of posterior means, 
the standard error of the posterior means, and the average inefficiency factor, respectively. All these three statistics are computed across 1000 replications. 
The computational time is the number of hours for 5000 MCMC iterations in MATLAB R2023b on a desktop computer with an AMD Ryzen 9 7950X 16-Core 
Processor and 4.50 GHz memory.

Meanwhile, the persistence parameters 𝜙ℎ1 and 𝜙𝑞1 can be estimated accurately, even with 500 observations and 50 particles. The 
estimates have very small biases and low standard deviations. With 200 particles, the bias almost completely vanishes. Substantial 
downward biases are observed for 𝜎2ℎ1 and 𝜎2𝑞1 when sample size is 500. This bias is insensitive to the number of particles. Fortunately, 
it can be improved when more observations are available. Indeed, we observe that if 𝑇 = 2000, the bias becomes much smaller for 
𝜎2ℎ1 and completely vanishes for 𝜎2𝑞1.

Finally, the IF varies little as we change the sample size, but improves when the number of particles increases. Consistent with 
earlier studies, the IF is the lowest for 𝜇’s and the highest for 𝜎2’s. Compared with the traditional single-move or multi-move Gibbs 
sampler (for example, see Kim et al., 1998), our new PGAS sampler enjoys a much better mixing property. In summary, the simulation 
results confirm that our chosen approach works well for the model considered in our study. In light of the good performance, 200 
particles are used for the empirical applications reported later.

To offer an overview of the computational demands of our model and the proposed estimation strategy, the final column in Table 
1 presents the computational costs (measured in CPU hours) associated with our inference procedure across different combinations 
of (𝑇 ,𝑁). This CPU time estimation is based on running 5000 MCMC iterations in MATLAB R2023b on a desktop computer featuring 
an AMD Ryzen 9 7950X 16-Core Processor running at 4.50 GHz. Evidently, the computational burden increases linearly with both 
the sample size and the number of particles. For instance, with 2000 observations and 200 particles, the complete in-sample analysis 
requires approximately 8.5 h to execute.

6. Model extensions with leverage effects and realized measures

6.1. MSVL-GFT model and its Bayesian inference

To incorporate asymmetric effect, we assume that 
(

𝜖𝑡
𝜂ℎ𝑡

)

∼ 𝑁
⎛

⎜

⎜

(

0
0

)

,
⎛

⎜

⎜

𝑅𝑡 𝑅
1
2
𝑡 𝛺𝛴

1
2
ℎ

1
2

1
2

⎞

⎟

⎟

⎞

⎟

⎟

, (3g)

⎝ ⎝

𝛴ℎ 𝛺𝑅𝑡 𝛴ℎ ⎠⎠
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where 𝛺 = 𝑑𝑖𝑎𝑔(𝜌) and 𝜌 = (𝜌1,… , 𝜌𝑝)′. The model defined by Eqs. (3a)–(3g) is referred to as MSVL-GFT.
The Bayesian analysis for MSVL-GFT is a simple extension to that for MSV-GFT with additional 𝑝 parameters characterizing 

the leverage effect 𝜌. Following Yu (2005), we set the prior distributions for these extra parameters as 𝜌𝑖 ∼ 𝑈 (−1, 1). Redefining 
𝜃 = (𝜇ℎ, 𝜇𝑞 , 𝜙ℎ, 𝜙𝑞 , 𝜎2ℎ, 𝜎

2
𝑞 , 𝜌, 𝛾𝜇)

′, we can make inference for MSVL-GFT model by implementing a Gibbs sampler as in Section 3.3 
with an additional block drawing 𝜌|𝑟, ℎ, 𝜃∕(𝜌).

6.2. RMSV(L)-GFT model and its Bayesian inference

When realized measures for the latent process ℎ𝑡 and 𝑞𝑡 are available, we expect that incorporating them into our baseline MSV-
GFT model may improve its empirical performance. Specifically, we assume that the researchers have access to the 𝑝 × 𝑝 realized 
covariance matrices (denoted by 𝐶𝑟𝑡 ) computed from intra-day high-frequency returns. Let 

𝐶𝑟𝑡 = (𝑉 𝑟
𝑡 )

1∕2𝑅𝑟𝑡 (𝑉
𝑟
𝑡 )

1∕2, (5)

where the superscripts denote realized measures. 𝑉 𝑟
𝑡  is a diagonal matrix collecting all the realized variances and 𝑅𝑟𝑡  is the realized 

correlation matrix. Eq. (5) is the realized version of traditional variance-correlation decomposition. Since the latent variables in 
MSV-GFT are the transformation of the original variances and the correlation coefficients, we apply the same transformation to the 
realized covariance. Specifically, we define 

ℎ𝑟𝑡 = (ℎ𝑟1𝑡,… , ℎ𝑟𝑝𝑡)
′ = 𝑑𝑖𝑎𝑔(log(𝑉 𝑟

𝑡 )
1∕2),

𝑞𝑟𝑡 = (𝑞𝑟1𝑡,… , 𝑞𝑟𝑑𝑡)
′ = 𝐹 (𝑅𝑟𝑡 ).

(6)

It can be seen that ℎ𝑟𝑡  and 𝑞𝑟𝑡  are the observed empirical measures of the latent variables, ℎ𝑡 and 𝑞𝑡, respectively. We hence expect 
that time variation in these realized measures contains information about the dynamics of the corresponding latent variables.

As is well known in the literature, there may exist non-trivial measurement errors in ℎ𝑟𝑡  and 𝑞𝑟𝑡 , because neither are perfect 
measurements of the latent variables due to the microstructure noise, nontrading hours, nonsynchronous trading, and so forth. 
Bearing this in mind, we model the relationship between the latent variables and their realized counterparts by 

ℎ𝑟𝑡 = 𝜓ℎ + ℎ𝑡 + 𝜉ℎ𝑡, 𝜉ℎ𝑡 ∼ 𝑁(0, 𝛴𝑟
ℎ), (7)

𝑞𝑟𝑡 = 𝜓𝑞 + 𝑞𝑡 + 𝜉𝑞𝑡, 𝜉𝑞𝑡 ∼ 𝑁(0, 𝛴𝑟
𝑞), (8)

where 𝜓ℎ = (𝜓ℎ1,… , 𝜓ℎ𝑝)′ and 𝜓𝑞 = (𝜓𝑞1,… , 𝜓𝑞𝑑 )′ capture potential approximation errors in the realized measures.20 We further 
assume 𝛴𝑟

ℎ = 𝑑𝑖𝑎𝑔((𝜂2ℎ1,… 𝜂2ℎ𝑝)
′) and 𝛴𝑟

𝑞 = 𝑑𝑖𝑎𝑔((𝜂2𝑞1,… , 𝜂2𝑞𝑑 )
′). Combining Eqs. (3a)–(3f) with Eqs. (7)–(8), we get the realized MSV-

GFT (RMSV-GFT) model. Besides, it may also be desirable to allow leverage effects defined by (3g) in RMSV-GFT. Such a specification 
is referred to as RMSVL-GFT.

It can be seen that extra measurement equations have been added to the MSV-GFT model. These additional equations are based 
on the transformation of realized measure and the same transformation applied to the latent covariance matrix. In the literature, it 
has been shown that the realized volatility converges to the integrated volatility and the same applies to the logarithmic versions. 
However, Barndorff-Nielsen and Shephard (2002) argued that the approximation of the log integrated volatility by the log realized 
volatility usually performs better in practice. This property has been used in Hansen and Huang (2016) to introduce a realized 
EGARCH model and in Phillips and Yu (2009) to construct a two-stage method to estimate continuous time models.

Similar to MSV-GFT model, RMSV(L)-GFT model can be estimated using our PGAS-based MCMC algorithm as well. Details 
of inference can be found in Section F of Online Supplement. Note that the estimation time of models with the leverage effect 
and/or realized measures is almost the same as the baseline MSV-GFT model. This is not surprising because the main bulk of the 
computational cost lies in the inversion of GFT and adding either the leverage effect or realized measures does not change the times 
or speed of inverting GFT.

7. Empirical studies

In this section, we conduct an empirical analysis of the proposed models and compare them with several existing competitors, 
evaluating the performance of alternative MSV models through both in-sample fit and out-of-sample forecasting.

7.1. Data description

Our analysis focuses on daily close-to-close log-returns of six stocks, namely, JPMorgan Chase & Co (JPM), Goldman Sachs Group 
Inc (GS), Honeywell International Inc (HON), Caterpillar Inc (CAT), Johnson & Johnson (JNJ) and Amgen Inc (AMGN).21 Our full 
sample period is from January 3, 2006 to December 31, 2015, covering 2516 trading days. The log-return sequences are plotted in 
Fig.  3 as the red dashed line. Panel (a) of Table  2 presents a set of summary statistics, as well as the pairwise sample correlations.  It 

20 Eq. (7) has been used for constructing univariate realized stochastic volatility models by, for instance, Takahashi et al. (2009) and Koopman and Scharth 
(2012). Eq. (8) is proposed in Yamauchi and Omori (2020) as a building block of their RMSV model based on the pairwise Fisher transformation.
21 The data for daily returns were obtained from Yahoo Finance at https://finance.yahoo.com/.
11 

https://finance.yahoo.com/


H. Chen et al. Journal of Econometrics 251 (2025) 106041 
Fig. 3. Daily return and realized volatility.
Notes: This figure plots the time series of daily returns (the red dashed line and the left 𝑦-axis) and the corresponding daily annualized realized volatilities (the 
blue solid line and the right 𝑦-axis) for six equities (JPM, GS, HON, CAT, JNJ and AMGN) considered in the empirical application. The sample period is from 
January 3 2006 to December 30 2015.

can be observed that the returns exhibit strong positive co-movement and the degree of co-movement varies across different pairs, 
with the correlation coefficient ranging from 0.32 to 0.74.22

For each stocks, intraday transaction data were obtained from the TAQ database, which were cleaned using the method suggested 
in Barndorff-Nielsen et al. (2009). From the high-frequency data, we compute the realized kernel estimates of the 6 × 6 integrated 
covariance for each trading day. From the realized covariance, we obtain ℎ𝑟𝑡  and 𝑞𝑟𝑡  by applying the logarithm transformation and 
GFT, respectively. The daily annualized realized volatility sequences are plotted in Fig.  3 as the blue solid line. Time series of the 
realized correlations are presented in Fig.  4 with the red dotted line depicting the sample average and the blue dashed line showing 
the corresponding correlations computed using daily data. Note that both the level and the persistence of these sequences exhibit 
some heterogeneity. Panel (b) of Table  2 presents a set of summary statistics for each realized volatility sequence, together with 
the time series average of all realized correlations. An interesting finding from this table is that the level of co-movement implied 
by the realized correlations is about half of that suggested by the daily returns, which can be visualized in Fig.  4 as well.

7.2. Specifications of competing models

For comparison, we consider the following three categories of model specifications:

1. MSV models

(a) MSV-CC defined by (3a)–(3d) and 𝑅𝑡 = 𝑅 for all 𝑡.
(b) MSV-GFT.
(c) MSV-Chol. This is a model based on Cholesky decomposition proposed by Lopes et al. (2010).23
(d) MSV-DCC. This is the model proposed in Asai and McAleer (2009b), where a DCC-type structure with a Wishart 

transition dynamics is used to characterize the movement of the correlation matrix.

2. MSV models with the leverage effect

(a) MSVL-CC. This is the MSV-CC model with the leverage effect defined in (3g).
(b) MSVL-GFT.

22 As suggested by a referee, it might be instructive to estimate and analyze alternative sets of variables with different dynamic correlation structures to 
demonstrate the robustness of empirical results. Due to the huge computational cost of our analysis, this exercise will be left for future research.
23 When estimating the MSV-Chol model, we arbitrarily choose the order of JPM, GS, HON, CAT, JNJ and AMGN. The results may be sensitive to ordering; 

see Arias et al. (2023) for detailed discussions. For the application considered here, there is no reason to prefer one particular ordering a priori. Ideally, one 
could try all possible orderings (in total 6! = 720) and pick the best one. This strategy is practically infeasible.
12 
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Table 2
Descriptive statistics for empirical analysis.
 (a). Daily returns
 JPM GS HON CAT JNJ AMGN  
 Mean 0.0579 0.0456 0.0557 0.0289 0.0260 0.0427  
 Std 2.7668 2.5390 1.7267 2.0997 1.0265 1.7104  
 Skewness 1.0053 0.9618 0.0592 0.1055 0.6825 0.6735  
 Kurtosis 18.8782 20.4724 7.5136 8.7327 17.1011 10.4860  
 Max 25.0379 26.4218 11.6905 14.6937 12.1892 13.8755  
 Min −20.7863 −19.0057 −9.4644 −14.5468 −7.7052 −9.4674  
 JB 0.001 0.001 0.001 0.001 0.001 0.001  
 

Sample correlation

1  
 0.74 1  
 0.58 0.57 1  
 0.52 0.54 0.71 1  
 0.43 0.46 0.56 0.47 1  
 0.33 0.32 0.44 0.33 0.52 1  
 (b). Realized volatilities/correlations
 JPM GS HON CAT JNJ AMGN  
 Mean 4.4968 4.2611 2.2009 3.0795 0.8862 2.0891  
 Std 11.5413 13.7358 4.5665 5.5186 1.8443 2.9782  
 Skewness 8.7142 15.9009 12.3628 7.7342 12.5043 9.6341  
 Kurtosis 117.8498 350.1991 268.5557 101.7275 249.3983 159.9696 
 Max 224.8679 361.6185 129.3694 115.8542 49.9017 71.4977  
 Min 0.1139 0.2076 0.1198 0.1932 0.0112 0.1962  
 JB 0.001 0.001 0.001 0.001 0.001 0.001  
 

Average realized correlations

1  
 0.46 1  
 0.33 0.29 1  
 0.34 0.31 0.37 1  
 0.26 0.22 0.27 0.23 1  
 0.22 0.19 0.22 0.19 0.25 1  
Notes: This table reports the summary statistics for the daily log-returns and realized measures of six equities. The sample period is from January 3, 2006 to 
December 31, 2015. JB denotes the 𝑝-values of Jarque–Bera normality test. For panel (b), the upper part contains the summary statistics for realized volatilities, 
while the lower part reports the time series average of each realized correlation.

(c) MSVL-Chol. This is the MSV-Chol model with the leverage effect proposed in Shirota et al. (2017).24
(d) MSVL-DCC. This is the MSV-DCC model with additional assumption (3g).

3. MSV models that incorporate the realized measures.

(a) RMSV-CC. This is the MSV-CC model with additional assumption (7).
(b) RMSVL-CC. This is the MSVL-CC model with additional assumption (7).
(c) RMSV-GFT.
(d) RMSVL-GFT.

It is important to note that all candidate models except for those based on the Cholesky decomposition share the same parameteri-
zation of the volatility dynamics. The key difference among these models is in the way how the correlation dynamics is specified. 
To facilitate the comparison, all models are analyzed under the Bayesian framework and estimated by MCMC. In particular, models 
based on the DCC specification are estimated by a single-move sampler following Asai and McAleer (2009a), while the estimation 
of MSV(L)-Chol is conducted using the PGAS algorithm introduced in Section 3.2 with 100 particles.

7.3. In-sample analysis

We first consider the full sample analysis using all available data. We draw 20000 MCMC samples and discard first 2000 as 
the burn-in period. The number of particles used is set to 200. Before reporting in-sample estimation results, we first examine the 
validity of the independent Gaussian assumption that we made for the elements of 𝑞𝑡 in (3e). Though 𝑞𝑡 is not observed, we can 
take advantage of the corresponding realized measure as a reasonable proxy. Following Archakov et al. (2024a), we depict the Q–Q 
plots for the transformed realized correlations, 𝑞𝑟𝑡 , in Fig.  5. These plots indicate that all GFT-transformed realized correlations can 

24 Note that for the MSVL-Chol model, the leverage effect is defined as the negative correlation between the innovation to returns and that to the diagonal 
elements of the Cholesky decomposition. This is different from the definition in all other MSV models that we consider.
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Fig. 4. Dynamics of realized correlations.
Notes: This figure plots the time series of all pairwise realized correlations considered in the empirical application. The red dotted line depicts the time series 
average for each realized correlation sequences. The blue dashed line depicts the corresponding sample correlations computed using daily data. The sample 
period is from January 3 2006 to December 30 2015.
14 
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Fig. 5. Q–Q plots for transformed realized correlations.
Notes: This figure depicts contour plots of selected realized correlations considered in the empirical application. The results are based on the sample period from 
January 3 2006 to December 30 2015, which has 2516 daily observations. The quantiles of their empirical distributions are plotted against the corresponding 
quantiles of the normal distribution.

be well modeled by Gaussian distributions, corroborating the discovery in Archakov et al. (2024a) and the specification outlined 
in Eq.  (3e). To further support the use of GTF, in Fig.  6, we present the contour plots for selected pairs of realized correlations, 
together with the bivariate Fisher-transformed and generalized Fisher-transformed counterparts. For three subplots in the first row, 
𝜌𝑖𝑗 denotes the realized correlation between asset 𝑖 and 𝑗, with 𝑖 = 1,… , 6 corresponds to {JPM, GS, HON, CAT, JNJ, AMGN}. For 
three subplots in the second row, 𝑔𝑖𝑗 denotes the bivariate Fisher-transformation, defined by (1), of 𝜌𝑖𝑗 . For three subplots in the 
third row, 𝑞𝑖 denotes the 𝑖th variable generated by applying GFT on 6 × 6 realized correlation matrices. An noteworthy finding from 
Fig.  6 is that GFT produces variables much less correlated than both realized correlations and their bivariate Fisher-transformed 
counterparts. This result provides further evidence supporting our assumption of independence when specifying shocks to elements 
of 𝑞𝑡. In MSV models proposed in Yamauchi and Omori (2020), all pairwise Fisher-transformed variables are assumed to be generated 
by independent random walks.25 Fig.  6 questions the validity of such an assumption and suggests that modeling GFT-transformed 
variables independently aligns more with reality, at least for equity returns.26

25 A subtle point is that the dependence among these variables is in fact implicitly introduced in their estimation procedure. Note that the single-move 
algorithm they propose is based on conditional restrictions so that the range of a correlation is determined by all other correlations.
26 As suggested by a referee, in Section G of Online Supplement, we make a detailed comparison between our GFT-based specification and correlation modeling 

based on pairwise Fisher transformation. We find that the former is significantly superior, both in-sample and out-of-sample.
15 
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Fig. 6. Contour plots for selected (transformed) realized correlations.
Notes: This figure depicts contour plots of selected pairs of realized correlations (the first row), bivariate Fisher-transformed counterparts (the second row) and 
GFT variables (the third row). For subplots in the first row, 𝜌𝑖𝑗 denotes the realized correlation between asset 𝑖 and 𝑗, with 𝑖 = 1,… , 6 corresponds to {JPM, GS, 
HON, CAT, JNJ, AMGN}. For subplots in the second row, 𝑔𝑖𝑗 denote the bivariate Fisher-transformation of 𝜌𝑖𝑗 . For subplots in the third row, 𝑞𝑖 denote the 𝑖th 
variable generated by applying GFT on 6 × 6 realized correlation matrices.

We now report the parameter estimates for the RMSVL-GFT model.27 Table  3 presents the posterior statistics of parameters 
related to log volatility sequences ℎ𝑡. The statistics we consider include the posterior means (in the first row), the posterior standard 
deviations (in the parenthesis), and the 95% credible intervals (in the fourth row). Also reported are the IFs (in the third row). Our 
observations reveal that the posterior means and standard deviations of all parameters linked to volatility dynamics closely align 
with existing literature. In particular, all log volatility sequences have a very high level of persistence, with the autoregressive root 
of 𝜙ℎ close to but smaller than 1. The IFs are relatively small across the board, indicating effective mixing of the MCMC draws. 
Furthermore, the leverage effect 𝜌 is always significantly negative with a value ranging from −0.1832 to −0.4536. Consistent with 
findings from prior studies like (Koopman and Scharth, 2012) and Yamauchi and Omori (2020), the bias parameters 𝜓ℎ is consistently 
significantly negative. This is well anticipated as realized volatility contains the information during market trading hours and thereby 
accounts for only a fraction of variation of close-to-close returns. 

Table  4 follows a structure akin to Table  3 but focuses on parameters that characterize transformed correlations 𝑞𝑡. First and 
foremost, it can be seen that the posterior means of 𝜙𝑞 varies a lot, with the minimum value being 0.71 and maximum 0.97. This 

27 For 𝑝 = 6, RMSVL-GFT has 21 latent variables, including 6 log volatilities and 15 GFT-transformed correlations. Each latent variable induces 3 parameters in 
autoregressive dynamics and 2 in measurement equation of realized measure. Along with 6 coefficients for leverage effect, the total number of model parameters 
is 111.
16 
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Table 3
In-sample volatility estimation results for RMSVL-GFT model.
 𝜇ℎ 𝜙ℎ 𝜎2ℎ 𝜓ℎ 𝜂2ℎ 𝜌  
 
JPM

0.9066 0.9742 0.0624 −0.3367 0.1145 −0.2821  
 (0.2035) (0.0050) (0.0054) (0.0301) (0.0058) −0.0262  
 1.5871 5.1228 22.5061 31.4243 14.0086 13.8807  
 [0.5003, 1.3053] [0.9643, 0.9836] [0.0524, 0.0736] [−0.3943, −0.2767] [0.1033, 0.1261] [−0.3344, −0.2319] 
 
GS

0.9700 0.9723 0.0461 −0.3059 0.1405 −0.3197  
 (0.1631) (0.0053) (0.0042) (0.0290) (0.0060) (0.0267)  
 1.9536 5.0324 17.5200 22.6178 9.5674 16.0523  
 [0.6469, 1.2880] [0.9618, 0.9822] [0.0383, 0.0546] [−0.3619, −0.2481] [0.1291, 0.1524] [−0.3726, −0.2682] 
 
HON

0.5549 0.9705 0.0425 −0.3307 0.1301 −0.4536  
 (0.1464) (0.0056) (0.0044) (0.0283) (0.0060) (0.0353)  
 1.8690 9.2886 35.0743 28.1210 18.1513 33.5945  
 [0.2635, 0.8474] [0.9592, 0.9812] [0.0344, 0.0516] [−0.3871, −0.2749] [0.1185, 0.1421] [−0.5245, −0.3861] 
 
CAT

0.9246 0.9728 0.0387 −0.3421 0.1134 −0.2259  
 (0.1539) (0.0053) (0.0040) (0.0292) (0.0052) (0.0267)  
 2.9799 8.3413 28.8584 36.1329 13.1749 12.7290  
 [0.6191, 1.2260] [0.9619, 0.9829] [0.0312, 0.0471] [−0.4013, −0.2859] [0.1035, 0.1240] [−0.2800, −0.1756] 
 
JNJ

−0.5300 0.9593 0.0414 −0.0598 0.1322 −0.2917  
 (0.1066) (0.0068) (0.0042) (0.0310) (0.0058) (0.0266)  
 4.8144 10.1458 25.9069 34.8798 11.5275 12.9620  
 [−0.7402, −0.3186] [0.9456, 0.9719] [0.0338, 0.0502] [−0.1200, 0.0007] [0.1213, 0.1440] [−0.3449, −0.2399] 
 
AMGN

0.5731 0.9291 0.0566 −0.1813 0.1424 −0.1832  
 (0.0739) (0.0102) (0.0063) (0.0297) (0.0067) (0.0235)  
 5.8587 21.3422 40.1928 26.7798 19.7796 7.9495  
 [0.4287, 0.7184] [0.9085, 0.9482] [0.0451, 0.0700] [−0.2389, −0.1235] [0.1295, 0.1559] [−0.2308, −0.1381] 
Notes: This table reports the in-sample volatility-related parameter estimation results based on RMSVL-GFT. The sample period is from January 3, 2006 to 
December 31, 2015. For each parameter, we report its posterior mean, posterior standard deviation (number in the parenthesis), inefficiency factor, as well as 
the 95% credible interval using the 2.5th and 97.5th percentiles of the MCMC draws.

suggests a great deal of heterogeneity in the level of persistency in the elements of 𝑞𝑡. While the transformed correlation is close to 
a unit root process in some cases, it can be quite stationary in other cases. Second, we observe that the posterior means of 𝜇𝑞 also 
differ considerably among 𝑞’s. Third, the posterior means of 𝜎2𝑞  are all significantly different from zero, suggesting the correlation 
coefficients are time-varying. These findings forcefully highlights the importance of allowing unique dynamics for each correlation 
sequence. Another notable finding from Table  4 is that the estimated bias parameters 𝜓𝑞 are always significantly negative, implying 
that 𝑞𝑟𝑡  is a biased version of underlying transformed correlation 𝑞𝑡 and on average suffers from underestimation. This finding aligns 
with the results in Yamauchi and Omori (2020), where a negative bias in Fisher-transformed realized pairwise correlations is noted. It 
is worth noting that this bias aligns with the trend of smaller average realized correlations compared to the daily sample correlations 
as observed in Table  2 and Fig.  4. 

An interesting observation from parameter estimation is that the magnitude of 𝜎2𝑞  is quite small, suggesting that 𝑞𝑡 is closer 
to be deterministic. This finding aligns with the result in Yamauchi and Omori (2020). To explain this phenomenon, note that 
(7) and (8) in RMSVL-GFT impose a restriction that the unconditional variance of realized measures is equal to that of the latent 
variables plus the variance of the noise. As a consequence, the values of 𝜎2𝑞  are related to the unconditional variance of 𝑞𝑟𝑡  as well 
as the signal-to-noise ratio of the realized correlations. Fig.  7 plots the sequences of posterior means of the selected log volatilities 
(top panel) and those of the pairwise correlations (bottom panel), both filtered from the RMSVL-GFT model (the red dash-dotted 
line). Also plotted are the corresponding realized measures with bias 𝜓ℎ and 𝜓𝑞 removed (the blue solid line). The latent variables 
obtained from the RMSVL-GFT model exhibit a very similar pattern to their realized counterparts. However, the total variation 
of correlation is smaller. Moreover, we observe that for correlations, model-implied sequences are much smoother than observed 
realized measures, which suggests that realized correlations contain a large noise. This is not the case for the realized volatility, 
whose dynamics can be largely explained by the variation of the latent variable ℎ𝑡.28 Such a conclusion can also be obtained if we 
contrast 𝑅-squared of (7) with that of (8). Indeed, for the measurement equations of ℎ𝑡, we observe that 𝑅2 is higher than 85% in 
most cases. For 𝑞𝑡, on the other hand, we find it usually less than 30%. Our estimation results therefore highlight the difference in 
information content between realized volatilities and correlations.

To assess whether the flexibility in MSV-GFT leads to better in-sample statistical performance, we first compare the marginal 
likelihoods of daily returns, using the approach suggested by Chib (1995). When computing the likelihood ordinate, we use the 
auxiliary particle filter of Pitt and Shephard (1999). We also compare DIC values of alternative models using DIC1 of Spiegelhalter 
et al. (2002); see Li et al. (2020) for discussions why DIC1 is used for latent variable models. As our main interest lies in the 
evaluation of relative merits of various model specifications, we only consider candidates that base solely on daily returns in this 

28 Similar patterns can be found in Figure 2 of Yamauchi and Omori (2020).
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Table 4
In-sample correlation estimation results for RMSVL-GFT model.
 𝜇𝑞 𝜙𝑞 𝜎2𝑞 𝜓𝑞 𝜂2𝑞  
 
𝑞1

0.8209 0.9718 0.0013 −0.3619 0.0332  
 (0.0315) (0.0068) (0.0002) (0.0158) (0.0011)  
 81.2793 135.9620 276.5013 328.3459 38.5393  
 [0.7574, 0.8813] [0.9578, 0.9843] [0.0010, 0.0018] [−0.3861, −0.3299] [0.0312, 0.0354] 
 
𝑞2

0.3870 0.9129 0.0016 −0.1437 0.0297  
 (0.0152) (0.0195) (0.0004) (0.0126) (0.0010)  
 201.5734 253.1221 330.0832 301.0712 76.2051  
 [0.3607, 0.4215] [0.8710, 0.9466] [0.0009, 0.0025] [−0.1761, −0.1248] [0.0277, 0.0318] 
 
𝑞3

0.2959 0.9020 0.0017 −0.0427 0.0266  
 (0.0126) (0.0223) (0.0004) (0.0096) (0.0010)  
 158.5033 263.6150 328.2505 259.4481 95.9343  
 [0.2709, 0.3196] [0.8575, 0.9441] [0.0008, 0.0026] [−0.0605, −0.0242] [0.0247, 0.0285] 
 
𝑞4

0.3008 0.8813 0.0022 −0.1196 0.0253  
 (0.0162) (0.0236) (0.0005) (0.0145) (0.0010)  
 259.8706 247.8345 321.7477 327.5475 121.6425  
 [0.2713, 0.3323] [0.8340, 0.9237] [0.0012, 0.0031] [−0.1469, −0.0943] [0.0235, 0.0272] 
 
𝑞5

0.1696 0.7306 0.0034 −0.0284 0.0226  
 (0.0178) (0.0759) (0.0012) (0.0178) (0.0012)  
 325.5295 326.6328 349.2177 336.9915 223.8341  
 [0.1372, 0.2130] [0.5655, 0.8552] [0.0017, 0.0063] [−0.0721, 0.0037] [0.0200, 0.0247] 
 
𝑞6

0.3128 0.9625 0.0006 −0.1065 0.0272  
 (0.0159) (0.0088) (0.0001) (0.0086) (0.0008)  
 80.5803 171.1830 285.5487 279.1870 18.7110  
 [0.2812, 0.3437] [0.9423, 0.9773] [0.0004, 0.0009] [−0.1235, −0.0886] [0.0257, 0.0289] 
 
𝑞7

0.3211 0.9507 0.0007 −0.0966 0.0263  
 (0.0154) (0.0101) (0.0001) (0.0119) (0.0008)  
 164.8006 157.5036 275.1092 319.9081 22.1908  
 [0.2888, 0.3495] [0.9285, 0.9683] [0.0005, 0.0010] [−0.1166, −0.0694] [0.0248, 0.0279] 
 
𝑞8

0.2270 0.7097 0.0032 −0.0899 0.0212  
 (0.0111) (0.0663) (0.0010) (0.0108) (0.0010)  
 269.9458 299.4386 325.6539 287.5220 177.0645  
 [0.2040, 0.2473] [0.5513, 0.8102] [0.0019, 0.0058] [−0.1088, −0.0672] [0.0188, 0.0230] 
 
𝑞9

0.1738 0.7293 0.0025 −0.0538 0.0218  
 (0.0138) (0.0759) (0.0008) (0.0135) (0.0009)  
 310.3938 324.1396 346.0053 319.2184 133.4191  
 [0.1516, 0.2020] [0.5617, 0.8583] [0.0012, 0.0042] [−0.0813, −0.0322] [0.0201, 0.0235] 
 
𝑞10

0.5888 0.9746 0.0012 −0.2580 0.0350  
 (0.0318) (0.0060) (0.0002) (0.0138) (0.0011)  
 55.8941 128.2431 288.2593 312.3583 42.3190  
 [0.5246, 0.6497] [0.9623, 0.9859] [0.0009, 0.0017] [−0.2804, −0.2269] [0.0328, 0.0372] 
 
𝑞11

0.3472 0.9432 0.0012 −0.1335 0.0300  
 (0.0162) (0.0125) (0.0003) (0.0102) (0.0010)  
 121.9742 211.4949 318.4378 275.3242 51.9069  
 [0.3166, 0.3792] [0.9148, 0.9634] [0.0009, 0.0019] [−0.1538, −0.1147] [0.0281, 0.0319] 
 
𝑞12

0.2706 0.9195 0.0009 −0.1145 0.0277  
 (0.0138) (0.0173) (0.0002) (0.0122) (0.0009)  
 228.7777 226.2120 292.3517 314.5477 25.7573  
 [0.2421, 0.2969] [0.8819, 0.9506] [0.0006, 0.0013] [−0.1375, −0.0884] [0.0261, 0.0294] 
 
𝑞13

0.1984 0.9124 0.0013 −0.0475 0.0267  
 (0.0149) (0.0204) (0.0003) (0.0130) (0.0009)  
 229.7456 261.5111 326.0511 311.8691 53.1734  
 [0.1692, 0.2251] [0.8638, 0.9465] [0.0008, 0.0020] [−0.0685, −0.0228] [0.0250, 0.0285] 
 
𝑞14

0.1351 0.8536 0.0021 −0.0116 0.0240  
 (0.0120) (0.0292) (0.0005) (0.0107) (0.0009)  
 215.9103 256.1655 314.9568 279.6245 105.6430  
 [0.1094, 0.1580] [0.7909, 0.9037] [0.0014, 0.0035] [−0.0321, 0.0129] [0.0222, 0.0257] 
 (continued on next page)

exercise. The results are presented in Table  5, which also summarizes the number of parameters in each model. Within models 
without realized measures and leverage effect, our new MSV-GFT model markedly outperforms all other MSV candidates based on 
both the log marginal likelihood and DIC, providing compelling evidence in favor of the specification based on GFT. Moreover, as 
expected, the in-sample fitness of MSV-GFT can be further improved by introducing the leverage effect.
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Table 4 (continued).
 𝜇𝑞 𝜙𝑞 𝜎2𝑞 𝜓𝑞 𝜂2𝑞  
 
𝑞15

0.3801 0.9591 0.0007 −0.1647 0.0287  
 (0.0169) (0.0118) (0.0002) (0.0117) (0.0009)  
 136.7918 255.0702 344.3820 319.4239 50.2741  
 [0.3475, 0.4132] [0.9293, 0.9772] [0.0004, 0.0012] [−0.1867, −0.1447] [0.0270, 0.0305] 
Notes: This table reports the in-sample correlation-related parameter estimation results based on RMSVL-GFT. The sample period is from January 3, 2006 to 
December 31, 2015. For each parameter, we report its posterior mean, posterior standard deviation (number in the parenthesis), inefficiency factor, as well as 
the 95% credible interval constructed using the 2.5th and 97.5th percentiles of the MCMC draws.

Fig. 7. Filtered and (bias-corrected) realized measures in the empirical application.
Notes: This figure plots the posterior mean of selected log-volatility sequences (top panel) and pairwise correlation sequences (bottom panel) implied by RMSVL-
GFT (the red dash-dotted line), accompanied by the corresponding bias-corrected realized measures (the blue solid line) and 95% credible intervals (yellow 
shaded area). The sample period is from January 3 2006 to December 30 2015.

Table 5
In-sample model comparison.
 # of params log-lik DIC  
 MSV  
 MSV-CC 39 −24171 48356 
 MSV-DCC 41 −24120 48283 
 MSV-GFT 63 −24005 48226 
 MSV-Chol 63 −24061 48252 
 MSVL  
 MSVL-CC 45 −24102 48258 
 MSVL-DCC 47 −24077 48193 
 MSVL-GFT 69 −23996 48150 
 MSVL-Chol 69 −24003 48187 
Notes: This table reports the number of parameters (# of params), the log marginal likelihood (log-lik) and deviance information criterion (DIC) values of 
competing models. The results are based on daily returns of JPM, GS, HON, CAT, JNJ and AMGN from January 3, 2006 to December 30, 2015.

7.4. Out-of-sample performance

In this subsection, comparisons of short-term out-of-sample forecasting ability are conducted based on both statistical and 
economic loss functions. The forecast period is from January 2, 2013 to December 31, 2015, spanning three years and consisting 
of 755 trading days. For each out-of-sample trading day (say 𝑡), we use expanding window approach to  re-estimate the model 
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Table 6
Model comparison based on out-of-sample predictive likelihood of returns.
 Overall 2013 2014 2015

 pred-ll MCS1 MCS2 pred-ll MCS1 MCS2 pred-ll MCS1 MCS2 pred-ll MCS1 MCS2
 MSV  
 MSV-CC .000 (0.019) (0.003) .000 (0.716) (0.406) .000 (0.383) (0.323) .000 (0.017) (0.013) 
 MSV-DCC .082 (0.691) (0.304) .060 (0.993) (0.724) .069 (1.000) (0.892) .116 (0.064) (0.083) 
 MSV-GFT .104 (0.885) (0.574) .072 (0.993) (0.724) .046 (0.985) (0.892) .193 (0.511) (0.622) 
 MSV-Chol .091 (0.885) (0.574) .058 (0.993) (0.794) .043 (0.985) (0.892) .172 (0.436) (0.305) 
 MSVL  
 MSVL-CC .013 (0.040) (0.004) .003 (0.735) (0.498) .003 (0.383) (0.126) .033 (0.005) (0.003) 
 MSVL-DCC .089 (0.885) (0.479) .063 (0.993) (0.794) .055 (0.985) (0.892) .150 (0.074) (0.141) 
 MSVL-GFT .119 (1.000) (0.574) .081 (1.000) (0.794) .045 (0.985) (0.867) .232 (1.000) (0.622) 
 MSVL-Chol .092 (0.885) (0.574) .067 (0.993) (0.794) .037 (0.985) (0.892) .172 (0.511) (0.305) 
 RMSV(L)  
 RMSV-CC .108 (0.574) .118 (0.794) .009 (0.605) .197 (0.622) 
 RMSV-GFT .175 (0.574) .175 (0.946) .090 (0.892) .262 (1.000) 
 RMSVL-CC .108 (0.574) .119 (0.794) .010 (0.640) .197 (0.622) 
 RMSVL-GFT .176 (1.000) .175 (1.000) .092 (1.000) .261 (0.622) 
Notes: This table reports the predictive log-likelihoods (pred-ll) of returns for all competing MSV models relative to MSV-CC. MCS2 is the 𝑝-value for model 
confidence set for all candidate models. MCS1 is the 𝑝-value when comparison is confined to models without realized measures. Underlined values for the best 
models according to MCS1. Boldface values are for the best model according to MCS2.

and generate the one-step-ahead forecast of the covariance matrix �̂�𝑡|𝑡−1 by computing the posterior mean of 𝐶𝑡 conditional on all 
available observations up to period 𝑡 − 1.

Our first exercise focuses on the statistical performance reflected by the likelihood of return series. In particular, for each 
specification and in each out-of-sample trading day, we first evaluate the predictive log-likelihood of daily returns. For trading 
day 𝑡, this quantity is defined as

log 𝑝(𝑟𝑡|𝑟1∶𝑡−1), 𝑡 ∈ {𝑇0 + 1,… , 𝑇 },

for MSV models without realized measures and
log 𝑝(𝑟𝑡|𝑟1∶𝑡−1, ℎ𝑟1∶𝑡−1, 𝑞

𝑟
1∶𝑡−1), 𝑡 ∈ {𝑇0 + 1,… , 𝑇 },

for RMSV models, where 𝑇0 denotes the in-sample size and 𝑥1∶𝑡−1 = (𝑥′1,… , 𝑥′𝑡−1)
′. We then obtain the average out-of-sample 

predictive return log-likelihoods of each candidate (R)MSV model. The results covering entire out-of-sample period as well as three 
sub-years can be found in Table  6, where the improvement of log-likelihood relative to that of MSV-CC are reported. Italic figures 
in the parenthesis are the corresponding 𝑝-values of model confidence set (MCS) of Hansen et al. (2011).29 MCS1 are 𝑝-values when 
comparison is confined to models without realized measures and MCS2 are for the set of all candidates. Underlined values in Table 
6 are for the best performing models according to MCS1, while boldface numbers are for the best performing models according to 
MCS2. 

As expected, all values reported are positive, indicating a better forecasting ability of dynamic models over the simple constant 
correlation model. Confining to competitors based on daily returns only, we observe that the GFT-based models dominate except 
for second sub-year, with or without incorporating the leverage effect. Overall, the DCC specification ranks third, outperformed 
by MSV(L)-Chol. Another notable finding from Table  6 is that incorporating realized measures into our GFT-based specification 
leads to additional dramatic improvement of the out-of-sample predictive return likelihood. This can be explained by the fact that 
taking into account the realized information can significantly stabilize the inference of parameters by reducing the variance of 
estimators. Overall, our analysis suggests the most flexible RMSVL-GFT model is preferred in terms of its ability in predicting the 
return distribution.

We then turn to the economic loss function, which is also practically relevant for covariance modeling. We construct the global 
minimum variance (GMV) portfolio for each model and compare their average squared returns. According to Markowitz (1952), the 
GMV portfolio is optimal as it has the smallest variance among all portfolios on the efficient frontier. At period 𝑡 − 1, we construct 
the GMV portfolio with the optimal weights 𝑤𝑡 = (𝑤1𝑡,… , 𝑤𝑝𝑡) where30

𝑤𝑡 =
�̂�−1
𝑡|𝑡−11𝑝

1′
𝑝�̂�

−1
𝑡|𝑡−11𝑝

, (9)

and the optimal portfolio return at time 𝑡 is then obtained as 𝑅𝑝𝑡 = 𝑤′
𝑡𝑟𝑡.

29 A 𝑝-value larger than, say 0.1, indicates that the model belongs to the set of the best performers at the 90% confidence level.
30 We assume negative weights are allowed so that short-sells are possible.
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Table 7
Model comparison based on out-of-sample portfolio construction.
 Overall 2013 2014 2015

 GMV MCS1 MCS2 GMV MCS1 MCS2 GMV MCS1 MCS2 GMV MCS1 MCS2
 MSV  
 MSV-CC 0.797 (0.073) (0.003) 0.592 (0.000) (0.010) 0.722 (0.571) (0.107) 1.079 (0.344) (0.181) 
 MSV-DCC 0.783 (0.201) (0.044) 0.575 (0.076) (0.322) 0.716 (1.000) (0.115) 1.060 (0.393) (0.295) 
 MSV-GFT 0.767 (0.588) (0.257) 0.548 (0.488) (0.794) 0.743 (0.571) (0.107) 1.012 (0.560) (0.599) 
 MSV-Chol 0.803 (0.073) (0.003) 0.597 (0.488) (0.417) 0.756 (0.571) (0.107) 1.056 (0.281) (0.031) 
 MSVL  
 MSVL-CC 0.786 (0.073) (0.003) 0.583 (0.067) (0.067) 0.720 (0.571) (0.107) 1.055 (0.393) (0.092) 
 MSVL-DCC 0.772 (0.588) (0.050) 0.567 (0.417) (0.417) 0.713 (0.728) (0.107) 1.037 (0.560) (0.295) 
 MSVL-GFT 0.756 (1.000) (0.367) 0.537 (1.000) (1.000) 0.741 (0.554) (0.081) 0.992 (1.000) (0.763) 
 MSVL-Chol 0.801 (0.017) (0.000) 0.586 (0.417) (0.417) 0.769 (0.296) (0.001) 1.049 (0.281) (0.015) 
 GARCH  
 GARCH-DCC 0.811 (0.003) (0.000) 0.617 (0.000) (0.000) 0.746 (0.426) (0.032) 1.071 (0.344) (0.074) 
 GARCH-BEKK 0.849 (0.003) (0.000) 0.652 (0.076) (0.051) 0.794 (0.426) (0.107) 1.103 (0.344) (0.029) 
 GARCH-GFT-DCS 0.809 (0.003) (0.000) 0.607 (0.000) (0.000) 0.759 (0.426) (0.050) 1.063 (0.281) (0.031) 
 RMSV(L)  
 RMSV-CC 0.734 (0.367) 0.563 (0.417) 0.672 (0.139) 0.968 (0.763) 
 RMSV-GFT 0.719 (0.933) 0.545 (0.970) 0.669 (1.000) 0.945 (0.763) 
 RMSVL-CC 0.734 (0.367) 0.563 (0.417) 0.672 (0.115) 0.967 (0.763) 
 RMSVL-GFT 0.719 (1.000) 0.546 (0.945) 0.669 (0.150) 0.944 (1.000) 
 EW 0.948 (0.003) (0.000) 0.758 (0.000) (0.000) 0.761 (0.554) (0.107) 1.327 (0.073) (0.006) 
Notes: This table reports the average squared returns of the global minimum variance (GMV) portfolio for all competing MSV and MGARCH models, together 
with that of a equal-weight portfolio. MCS2 are model confidence set 𝑝-values based on absolute portfolio returns when all candidate models are considered. 
MCS1 are 𝑝-values when comparison is confined to models without realized measures. Underlined GMV values identify best models without realized measures 
according to MCS1. GMV values in boldface identify the best model according to MCS2.

In addition to the MSV models discussed earlier, we also consider a portfolio with equal weights as a benchmark, which is 
frequently used in practice. Furthermore, to investigate the relative merits of our parameter-driven MSV models compared with 
observation-driven models, in our analysis, we consider the DCC model of Engle (2002) and BEKK model of Engle and Kroner 
(1995). Following a suggestion from a reviewer, we also incorporate into our analysis a simplified version of the GFT-based dynamic 
conditional score model of Hafner and Wang (2023). In particular, returns are assumed to be conditionally Gaussian, with the 
conditional volatility of each asset following the GARCH(1, 1) process and the log correlation matrix being driven by the conditional 
scores of the likelihood. Using our notation, the dynamics of transformed correlations in this model can be expressed as

𝑞𝑡+1 = 𝜔 + 𝐴
𝜕𝑙𝑡
𝜕𝑞𝑡

+ 𝐵𝑞𝑡,

where 𝜔 is a 𝑑 × 1 vector, 𝐴 and 𝐵 are 𝑑 × 𝑑 diagonal matrix and 𝑙𝑡 is the log conditional likelihood of 𝑟𝑡. The detailed expression 
of 𝜕𝑙𝑡𝜕𝑞𝑡  can be found in Theorem 1 of Hafner and Wang (2023). We estimate this model using the two-step approach explained in 
Section 3.2 of Hafner and Wang (2023). We refer to this model as GARCH-GFT-DCS.

To enable a fair comparison across models, we assume that all stocks have equal expected returns and focus solely on the 
variance of the portfolio. Specifically, we measure the portfolio variance by computing the average squared return over out-of-
sample periods. To check the robustness of our analysis, we again present the analogous results for each of the three years in the 
out-of-sample period. The results are shown in Table  7, accompanied by corresponding MCS 𝑝-values. Similar to Table  6, MCS1
are 𝑝-values when comparison is confined to models without realized measures and MCS2 are for all candidates. Underlined GMV 
values identify best models without realized measures according to MCS1, while boldface numbers identify the best model among 
all competitors according to MCS2. 

The portfolios based on equal weights and GARCH-type models consistently display notably higher variances in almost all 
scenarios, making these strategies less favorable options. Interestingly, among the GARCH-type specifications, the GARCH-GFT-
DSC model exhibits best performance. Besides, from the insights provided in Table  7, several key conclusions can be drawn. First 
and foremost, confining to MSV models without leverage and realized measures, we observe that MSV-GFT dominates all other 
competitors, both for the full out-of-sample period and the two out of three sub-periods. More impressively, for the full period, 
among all models without realized information and leverage, only the MSV-GFT models belong to the 90% MCS2. This outcomes 
strongly underscore the efficacy of utilizing GFT for dynamic correlation matrix specification. Secondly, our analysis indicates that 
MSVL models consistently outperform their MSV counterparts in most instances, aligning with the significant impact of the leverage 
effect observed in-sample. Indeed, we find that the MSVL-GFT model ranks highest according to MCS1 except for 2014, in which 
MSVL-DCC is better. Thirdly, the highly flexible RMSVL-GFT model yields the lowest overall average squared return and it also 
excels in 2015. Following closely are the RMSV-GFT and RMSV(L)-CC models, each incorporating additional measurements derived 
from realized data. Furthermore, it is worth noting that, for all choices of sample period, models with realized information always 
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belong to the 90% MCS2.31 Across all sub-periods, the RMSV models demonstrate a marked advantage over their MSV counterparts. 
These findings underscore the substantial benefits of integrating both daily and high-frequency data in enhancing asset allocation 
strategies.

In summary, our analysis indicates that the MSV models utilizing GFT, along with the inclusion of the leverage effect and/or 
realized measures, offer more dependable results for out-of-sample covariance forecasting and portfolio construction.

8. Conclusion

We present a new approach to modeling multivariate stochastic volatility in this paper. Our approach uses a generalized version 
of Fisher’s z-transformation to dynamically characterize the correlation structure in a highly flexible manner. One key advantage 
of our model is that it can automatically generate a positive-definite correlation matrix, while also completely separate the driving 
forces underlying volatilities and correlations. We go a step further by extending the model to incorporate both the leverage effect 
and the realized measures.

In contrast to numerous existing studies that rely on conventional Bayesian inference methods, we utilize a Gibbs sampler coupled 
with a particle filter to conduct inference for our model. A novel contribution we make to the literature is our introduction of two 
alternative algorithms, namely Newton’s method and Broyden’s method, alongside AH’s algorithm to solve systems of nonlinear 
equations — an essential step in the estimation process. We conduct experiments to assess the performance of these three algorithms 
and advocate for the practical application of Broyden’s method based on our findings. We showcase the efficacy of our estimation 
approach for the model. Overall, our proposed model stands out as a potent and versatile tool for capturing the intricate dynamics 
of multivariate stochastic volatility within financial markets.

Our empirical results (with 𝑝 = 6) highlight that this adaptable approach to modeling multivariate stochastic volatility enhances 
the in-sample fitting to stock return volatilities. Furthermore, by integrating the leverage effect and realized measures into the 
updated model specification, we observe improvements in both in-sample and out-of-sample forecasting accuracies compared to 
numerous existing models.

While a single digit for the dimension of assets appears a restriction, estimation of a low-dimensional MSV model can help 
understand important features in data and hence, provide guidance to choose more restrictive MSV models for high dimensional 
data. For example, after we estimate our six-dimensional MSV model, we find that it is critical to allow the pairwise correlation 
coefficient sequences to have different levels of persistence. A reasonable restrictive MSV model for high-dimensional data must 
retain this feature.

An unrestrictive MSV model with 𝑝 being hundreds or even thousands of assets will impose a significant computational challenge 
because the computational burden of implementing the model increases exponentially with the number of assets. In such scenarios, 
dimension reduction strategies such as enforcing a block structure or introducing latent common factors become necessary. There 
are two potential factor-based specifications that one may consider.

The first one assumes 
𝑟𝑡 = 𝛬𝑓𝑡 +𝛺1∕2𝑒𝑡, (10)

where 𝛬 is a 𝑝 × 𝐾 matrix of factor loadings with 𝐾 ≪ 𝑝, 𝑓𝑡 is a 𝐾-dimensional vector of factors that is assumed to follow Model 
(3a)–(3f), 𝛺 is a 𝑝 × 𝑝 (possibly diagonal) covariance matrix, and 𝑒𝑡 is a vector of 𝑝 independent standard normal variates without 
serial dependence. The second one imposes a factor structure directly on 𝑞𝑡, that is, 

𝑞𝑡 = 𝛬𝑓𝑡, (11)

where 𝛬 is a 𝑝(𝑝 − 1)∕2 × 𝐾 loading matrix with 𝐾 ≪ 𝑝(𝑝 − 1)∕2 and 𝑓𝑡 is a 𝐾-dimensional vector of factors. We may then specify 
a new model by adding Eq. (11) to (3a)–(3f) and replace 𝑞𝑡 in (3e) by 𝑓𝑡. In Section H of Online Supplement, we discuss these 
specifications in greater details.

It is well known in the literature that even when 𝑝 is in the range of hundreds or even thousands, the number of volatility factors 
(i.e., 𝐾 in Eqs.  (10) and (11)) is always a low single digit (see for example, Ding et al., 2025) and references therein). As a result, we 
expect Broyden’s method and hence, our estimation method may continue to be useful. We defer the exploration of how to estimate 
high-dimensional MSV models and the investigation of the relative performance of alternative models to future endeavors.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2025.106041.

31 Note that if we only consider the universe of four RMSV models, then RMSV(L)-CC will not belong to 90% MCS.
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