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In the past five years ... a new family of models, known as
rough volatility models, has sprung up ... Arguably, this is the
breakthrough that volatility quants have been waiting for ... High-
frequency market-makers such as Jump Trading have adopted
the models. Hedge funds hint at using them in arbitrage trading
strategies. Banks are scrutinising the approach. — Risk.net

Since the seminal studies of Engle (1982) and Bollerslev (1986), the volatility
literature seems to have reached a consensus concerning the presence of strong
persistence in the volatility of financial assets. Nonetheless, the question of
how best to model the persistence in volatility continues to be debated. Two
competing paradigms – long memory and rough volatility – have emerged as
leading contenders, each offering a distinct approach to modeling volatility
persistence. While much of the research points to the presence of long-range
dependence or long memory in volatility data as a means of capturing volatility
persistence,1 more recent work and industry practice increasingly point to
rough volatility as a crucial component, as the quotation that heads this article
suggests. Despite this focus, neither researchers nor practitioners agree on
which model is superior, and this unresolved tension continues to shape both
research and industry practice.
Adding to this complexity, Shi and Yu (2023) reveal the poor finite

sample performance of existing estimation methods for volatility models.
Inspired by findings in Shi and Yu (2023) and the existing literature on
weak identification,2 this paper demonstrates that weak identification is
the root cause of this poor performance. This issue not only undermines
estimation accuracy and invalidates conventional statistical inference but also
contributes to the ongoing divergence between the long memory and rough
volatility paradigms. Our analysis therefore helps to explain the uncertainty
that researchers have been finding in practical work concerning evidence for
rough and long memory specifications
Considerable research has been devoted to explain the long memory

phenomenon in terms of more primitive generating mechanisms that have
empirical justification. It is now known that mechanisms such as cross-section
aggregation, structural breaks, trends, regime switching, learning, nonlinearity,
marginalization, and networking can all generate longmemory.3 By combining
short-run autoregressive (order p) and moving average (order q) components
parametrically with fractional integration (I(d)) to capture long-range depen-
dence, the class of ARFIMA(p,d,q) models has been widely used in empirical
work to model economic time series that manifest both short and long memory

1 See Andersen et al. (2001b), Andersen et al. (2001a, 2003), Harvey (2007), and references therein.

2 See Phillips (1989); Staiger and Stock (1997); Stock and Wright (2000); Stock and Yogo (2005); Andrews and
Cheng (2012); Andrews and Mikusheva (2022); Cheng, Dou, and Liao (2022), among others.

3 See, for example, Chevillon, Massmann, and Mavroeidis (2010), Schennach (2018), and references therein.

2

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/advance-article/doi/10.1093/rfs/hhaf022/8105809 by U

niversity of M
acau user on 21 M

ay 2025



Weak Identification of Long Memory with Implications for Volatility Modeling

as well as possible nonstationarity. The impulse response function implied by
this general model with fractional integration (FI) is substantially different
from that of an ARMA(p,q) model, particularly allowing for long slow decays
in responseswhen the fractional parameter d is positive. This feature of impulse
responses in volatility has important implications for volatility forecasting and
hence financial decisions, such as portfolio choice, and option pricing. For
example, in option pricing, small errors in volatility estimates can lead to
significant mispricing, affecting trading profitability. In portfolio management,
precise volatility forecasts help optimize asset allocation and manage risk.
Within the class of ARFIMA(p,d,q) models, the ARFIMA(1,d,0) model has
been found to be especially useful and a leading example that motivates the
present paper is the stochastic volatility of financial assets. We refer to the
autoregressive (AR) coefficient of the ARFIMA(1,d,0) model as α in the
subsequent discussions.
Many statistical procedures are now available for the estimation of the

memory parameter d in both the ARFIMA parametric class and various semi-
parametric classes that do not prescribe AR or moving average specifications.4

Estimated values of d from log daily realized volatility (RV) data usually turn
out to be positive and close to the nonstationary boundary 0.5, which implies
long memory dynamics, and estimates of α are found to be near zero.5

The idea that underlies the long memory specification is well understood
by both financial analysts and informed market participants: news stories and
their financial market affect tend to be ‘remembered’ by the market for a long
time, longer than in typical GARCH-type models. To determine the current
volatility level and investment opportunities, one needs to examine shocks that
extend from the distant past up to the current moment, because even ‘old’
news carries information about the market mechanism and can still have its
own distinct impact on current volatility. This long memory idea is intuitively
appealing, as investors routinely review historical events before trading or
consider long-term behavior such as cyclically adjusted price-earnings ratios,
which drive volatility and volume; and market commentators and financial
analysts frequently make similar connections.
Interestingly and as attested in the lead quotation, a new body of evidence

points towards the same ARFIMA(1,d,0) model structure but with a negative
value for d (so-called ‘antipersistence’), producing what is called ‘rough-
volatility’ with an AR parameter taken to be unity or near-unity.6 Although
still in the early stages of development, some attempts have been made to

4 See, for example, Robinson (1995a,b); Geweke and Porter-Hudak (1983); Shimotsu and Phillips (2005).

5 See Andersen and Bollerslev (1997), Andersen et al. (2001a), Andersen et al.(2001b, 2003), Shi and Yu (2023),
among others.

6 Among many studies that support such a model we mention the following: Bayer, Friz, and Gatheral (2016);
Gatheral, Jaisson, and Rosenbaum (2018); Fukasawa, Takabatake, and Westphal (2022); Bolko et al. (2023);
Wang, Xiao, and Yu (2023b); Shi, Liu, and Yu (2025).
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comprehend the rough volatility model’s underlying mechanisms (see, e.g.,
El Euch, Fukasawa, and Rosenbaum 2018; Jusselin and Rosenbaum 2020).
Rough volatility modeling has received considerable attention in the

financial industry and financial engineering as well as in academic research
in quantitative finance, mathematical finance, and financial econometrics
(Risk Staff 2021). Notably, the 2021 Risk Awards were presented for
introducing rough-volatility models.7 Based on evidence of roughness in
volatility, many studies have conducted financial applications using rough
volatility models.8 An article by Jean-Philippe Bouchaud, Chairman of Capital
Fund Management, details the profound implications of rough volatility
models for asset pricing. According to Bouchaud (2020), one of recent rough
specifications, the quadratic rough Heston model of Gatheral, Jusselin, and
Rosenbaum (2020), effectively resolves a long-standing puzzle by jointly
calibrating the volatility smile of the S&P 500 and VIX options – a challenging
task for quantitative analysts for many years. Many hedge funds and nonbank
market-makers claim to have adopted rough volatility models (Risk Staff
2021).
Under the rough ARFIMA(1,d,0) model, volatility determination operates

through a mechanism distinct from that of the long memory model: news
shocks from the past can be effectively summarized by the immediately pre-
ceding volatility, but volatility is extended outward with a slight depreciation
since the AR coefficient is near but below unity. Importantly, in addition,
the day-to-day shocks, that is, volatility innovations, are strongly negatively
autocorrelated, so that an upward movement of volatility tends to be followed
by a downward drop. The resultant ‘zigzag’ pattern contributes to the roughness
characteristic and spikes in the volatility path tend to reflect the granularity of
the information arrival process.
It is surprising that these two strands of seemingly contradictory literature

coexist. In a recent study, Shi andYu (2023) examine finite sample performance
of alternative estimation methods for the ARFIMA(1,d,0) model. They find
that when data are generated from a rough ARFIMA(1,d,0) (i.e., d <0) with
a close-to-unity autoregressive coefficient α, semiparametric methods such
as the local Whittle method produce substantially biased parameter estimates
and result in spurious findings of long memory. Moreover, when the DGP is
ARFIMA(1,d,0) with α close to unity and negative d or with α close to zero
and positive d, the likelihood function exhibits bimodality.
The present paper shows that the poor finite sample performance of

present estimation methods is symptomatic of weak identification, which
renders standard statistical inference invalid. In fact, the implied spectral

7 See the Risk website for the citation: https://www.risk.net/awards/7736196/quants-of-the-year-jim-gatheral-
and-mathieu-rosenbaum.

8 See, for example, Bayer, Friz, and Gatheral (2016); Garnier and Sølna (2017, 2018); El Euch, Fukasawa, and
Rosenbaum (2018) in portfolio choice; and El Euch, Fukasawa, and Rosenbaum (2018) in dynamic hedging.
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densities of the models are nearly indistinguishable at two well-isolated local
parameterizations, corresponding to cases in which α lies either near-unity or
near-zero. More specifically, we show that the ‘distance’ between a near-unit-
root ARFIMA(1,d,0) model with a negative d ∈ (−0.5,0) (i.e., a rough model)
and a near-zero-root ARFIMA(1,d+1,0) model (i.e., a long memory model)
goes to zero when nearness parameters shrink.9 This explains why standard
statistical methods of inference lead to major finite sample distortions under
identification failure (Phillips 1989; Dufour 1997). Against the background
of these findings some related phenomena involving inferential distortions are
to be expected in the present context, helping to elucidate the findings of Shi
and Yu (2023) in finite samples. But unlike Shi and Yu (2023) our empirical
analysis relies on a new identification robust procedure for statistical inference
and our empirical exercises encompass a far broader range of financial data.10

To reveal the prevalence of the weak identification issue and address
this issue we propose an identification-robust confidence set of the model
parameters. The confidence set remains valid even when model suffers from
weak identification. It is obtained by inverting tests for zero serial correlation in
the model-implied residuals, leveraging the well-established literature on serial
correlation tests. The inference procedure is semiparametric, data-driven, and
does not rely on Gaussianity. Consonant with theory, simulations show that
the robust confidence sets generally ‘bifurcate’ in the sense that they include
two distinctly isolated regions in which either (a) α is close to unity and d is
negative or (b) α is close to zero and d is positive.
The identification-robust procedure serves as an effective tool that enables

us to explore how prevalent this empirical phenomenon is in practical work
with financial data. We report results for 111 data series encompassing realized
volatility and trading volume time series for a broad variety of U.S. equities and
international stock market indices. Our findings indicate that identification-
robust confidence sets often do bifurcate, exhibiting precisely the same pattern
observed in simulations. Figure 1 provides an illustration. We apply the
identification-robust inference procedure for the ARFIMA(1,d,0) model to
the demeaned log realized volatility of the S&P 500 Index exchange-traded
fund (ETF) from 1996 to 2021. The x-axis represents values of α, while
the y-axis shows values of d . The procedure reveals two clearly defined
regions for (α,d) at the 95% confidence level: (1) α is close to zero and
d >0, consistent with long memory dynamics, and (2) α approaches unity and
d <0, characteristic of rough volatility behavior. This bifurcation highlights
the empirical difficulty of determining whether or not a time series is driven
by long-memory disturbances with d >0, a property that is highly relevant

9 Precise definitions of ‘near-unity’ and ‘near-zero’ involve sample size dependencies as commonly used in the
time series literature, and these are discussed explicitly in Section 2.

10 Shi and Yu (2023) applied the ARFIMA(1,d,0) model to 10 U.S. index ETFs employing various estimation
techniques. With no valid inferential approach their focus was point estimates.
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Figure 1
Confidence set for the S&P 500 index ETF: SPY
Identification-robust inference was applied to the (demeaned) log realized volatility of SPY from 1996 to 2021.
The x-axis displays α and the y-axis shows d. The procedure identifies two isolated regions for (α,d) at the 95%
confidence level: (1) α is close to zero and d >0 (long memory), and (2) α is near-unity and d <0 (rough).

for pricing applications and one that has implications for forecasting. The
empirical prevalence of weak identification in the intricate landscape of
financial volatility and trading volume helps to explain the present coexistence
of two conflicting model approaches and empirical findings in the volatility
literature.
The main takeaways of our analysis are as follows: (a) The ARFIMA(1,d,0)

model has a weak identification issue that invalidates standard methods and
explains the performance of various estimation methods documented in Shi
and Yu (2023). (b) The problem of weak identification is widespread in
the landscape of financial return volatility and trading volume. This finding
explains the conflicting empirical findings in the volatility literature and reveals
an important cause of some heated debates regarding long memory versus
roughness in the recent literature.11

11 While weak identification suggests it is difficult to distinguish the two models from a statistical perspective, it
does not necessarily imply that the two models produce equal performance in applied scenarios, such as option
pricing and forecasting. The weak identification arises from the first-order equivalence of their spectral densities
at most frequencies with the exception of the frequencies extremely close to zero. However, the higher-order
terms or near-zero frequencies may have varying impacts in different contexts. Therefore, to judge the relative
merits of the two models, the application context should be considered and care in extrapolating lessons from
other contexts is needed.
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1. The Econometric Method

1.1. Fractionally integrated processes
We start with introducing the econometric model. Let L denote the lag operator.
The observed time series yt is modeled as an ARFIMA(1,d,0) process:

(1−αL)yt =ut , ut =σ (1−L)−d εt , (1)

where α is the AR coefficient, ut is an FI process with memory parameter d ,
σ >0 is a scale parameter and εt is a stationary martingale difference sequence
(MDS) with unit variance. In the stationary case in which d ∈ (−0.5,0.5) the
fractional operator in (1) can be defined by binomial series expansion as

(1−L)−d =
∞∑
j=0

(
−d

j

)
(−L) j =

∞∑
j=0

(d) j

j!
L j (2)

giving ut =σ (1−L)−d εt =σ
∑

∞

j=0
(d) j

j! εt− j . In (2), (d) j =d(d+1)...(d+ j −1)=
0(d+ j)
0(d) is a forward factorial and 0(·) is the gamma function. In nonstationary

cases in which d ≥0.5 initial conditions are set to a fixed origin such as t =0
and the series is truncated giving ut =σ (1−L)−d εt 1{t ≥1}=σ

∑t−1
j=0

(d) j
j! εt− j

(Phillips 1999; Shimotsu and Phillips 2005). When d =0 the series reduces to
the identity and ut =σεt . We write the parameter of interest as θ =(α,d), and
the variance σ 2 is treated as a nuisance parameter.
In our empirical work the observed series yt may be (after demeaning) a

volatility proxy, trading volume, or textual measures of news flow. While these
series are highly persistent, they evidently do not wander without bounds as
random walks. We therefore focus on the empirically relevant scenario by
restricting |α|<1. When 0< |d|<0.5, the innovation ut is stationary (Granger
and Joyeux 1980; Hosking 1981) with autocorrelation function (acf)

ρu (k)=
(−d)!(k+d −1)!

(d −1)!(k−d)!
∼a

(−d)!
(d −1)!

1

k1−2d
as k →∞, (3)

which decays at a polynomial rate (compared with the exponential rate of a
stationary ARMA model) as the lag k →∞. The spectral density of yt is

fθ (λ)=
σ 2

2π

[2−2cos(λ)]−d

1−2αcos(λ)+α2
for −π ≤λ≤π, (4)

which encodes the dynamics of the observed series yt .12

The sign of d determines whether the FI process ut has long or short memory.
McLeod and Hipel (1978) define a stationary process as having a long (resp.,
short) memory if its acf is not summable (resp., summable). Hence, ut has long

12 The spectral density is divergent with a fractional pole at the zero frequency when d >0. When d ≥0.5 and yt is
nonstationary, fθ (λ) is no longer integrable but is still defined for λ ̸=0 (Solo 1992; Velasco and Robinson 2000).

7

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/advance-article/doi/10.1093/rfs/hhaf022/8105809 by U

niversity of M
acau user on 21 M

ay 2025



The Review of Financial Studies / v 0 n 0 2025

memory when d >0 and short memory when d ≤0. The memory parameter d
in ut relates to the Hurst parameter H in the increment of fractional Brownian
motion (fBM) through the relationship d =H −1/2 (see Giraitis, Koul, and
Surgailis 2012, chap. 3).13 The Hurst index H controls the smoothness of the
sample path of fBM and the process has ‘rough’ paths when H ∈ (0,1/2).
The empirical literature on volatility modeling has yielded apparently

conflicting results on the memory parameter d (which we identify with its
continuous-time analogue H ). The long memory (d >0) and rough (d <0)
sample path models can have different implications for volatility forecasting
and option pricing. The conflicting empirical findings are surprising because
the long memory property of volatility has been deemed a stylized fact.
This in turn has stimulated an active area of research in the recent financial
econometrics literature.
Besides its long-run implications, the distinction between long memory and

rough-volatility models is also extremely important for the large literature
on high-frequency-based nonparametric volatility estimation, as most of the
existing work in that literature requires (in a stochastic sense) sufficient
smoothness in the volatility path that is incompatible with the rough-volatility
model. For instance, nonparametric estimation of spot volatility (e.g., over
an event window before or after a critical news announcement) requires a
small bandwidth to reduce bias when volatility is ‘rough’, which produces a
slow optimal rate of convergence. In the boundary case with d approaching
−0.5, the underlying fBM process is barely continuous and the convergence
rate becomes arbitrarily close to zero even with optimal tuning.14 This in
turn would severely limit the use of the high-frequency identification strategy
(Nakamura and Steinsson 2018a, b) based on heteroscedasticity (Rigobon
2003) or high-frequency regression-discontinuity designs (Bollerslev, Li, and
Xue 2018).
Motivated by these considerations, we aim to shed new light on longmemory

versus rough-volatility empirical issues. While the existing empirical studies
have focused on alternative ways of estimating d, we ask a more fundamental
question: whether this parameter is strongly or weakly identified along with
the companion AR coefficient α. If these parameters are weakly identified,
standard econometric inference may be severely distorted, and identification-
robust inference is required to reveal the underlying ambiguities in inference.

1.2. The weak identification problem
Why are d and α weakly identified? To guide intuition, note
that ARFIMA(1,d,0) with α=1 is observationally equivalent to

13 For the same reason, the d and α parameters in an ARFIMA(1,d,0) model correspond to two parameters in the
fractional Ornstein–Uhlenbeck process (see Tanaka 2013; Wang, Xiao, and Yu 2023a).

14 See, for example, Bollerslev, Li, and Liao (2021); Bollerslev, Li, and Li (2024).
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ARFIMA(1,d+1,0) with α=0. That is,

(1−L)yt =σ (1−L)−d εt ⇐⇒ yt =σ (1−L)−(d+1)εt . (5)

Thus, for any d ∈R there is identification failure between the two
configurations (α,d)=(1,d) and (α̃,d̃)=(0,d+1). This failure is clearly
specific to α=1, as the operator 1−αL reduces to 1−L and merges with the
differencing filter (1−L)−d to yield (1−L)−d−1. Failure manifests here in a
separable manner as these two isolated points on the parameter space become
observationally equivalent.
This simple identification failure in the ARFIMA model may appear

irrelevant if the unit AR root α=1 is ruled out a priori. But such a restriction
does not prevent weak identification when α is near-unity and there is near-
observational equivalence in the two structures. For whenever α is close to
unity (and α̃ close to zero), a breakdown of identification between (α,d)
and (α̃,d̃)=(0,d+1) holds approximately. In particular, a ‘rough’ parametric
configuration with d ≈−0.5 is observationally nearly equivalent to a ‘long
memory’ configuration with d ≈0.5, provided that α and α̃ are adjusted
accordingly.
This weak identification issue is qualitatively distinct from the ‘common

root’ identification failure in ARMA models. In that setting common AR and
MA roots are well-known to lead to identification failure (Ansley and Newbold
1980) and the related weak identification issue has been studied in detail
for stationary ARMA models by Andrews and Cheng (2012). Identification
failure in ARMA models can arise for any corresponding AR/MA parameter
values in the parameter space. In contrast, weak identification in the present
ARFIMA setting is specific to the joint ‘near-unity and near-zero’ scenario
for the AR coefficient and manifests as a discrete ‘phase transition’ between
(1,d) and (0,d+1). Complications related to unit-root asymptotics also prevent
any application of the common root ARMA weak identification analysis in the
present setting.
The weak identification issue considered here is related to but also distinct

from the well-known long memory estimation bias phenomenon in which both
Gaussian maximum likelihood and semiparametric Whittle estimates of long
memory exhibit large finite sample bias in the presence of a substantial AR
component. This bias problem was shown in early simulations in Agiakloglou,
Newbold, and Wohar (1993) and bias correction methods were considered
in subsequent research (e.g., Andrews and Guggenberger 2003; and Poskitt,
Martin, and Grose 2017).
To fix ideas, we now formalize the intuition on weak identification by

quantifying the ‘distance’ between two isolated local ARFIMA models. Let
d

∗

∈ (−1,0) be a fixed constant. We consider two models indexed by the
following local parameter regions: for some positive sequences γT =o(1), γ̃T =
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o(1), and ηT =O(1) as T →∞, define the regions{
RT = {(αT ,dT ) : |αT −1|<γT ,

∣∣dT −d
∗
∣∣<ηT },

R̃T = {(α̃T ,d̃T ) : |α̃T |<γ̃T ,|d̃T −d
∗

−1|<ηT }.
(6)

Note that RT and R̃T are, respectively, near the identification-failure points
(1,d

∗

) and (0,d
∗

+1) in the AR dimension (i.e., α), shrinking at rates γT and γ̃T ;
we only require γT →0 and γ̃T →0 without setting any specific rates on these
sequences. The formulation subsumes a large class of near-unity15 and near-
zero local parameterizations that have been used in the econometric literature.
Since the dynamics implied by each parameter vector θ =(α,d) is summa-

rized by the spectral density fθ (·), the two local models may be represented as
the corresponding collections of spectral densities, MT = { fθ (·) :θ ∈ RT } and
M̃T = { fθ (·) :θ ∈ R̃T }. This definitionmirrors the usual definition of a statistical
experiment as a collection of probability laws, but our focus ismore specifically
on the dynamics, with other model ingredients treated as nuisance. To quantify
the distance between the two local models, we define the deficiency of M̃T

with respect to MT as

δ(M̃T ,MT )≡ sup
θ∈RT

inf
θ̃∈R̃T

sup
λT ≤|λ|≤π

∣∣log fθ (λ)−log fθ̃ (λ)
∣∣,

where the lower bound λT >0 may possibly shrink to zero.16 The idea under
this definition is, for any θ ∈ RT under the model MT , one can find θ̃ ∈ R̃T

under the other model M̃T , such that the uniform distance between their
spectral densities (in log form) is bounded by δ(M̃T ,MT ). The deficiency
measure thus quantifies the extent to which the dynamics generated by MT

cannot be captured by M̃T . Symmetrizing the roles of MT and M̃T , we can
then gauge the distance between the two local models using

1(MT ,M̃T )=max
{
δ(M̃T ,MT ),δ(MT ,M̃T )

}
,

which is, in fact, the Hausdorff distance between the MT and M̃T sets of
functions induced by the local uniform metric on the space of spectral density
functions. When the distance between the two models is zero, they generate
exactly the same spectral densities. Theorem 1 shows that this equivalence
nearly holds for MT and M̃T .

Theorem 1. Let RT and R̃T be defined as (6) for some positive sequences
γT =o(1), γ̃T =o(1), and ηT =O(1). Then, 1(MT ,M̃T )=O((λ−2

T γT )∨ γ̃T ),
where ∨ is the supremum operator.

15 The near-unity restriction covers a wide spectrum of near unit root behavior, including the local-to-unity
specification of Phillips (1987) and Chan and Wei (1987), the mildly integrated specification of Phillips and
Magdalinos (2007), and the general near-unity specification of Phillips (2023).

16 The λT lower bound is needed to properly define the uniform distance between spectral densities for ARFIMA
models because these densities have fractional poles at frequency zero. When dT ̸= d̃T the fractional asymptotes
differ and the lower bound λT →0 controls the rate at which comparisons are made in the relative differences
between the spectral densities as T →∞.
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Weak Identification of Long Memory with Implications for Volatility Modeling

This result formally clarifies the weak identification issue in the ARFIMA
context. It shows that the 1(MT ,M̃T ) distance between the two local models,
parameterized by RT and R̃T , asymptotically shrinks to zero when the former
is near-unity and the latter is near-zero (in the AR dimension). This leads to a
rather severe form of weak identification because the two sets of parameters
RT and R̃T are not close to each other, as they are centered on the two isolated
points

(
1,d

∗)
and

(
0,d

∗

+1
)
in the (α,d) plane. As γT and γ̃T approach zero,

these two regions become farther apart in the parameter space but, as shown in
Theorem 1, the difference between their dynamic implications also vanishes,
provided the lower frequency bound λT does not tend to zero too fast, that is,
faster than

√
γT . As such, weak identification arises in a ‘bimodal’ form, with

two distinct sets of parameters being observationally nearly equivalent.
To illustrate this point, Figure 2 plots the log spectral densities of the

ARFIMA model under these two local models. In panel A, the configuration
with α=0 and d =0.5 belongs to M̃T , while the others fall in MT with α
ranging from 0.8 to 0.999 and d fixed at −0.5. Similarly, in panel B, the
configuration α=0.995 and d =−0.5 falls in MT , while the spectral densities
for the remaining parameter settings are in M̃T with α between −0.2 and 0.2.
Evidently, as α→1 (resp., α→0), the log spectral density generated fromMT

(resp., M̃T ) approaches and eventually becomes virtually indistinguishable
from that associated with M̃T (resp. MT ), revealing the weak identification
between them, subject to the lower frequency bound λT not passing to zero so
fast that the different order of the fractional poles dominates the discrepancy in
the spectral densities. To further appreciate the impact of λT on the discrepancy
measure, we show in the inset in panel A an enlarged graphic of the log spectral
densities focused at frequencies closer to zero, ranging between 0.001 and 0.02.
For a given θ ∈ R̃T (panel A), the uniform distance between the two spectral
densities is affected by the lower bound of λ but diminishes rapidly provided
λT does not pass to zero too fast. When θ is in RT , the densities are very close
(panel B). In this case, the impact of a small negative α under long memory
with d =0.5 also raises spectral power at high frequency.
This weak-identification perspective on ARFIMA specifications provides

a plausible explanation for the conflicting empirical findings in the literature
regarding long memory or roughness in volatility dynamics. In the empirical
rough volatility literature when αT is assumed to be unity or local to unity the
estimated value of d is negative and often close to –0.5 (Gatheral, Jaisson, and
Rosenbaum 2018; Fukasawa, Takabatake, and Westphal 2022; Wang, Xiao,
and Yu 2023b; Bolko et al. 2023).17 This corresponds to the RT region in our
analysis. As discussed above, such a parametric configuration is essentially
indistinguishable from its counterpart in R̃T with d around 0.5 and αT

17 The discrete-time representation of fBM implies that αT is unity while the discrete-time representation of fOU
under an infill scheme implies that αT is local to unity.
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Weak Identification of Long Memory with Implications for Volatility Modeling

near zero. The latter parameter values are actually in line with the estimates
reported in the long memory RV literature reviewed in the Introduction.
If weak identification is indeed in force, conventional asymptotic inference

based on strong identification may be unreliable. This explains why Shi and Yu
(2023) find two disjoint intervals in the highest density set for the time-domain
maximum likelihood estimators and frequency-domain maximum likelihood
estimators. Similar effects have been extensively studied in the literature on
weak instrumental variables (Staiger and Stock 1997; Moreira 2003), the
setting of weak generalized method of moments (GMM) (Stock and Wright
2000; Andrews and Mikusheva 2022), and more generally in Andrews and
Cheng (2012). A key lesson from the weak identification literature is this: if the
strength of identification is in doubt, it is better to apply inferential methods that
are robust to identification failure. This idea motivates the approach we now
propose.

1.3. Identification-robust confidence sets
Theory suggests that parameters α and d are jointly weakly identified when
α is near-unity or near-zero. To prevent weak identification from distorting
statistical inference, we now construct identification-robust confidence sets for
θ =(α,d). Using a standard approach from the weak identification literature
we construct Anderson–Rubin confidence sets by inverting tests for null
hypotheses of the form H0 :θ0=θ , where θ0 denotes the true parameter value
and θ denotes a generic candidate parameter that runs over the parameter
space 2. Specifically, equipped with a test that has asymptotic size β and
following Anderson and Rubin (1949), the associated 1−β level confidence
set is constructed as the collection of all nonrejected parameter values, viz.,

CS1−β = {θ ∈2 :The null hypothesis H0 :θ0=θ is not rejected at level β}.
(7)

The remaining task is to construct a test that is robust to weak identification.
Conventional tests derived from (quasi) maximum likelihood or GMM
estimators are not suitable for this task, because the classical inferential theory
relies heavily on strong identification. We instead consider a test that targets
moment conditions implied by the null hypothesis θ0=θ .18 Under the null the
θ -implied disturbance term εt (θ )≡ (1−L)d (yt −αyt−1) coincides with the true
εt error term and forms an MDS. This in turn implies

H W N
0 :γ j (θ )=0 for all j ≥1, (8)

18 This idea is similar in spirit to the Anderson-Rubin test proposed by Chevillon, Massmann, and Mavroeidis
(2010) to deal with inferences in a structural model with strongly persistent data.
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where γ j (θ ) denotes the autocovariance of εt (θ ) of order j .19 We may test the
original null hypothesis H0 :θ0=θ by testing the moment conditions in (8), viz.,
εt (θ ) forms a white noise sequence for the candidate parameter value θ .
It is worth clarifying that the ‘white-noise’ null hypothesis H W N

0 does not
fully exhaust the model restrictions implied by the maintained stationary MDS
assumption on εt . By testing the weaker null hypothesis H W N

0 , we intentionally
direct test power toward the detection of non-zero serial correlations rather
than general forms of nonlinear serial dependence (which are not intended to
be captured by the ARFIMA model). Evidently, this technical gap would not
have appeared if we had assumed from the outset that εt ‘only’ comprised white
noise. We adopt the stationaryMDS structure for technical convenience, which
is common in the literature, because it simplifies the computation of the test
statistic.
Our proposal for constructing identification-robust confidence sets is simply

to invert tests for zero serial correlation in the implied disturbance. Testing for
serial correlation is a well studied topic in time series analysis.We can therefore
address weak identification in the present context by drawing from the broad
literature on serial correlation tests.
We adopt the Adaptive Portmanteau (AP) test proposed by Escanciano

and Lobato (2009). It is designed to detect violations of the null hypothesis
up to the pth lag. The key advantage of their approach is to choose p in
a data-driven fashion, which makes the test ‘adaptive’ with respect to the
unknown complexity and nonparametric nature of the alternative. The test also
readily accommodates a martingale difference sequence structure of the error
without requiring εt to be i.i.d. The simulation evidence provided in Escanciano
and Lobato (2009) shows that the AP test is generally more powerful than
commonly used competitors.
We implement the AP test for a given candidate parameter θ as follows. Let

γ̂ j (θ ) denote the j th sample autocovariance of εt (θ ), that is,

γ̂ j (θ )≡
1

T − j

T∑
t= j+1

(εt (θ )− ε̄(θ ))(εt− j (θ )− ε̄(θ )),

where ε̄(θ ) is the sample average of εt (θ ). The asymptotic variance of γ̂ j (θ ) is
estimated by

τ̂ j (θ )≡
1

T − j

T∑
t= j+1

(εt (θ )− ε̄(θ ))2(εt− j (θ )− ε̄(θ ))2.

19 When dealing with an ARFIMA specification that includes q moving average terms, one may initiate the test
starting from and including γq+1 (θ ), effectively treating the moving average parameters as an unknown nuisance.
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Weak Identification of Long Memory with Implications for Volatility Modeling

For a generic lag order p≥1, the portmanteau test statistic is defined as the
sum of squared t-statistics in the following form

Q p (θ )≡T
p∑

j=1

γ̂ j (θ )2

τ̂ j (θ )
. (9)

The data-driven choice of p underlying the AP test relies on a combination of
theAkaike InformationCriterion (AIC) and the Bayesian InformationCriterion
(BIC). Specifically, let p̄≥1 be a user-specified upper bound for p. Define the
hybrid penalty function π (p,T ) as

π (p,T )≡

{
p logT if max

1≤ j≤ p̄

√
T |γ̂ j (θ )|/

√
τ̂ j (θ )≤

√
2.4logT ,

2p otherwise.
(10)

The lag order actually used in the AP test, denoted by p
∗

(θ ), is determined as
(the smallest element of) the argmax of Q p (θ )−π (p,T ), with T and θ taken
as given.
With this notation, the AP test statistic is defined by

Q
∗

(θ )≡T
p
∗
(θ )∑

j=1

γ̂ j (θ )2

τ̂ j (θ )
. (11)

Escanciano and Lobato (2009) show that the asymptotic distribution of this
test statistic under the null hypothesis is χ2

1 , since the optimal lag order is one
under the null hypothesis. Hence, we reject the null at the significance level β
when Q

∗

(θ ) exceeds the 1−β quantile of χ2
1 , denoted by χ2

1,1−β . Recalling (7),
the 1−β level identification-robust confidence set that we propose can thus be
written explicitly as follows

CS1−β =
{
θ ∈2 :Q

∗

(θ )≤χ2
1,1−β

}
. (12)

For ease of application, we summarize the proposed procedure in the following
algorithm.

We also investigated the weak identification issue via Monte Carlo with data
simulated from the ARFIMA(1,d,0) model (1) setting d =−0.4 or 0.4 and α
taking a wide range of values. The identification-robust inference procedure
was implemented as described in Algorithm 1. Details of the simulation design,
numerical implementation of the inference procedure, and findings are reported
in Appendix B. The results show that ARFIMA(1,d,0) has a severe weak
identification issue when α is near-unity with negative d or when α is near-
zero with positive d . In such cases, the identification-robust confidence sets
typically exhibit bifurcation, the same pattern predicted by theory, and this
outcome persists even when the sample size rises from 2,000 to 5,000. The
probability of bifurcation is higher as α moves closer to zero (unity) when d is
positive (negative).
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Algorithm 1 (Construction of Identification-Robust Confidence Sets).

Step 1: For a given candidate parameter vector θ =(α,d)∈2, obtain the implied
residual sequence εt (θ )=(1−L)d (yt −αyt−1).
Step 2: Given a user-specified upper bound p̄, compute Q p(θ ) according to (9) for
all p∈{1,..., p̄}. Set p

∗

(θ ) as the smallest p that maximizes Q p(θ )−π (p,T ), with
π (p,T ) defined by (10).
Step 3: Compute the AP test statistic Q

∗

(θ ) as in (11).
Step 4: Repeat Steps 1–3 for all θ on a (fine) discretization of the parameter space
2. Form the 1−β level confidence set as (12), which collects all θ ’s such that Q

∗

(θ )
is below the 1−β quantile of the χ2

1 distribution. □

2. Empirical Applications

We now apply the proposed inference procedure to volatility measures in a
manner akin to the role of an econometrician striving to identify the most
suitable model for the data. This process illustrates the challenges encountered
due to the striking similarity between the two models.
Daily realized volatility (RV) measures from two publicly available

databases are employed: the Realized Library of the Oxford–Man Institute of
Quantitative Finance and the Risk Lab constructed by Dacheng Xiu.20 For the
analysis of U.S. equity market data, we use daily RV time series of the S&P
500 market ETF, nine industry ETFs, and the Dow Jones Industrial Average
30 stocks from the Risk Lab (see Da and Xiu (2021) for the construction of
these measures).21 Table S1 of the internet appendix lists assets and summary
statistics. We also conduct empirical analyses of international stock market
indexes, for which the RV measures are obtained from the Realized Library
and constructed as the sum of squared 5-minute intraday returns (see Table S2
in the Internet Appendix for a summary).
Following Andersen et al. (2003), we model each demeaned log RV series

using the ARFIMA model in (1). For each series we compute the 95%-level
robust confidence set for (α,d) by inverting the AP test at the 5% significance
level, as in Algorithm 1. The implied inferences are constructed in a
semiparametric data-driven manner with respect to potential serial correlation,
employ asymptotic theory under the null, and do not rely onGaussian errors. To
simplify interpretation, we treat the RVmeasures as stand-alone time series and
confine our attention to their properties. In principle it is possible to translate
evidence obtained from the RV measures into statements regarding certain
latent volatility-related functionals (e.g., integrated variance or quadratic
variation) by invoking the so-called ‘asymptotic negligibility argument’ as

20 See https://realized.oxford-man.ox.ac.uk/ and https://dachxiu.chicagobooth.edu/\#risklab.

21 Since Dow Inc. (NYSE: DOW) is listed on NYSE only since 2019, its sample size is substantially shorter than
all the other stocks. For this reason we replace it with Exxon Mobil Co. (NYSE: XOM), which belonged to the
Dow Jones index until August 31, 2020.
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in Corradi and Distaso (2006) (see also Li and Patton (2018) for similar
results designed more specifically for hypothesis testing). Extensions to obtain
such further interpretation requires additional assumptions and asymptotic
approximations with no changes in the robust approach to inference.22 This
extension is not pursued here to retain the weak identification focus of the
paper.
We carry out the test inversion via a grid search for (α,d)∈ [−1,1]×

[−1,1]. Given the large number of assets under consideration, presenting and
comparing the two-dimensional confidence sets for all data series (say, in
the form of Figure 1) is challenging in limited space. To achieve a concise
presentation, we report the one-dimensional confidence sets for α and d by
projecting the two-dimensional confidence sets onto each dimension.
Figure 3 plots the one-dimensional confidence sets for the SPY and the nine

industry ETFs, with panel A and panel B showing the results for α and d ,
respectively. Since the confidence set for (α,d) often contains two disjoint
regions, we use two gray scales (dark and light) to signify them, so that the
same-colored one-dimensional confidence sets of α and d are projected from
the same parent two-dimensional confidence set. By convention, the dark-
colored (resp., light-colored) confidence sets are associated with d >0 (resp.,
d <0). From Figure 3, we can see that 5 of the 10 ETFs (including SPY,
XLP, XLU, XLV, and XLY) have confidence sets with disjoint regions. In
dark-colored regions α is near-zero and the positive d indicates long memory,
whereas in light-colored regions α is near-unity and d takes large negative
values. These patterns are consistent with theory, earlier intuition, and mirror
the simulation findings, revealing evidence of weak identification in these
cases.
These findings go some way to reconcile conflicting evidence on long

memory and rough-volatility in the existing literature. By accommodating the
possibility of weak identification and adopting identification-robust inference,
the present approach offers a rationale for different modeling schemes to
‘coexist’, with both showing statistical support in the data. Lessons from
the wider literature on weak identification suggest caution in the use of
conventional methods that presume strong identification in the present setting
of ARFIMA inference. Prior restriction of attention to one region in the
parameter space (e.g., by imposing α=1 or by conducting optimization within
a local neighborhood) removes the opportunity to introduce evidence in partial
support of an alternative parameter region of d, thereby influencing forecasting
and decision making.

22 Asymptotic negligibility arguments use sufficient conditions to ensure the errors between a realized measure
and its ‘population’ continuous time counterpart can be ignored provided the high-frequency measures converge
sufficiently fast. In recent work Bolko et al. (2023) explicitly address the measurement error problem by
introducing assumptions on the proxy error which require primitive conditions on the continuous model and
may be misspecified in general.
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Figure 3 also reveals that the confidence sets for some assets (including
XLB, XLE, XLF, XLI, and XLK) consist of only a single region, becoming
confidence intervals. These confidence intervals for d all hover around 0.4,
which is close to the estimate reported in Andersen et al. (2003) and other
work, thereby favoring the long memory narrative advocated in the early RV
literature.
So far, the evidence from the 10 ETFs clearly demonstrates the empirical

relevance of weak identification and the difficulty in robustly discriminating
between long memory and rough dynamics. This phenomenon is not specific
to ETFs. Similar analyses were conducted for each of the 30 constituent stocks
of the Dow Jones Industrial Average, and Figure 4 plots the resultant one-
dimensional confidence sets for α and d. Almost all these sets bifurcate,
suggesting that weak identification issues are even more prevalent for
individual stocks than market indices. The estimated confidence sets are again
fairly stable across assets.
Additional evidence is obtainedwith data from a broad range of international

markets. The analysis relies on the daily RV series for all 31 stock market
indices.23 The same procedure is conducted for these market-level volatility
measures, and Figure 5 plots the projection-based one-dimensional confidence
sets. The confidence sets for nine of the 31 indices exhibit bifurcation, 18
of them are single-region, and the confidence sets for the remaining four
indices (i.e., AEX, FCHI, FTMIB, and KSE) are empty.24 These findings show
that weak identification issues occur over a broad set of markets but that the
overall evidence tends in favor of the long memory configuration, which is
always present in the confidence set regardless of whether there is one region
or two regions. The volatility of stock market indices are weighted sums of
individual stock variances and covariances. The fact that their RV measures
exhibit stronger support for long memory is consistent with the property that
long memory can arise from aggregation (Robinson 1978; Granger 1980). The
Internet Appendix provides additional subsample results that support the same
conclusion.
The methodology is then applied to trading volume data, which holds

independent economic interest and is expected to exhibit dynamics similar
to price volatilities. This expectation is based on the mixture-of-distributions
hypothesis (Clark 1973; Tauchen and Pitts 1983; Andersen 1996), which
posits that both price volatility and trading volume are driven by underlying
information flows. Additionally, trading volumes are somewhat easier to
interpret than RV measures because volume series are directly observable

23 Robustness checks based on alternative RV measures are provided in the Internet Appendix.

24 An empty confidence set may be interpreted as a specification test leading to a rejection of the hypothesis that
the ARFIMA(1,d,0)model is correctly specified for a given data series. However, in view of the number of time
series analyzed in the empirical analysis, these rejections seem tolerable with respect to possible false rejections
(type I errors).

19

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/advance-article/doi/10.1093/rfs/hhaf022/8105809 by U

niversity of M
acau user on 21 M

ay 2025

https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/hhaf022#supplementary-data
https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/hhaf022#supplementary-data


The Review of Financial Studies / v 0 n 0 2025

F
ig
ur
e
4

C
on

fi
de
nc
e
se
ts
fo
r
D
ow

Jo
ne
s
In
du

st
ri
al

A
ve
ra
ge

co
m
po

ne
nt

st
oc
ks

T
he

pa
ne
ls
sh
ow

th
e
95

%
id
en
tif
ic
at
io
n-
ro
bu
st
co
nf
id
en
ce

se
ts
fo
r
th
e
(d
em

ea
ne
d)

lo
g
R
V
of

th
e
30

D
ow

Jo
ne
s
In
du
st
ri
al
A
ve
ra
ge

co
m
po
ne
nt

st
oc
ks

fr
om

19
96

to
20
21
.T

he
le
ft
(r
ig
ht
)
pa
ne
l

pr
ov
id
es

pr
oj
ec
tio

ns
of

th
e
co
nf
id
en
ce

se
ts
on

th
e

α
-a
xi
s
(d
-a
xi
s)
fo
r
ea
ch

as
se
t.
L
ab
el
s
on

th
e

x-
ax
is
ar
e
th
e
tic
ke
rs
of

th
e
30

st
oc
ks
.

20

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/advance-article/doi/10.1093/rfs/hhaf022/8105809 by U

niversity of M
acau user on 21 M

ay 2025



Weak Identification of Long Memory with Implications for Volatility Modeling

F
ig
ur
e
5

C
on

fi
de
nc
e
se
ts
fo
r
in
te
rn
at
io
na

ls
to
ck

m
ar
ke
t
in
di
ce
s

W
e
co
m
pu
te
95

%
id
en
tif
ic
at
io
n-
ro
bu
st
co
nf
id
en
ce

se
ts
fo
r
th
e
(d
em

ea
ne
d)

lo
g
R
V
of

th
e
31

in
te
rn
at
io
na
ls
to
ck

m
ar
ke
ti
nd
ic
es
,a
nd

th
e
co
nf
id
en
ce

se
ts
w
er
e
pr
oj
ec
te
d
on
to

th
e

α
-
an
d

d-
ax
es
.

T
he

le
ft
(r
ig
ht
)
pa
ne
ld

is
pl
ay
s
th
e
pr
oj
ec
te
d
co
nf
id
en
ce

in
te
rv
al
s
on

th
e

α
-a
xi
s
(d
-a
xi
s)
fo
r
ea
ch

as
se
t.
L
ab
el
s
on

th
e

x-
ax
is
ar
e
th
e
tic
ke
rs
of

th
e
31

in
te
rn
at
io
na
ls
to
ck

m
ar
ke
ti
nd
ic
es

an
d
th
ei
r

na
m
es

ca
n
be

fo
un
d
in

Ta
bl
e
S2

of
th
e
In
te
rn
et
A
pp
en
di
x.

21

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/advance-article/doi/10.1093/rfs/hhaf022/8105809 by U

niversity of M
acau user on 21 M

ay 2025

https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/hhaf022#supplementary-data


The Review of Financial Studies / v 0 n 0 2025

(in contrast to RV measures which are often regarded as proxies for latent
volatility functionals). Results are presented in Section S2 of the Internet
Appendix. There is overwhelming evidence of weak identification in the
trading volume data. Almost all the confidence sets have two disjoint regions,
one suggesting rough near unit root dynamics and the other implying long
memory with weak short-run dynamics.
These empirical results for RV measures and trading volumes are sum-

marized as follows. First, weak identification is prevalent in volatility and
trading volume dynamics analyzed via ARFIMA modeling. Robust inference
manifests the issue in bifurcated confidence sets, suggesting caution in
any statements about the generating mechanism relating to long memory
versus roughness when the methodology relies on a presumption of strong
identification. Second, for some assets the robust confidence sets reveal only a
single region, which is always associated with a long memory configuration
(d >0). Long memory therefore appears to be more compatible with the
in-sample RV dynamics for these assets.

3. Conclusion

In the early empirical finance literature the ARFIMA(1,d,0) model was found
to be an adequate model for log realized volatility with a fitted AR parameter
(α) near zero and estimated memory parameter (d) close to 0.5, signifying
long memory in volatility. Recent literature using the same ARFIMA model
has found AR parameters near-unity and memory parameters close to −0.5,
providing evidence for ‘rough volatility’, reflecting a primary characteristic
of antipersistent time series in contrast to long memory. This paper explains
these coexisting, yet conflicting, empirical outcomes as a symptom of intrinsic
weak identification within the ARFIMA model itself. Our theory suggests
that, while the two parameter configurations appear very different, the distance
between the corresponding models converges to zero when the AR parameter
is localized to unity or zero. The resultant weak identification yields model
ambiguities, explaining the emergence of two contrasting perspectives on
volatility dynamics.25

To reveal the bifurcation in empirical data and address this potential
ambiguity our approach proposes the use of Anderson–Rubin identification-
robust confidence sets for the model parameters by inverting tests for zero
serial correlation in the implied disturbances. This method not only serves as
an effective tool for revealing the weak identification issue in empirical studies
but also provides a robust framework for parameter inference in the presence of
this issue. Extensive applications of this approach conducted on a broad range

25 Weak identification does not equate to model equivalence. Evaluating the relative merits of the two models
requires attention to the specific application context, and caution should be exercised when drawing conclusions
from other settings.
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of realized volatility and trading volume series, document the prevalence of
weak identification in ARFIMA inference. Robust confidence sets are often
found to bifurcate, containing two disjoint regions that signal a severe form
of weak identification and reveal an indeterminacy between the two parameter
configurations reported in the literature.
The weakness in ARFIMA modeling that this paper reveals is a cautionary

message to empirical investigators using this model. A deeper implication is
that the observed data are often not rich enough to discriminate between disjoint
memory structures in the ARFIMA model framework. Practical econometric
work can face this reality by reporting confidence regions that reflect any
ambiguity, as demonstrated here, and if this robustness is insufficient for
a task at hand, such as prediction, then the framework must be extended
to accommodate data that might assist in resolving the ambiguity. Possible
extensions include the use of varying coefficient regression so that memory and
AR parameters vary according to news flow covariates that import information
about memory in the data to assist in resolving ambiguities; another approach
might incorporate such covariates in a multivariate system to jointly model
news flowswith relevant economic variables. Such extensions are left for future
research.

Code Availability
The replication code is available in the Harvard Dataverse at https://dataverse.
harvard.edu/api/access/datafile/10679995.

Appendix A. Proof of Theorem 1
Proof. Throughout this proof K denotes a generic finite positive constant that may change from
line to line but does not depend on T or parameter values in RT or R̃T . Let θ =(αT ,dT )∈ RT .
Consider a generic sequence α̃T such that |α̃T |<γ̃T and set θ ′ =(α̃T ,dT +1). It is easy to see that
θ ′

∈ R̃T . Hence,

inf
θ̃∈R̃T

sup
λ

∣∣log fθ (λ)−log fθ̃ (λ)
∣∣≤sup

λ

∣∣log fθ (λ)−log fθ ′ (λ)
∣∣, (A1)

where we have written supλ in place of supλT ≤|λ|≤π for brevity. By definition (recall (4)),

log f(αT ,dT ) (λ)= log

(
σ 2

2π

)
−dT log(2−2cos(λ))−log

(
1−2αT cos(λ)+α2

T

)
,

log f(α̃T ,dT +1) (λ)= log

(
σ 2

2π

)
−(dT +1)log(2−2cos(λ))−log

(
1−2α̃T cos(λ)+α̃2

T

)
,

so that supλ

∣∣∣log f(αT ,dT )(λ)−log f(α̃T ,dT +1) (λ)
∣∣∣ is

sup
λ

∣∣∣∣∣log
(

2−2cos(λ)

1−2αT cos(λ)+α2
T

)
+log

(
1−2α̃T cos(λ)+α̃2

T

)∣∣∣∣∣
≤sup

λ

∣∣∣∣∣log
(

2−2cos(λ)

1−2αT cos(λ)+α2
T

)∣∣∣∣∣+supλ
∣∣∣log(1−2α̃T cos(λ)+α̃2

T

)∣∣∣. (A2)
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Since αT →1, we may assume that αT ∈ (1/2,2) without loss of generality. Hence, uniformly
for λ satisfying λT ≤|λ|≤π ,

2−2cos(λ)

1−2αT cos(λ)+α2
T

≥
2−2cos

(
λT
)

9
>0.

By the mean-value theorem, we further have

sup
λ

∣∣∣∣∣log
(

2−2cos(λ)

1−2αT cos(λ)+α2
T

)∣∣∣∣∣=supλ
∣∣∣∣∣log

(
2−2cos(λ)

1−2αT cos(λ)+α2
T

)
−log(1)

∣∣∣∣∣
≤

9

2−2cos
(
λT
) sup

λ

∣∣∣1−2(1−αT )cos(λ)−α2
T

∣∣∣≤ K

(
|1−αT |+|1−αT |

2

λ2T

)
. (A3)

Similarly, since α̃T →0, 1−2α̃T cos(λ)+α̃2
T →1 uniformly for all λ, and so, is uniformly bounded

away from zero. Applying the mean-value theorem again yields

sup
λ

∣∣∣log(1−2α̃T cos(λ)+α̃2
T

)∣∣∣≤ K
(
|α̃T |+α̃2

T

)
. (A4)

Combining (A1)–(A4) yields

inf
θ̃∈R̃T

sup
λ

∣∣log fθ (λ)−log fθ̃ (λ)
∣∣≤ K

(
λ−2

T |1−αT |+|α̃T |

)
=O

(
(λ−2

T γT )∨ γ̃T

)
.

The upper bound in the above display holds for a constant K independent of θ and so for the sup

over θ ∈ RT , which implies that δ(M̃T ,MT )=O
(
(λ−2

T γT )∨ γ̃T

)
. By symmetry, δ(MT ,M̃T )=

O
(
(λ−2

T γT )∨ γ̃T

)
and the theorem follows. ■

Appendix B. Simulations: Identification-Robust Confidence Sets
We apply the proposed identification-robust inference method in a Monte Carlo setting that is
designed to illustrate the intuition discussed in Section 1.2 and, at the same time, match some key
patterns seen in empirical work, including our own study in Section 2. We generate the observed yt
series from the ARFIMA(1,d,0) model (1) for different (α,d) parameter values, with the εt error
terms simulated as i.i.d. standard normal variables.26 Specifically, we consider d =−0.4 or 0.4
under which the process ut exhibits roughness or long-memory, respectively. Whether the model
is weakly or strongly identified depends critically on the value of the autoregressive coefficient α.
Accordingly, we consider a broad range of configurations for this parameter by varying its value
over the set A= {−0.2,−0.1,0,...,0.9}∪{0.995}, with the point α=0.995 being representative of
the near-unity region.27

Under each configuration, we compute the 95%-level robust confidence set for (α,d) as
described in Algorithm 1. Test inversion is carried out via a grid search over the set [−1,1]×
[−1,1]. This candidate set is sufficiently wide so that empirical estimates seen in the prior literature
are not ruled out a priori. To keep the computationmanageable, we discretize each dimension of the
parameter space with mesh size 0.01. Since the near-unity region for the autoregressive parameter
α is of special importance, we refine the mesh size for α down to 0.001 when α∈ [0.99,1].

It is instructive to illustrate the workings of the proposed confidence set for a single random
draw in the Monte Carlo experiment. Figure B1 plots the estimated confidence sets constructed

26 Since the inference procedure is scale-invariant, the scale parameter σ is set to unity without loss of generality.

27 This value matches the estimate reported in Shi and Yu (2023) for the S&P 500 ETF (SPY) from January 2010
to May 2021 based on the Whittle method.
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for a single sample path in each of four Monte Carlo configurations. Specifically, we consider two
sample sizes, T =2,000 or T =5,000, that are in line with the real data sets used in our empirical
study. For each sample size, we consider two parameter configurations (α,d)=(0.995,−0.4) or
(0,0.4), which are representative of the empirical estimates in prior studies that support rough
or long-memory volatility dynamics, respectively (see, e.g., Gatheral, Jaisson, and Rosenbaum
(2018) and Andersen et al. (2003)). Also note that these configurations directly mirror the two
parameterizations analyzed in Theorem 1.

Inspection of the plotted confidence sets for all four settings in Figure B1 reveals that they
share a common ‘bifurcation’ pattern in which there are two disjoint regions regardless of which
region actually contains the true parameters. One region features near-unity α and d <0 (signifying
roughness), while the other features near-zero α and d >0 (signifying long-memory). Viewed
through the lens of robust confidence set inference, neither of these two possibilities can be
ruled out at the given confidence level, despite the fact that the parameter values seem highly
disjoint and individually very different between the two regions. Although this indeterminacy may
be disconcerting and unsatisfying from a practical viewpoint, it reflects the intrinsic difficulty
arising from the near indistinguishability of the two parameter schemes, given the available data
and the focus on autocovariances. Increasing the sample size from 2,000 to 5,000 sharpens the
individual regions in the confidence sets asmay be expected but it does not eliminate the bifurcation
phenomenon.

The pattern depicted in these illustrations is representative. This may be shown by overlaying
the plots in Figure B1 across all 1,000 Monte Carlo trials. More precisely, for each candidate
parameter value on the (α,d) plane we compute the frequency that it falls in the confidence set;
we then plot these coverage rates as a heatmap, where darker colors represent higher frequencies.
For brevity, we focus on the case T =5,000, which is roughly the average sample size for data
sets used in our empirical work. The top row of Figure B2 plots the coverage rate heatmaps for
(α,d)=(0.995,−0.4) and (α,d)=(0,0.4), as in the illustrative examples. The bifurcation pattern is
again self-evident, suggesting that the identification-robust confidence sets generally contain those
two disjoint regions. While our approach does not estimate any parameter, our findings reinforce
what Shi and Yu (2023) found when maximum likelihood methods are used.

For comparison, we plot heatmaps for the true parameter values (α,d)=(0.5,−0.4) or (0.5,0.4)
in the bottom row of Figure B2. From the analysis in Section 1.2, weak identification is mainly
relevant when α is near-unity or near-zero. Therefore, the two configurations with α=0.5 are
expected to deliver strong identification and this behavior is evident in the plotted heatmaps.
Indeed, an ‘average’ confidence set for (α,d) has the familiar (single-region) elliptic shape and is
centered on the true parameter value, precisely what is expected in classical likelihood or moment-
based inference. On the other hand, confidence sets under strong identification are not necessarily
small. Instead, weak identification is revealed through nonstandard shapes, such as the bifurcation
pattern seen here in the robust confidence sets, rather than by the size of the confidence set. Readers
are referred to the literature for a deeper discussion of these differences (Staiger and Stock 1997;
Stock and Wright 2000; Stock and Yogo 2005; Andrews and Cheng 2012; Andrews, Stock, and
Sun 2019).

To reveal the incidence of bifurcation, Figure B3 plots its frequency of occurrence as a function
of the true value of the autoregressive coefficientα∈Awhile fixing d =−0.4 (left) or d =0.4 (right).
For brevity the T =5,000 case is reported. In the left panel where d =−0.4 the confidence set almost
always contains two disjoint regions when α=0.995, just as in panel A of Figure B2.When α=0.9,
the bifurcation frequency drops to approximately 70%, suggesting that weak identification is still
largely in play. As the true value of α moves farther away from the near-unity region, the bifurcation
frequency drops essentially to zero. The overall pattern is consistent with the intuition that when
d <0 the parameters tend to be weakly identified when α is near-unity. Mirroring this finding, the
right panel of Figure B3 shows that when d >0, weak identification is more severe when α is close
to zero, complementing intuition and Theorem 1.
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In cases of weak identification, the long-memory region is generally larger than the rough
region, a result that is expected for the following reasons. First, from Figure B3, in the case of
rough volatility (panel A) the weak identification issue disappears almost completely when γT =0.2
(i.e., α=0.8), whereas in the case of long-memory (panel B) the bifurcation frequency remains
more than 50% when γ̃T =0.2 (i.e., α=0.2). The asymmetric impact of γT and γ̃T on weak
identification is also manifest in Theorem 1, where γT is shown to have a more significant impact
on the order magnitude of the distance O((λ−2

T γT )∨ γ̃T )) than γ̃T . It is therefore unsurprising
that the long-memory region is larger than the rough volatility region. Second, we impose the
restriction that the autoregressive coefficient |α|<1 and so the rough volatility region is truncated
at α=1. Third, the power of the adaptive Portmanteau test may well differ in different regions of
the parameter space. Alternative omnibus tests for serial correlation might be considered but are
left to future work.

These Monte Carlo findings corroborate theory and intuition. In ARFIMA model simulations
the (α,d) parameters show strong evidence of joint weak identification when α is near-unity or
near-zero. In such cases, identification-robust confidence sets typically contain two distinct regions
that exhibit the bifurcation pattern predicted by theory and guide the interpretation of our empirical
findings presented in Section 2.
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