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Abstract

Modeling multivariate stochastic volatility (MSV) can pose significant challenges, par-

ticularly when both variances and covariances are time-varying. In this study, we

tackle these complexities by introducing novel MSV models based on the general-

ized Fisher transformation (GFT) proposed by Archakov and Hansen (2021). Our

model exhibits remarkable flexibility, ensuring the positive-definiteness of the variance-

covariance matrix, and disentangling the driving forces of volatilities and correlations.

To conduct Bayesian analysis of the models, we employ a Particle Gibbs Ancestor Sam-

pling (PGAS) method, facilitating efficient Bayesian model comparisons. Furthermore,

we extend our MSV model to cover leverage effects and incorporate realized measures.

Our simulation studies demonstrate that the proposed method performs well for our

GFT-based MSV model. Furthermore, empirical studies based on equity returns show

that the MSV models outperform alternative specifications in both in-sample and out-

of-sample performances.
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1 Introduction

The characterization of the dynamic behavior of return volatility is crucial for asset pricing,

portfolio allocation, and risk management. Univariate volatility models have been exten-

sively studied in the literature since the seminal paper by Engle (1982). These models can

be broadly categorized into two types: GARCH-based and stochastic volatility (SV) models.

In recent decades, there has been a growing focus on multivariate financial data analysis.

It is now widely recognized that analyzing asset returns individually is insufficient, and the

dependence structure among assets must be taken into account. To address this, a plethora

of multivariate extensions to univariate GARCH and SV models have been proposed and

applied in practice. Multivariate GARCH (MGARCH) models have been extensively re-

viewed in Bauwens et al. (2006), while multivariate SV (MSV) models have been reviewed

in Asai et al. (2006). These multivariate models enable us to capture the co-movements of

volatilities and correlations among multiple assets, providing a more accurate representation

of the underlying dependence structure. The development of multivariate models has signif-

icantly improved our understanding of asset return dynamics and has important practical

implications for financial risk management and investment strategies.

The first multivariate stochastic volatility (MSV) model, proposed by Harvey et al.

(1994), is an extension of the constant conditional correlation (CCC) model in multivariate

GARCH (MGARCH). In this basic setup, each asset’s volatility is modeled by a univariate

stochastic volatility process, while the correlation matrix among all assets remains constant

over time. However, this assumption is rather restrictive. Subsequent efforts have been de-

voted to relaxing this assumption in the MSV literature. For instance, Yu and Meyer (2006)

proposed a model that mirrors the dynamic conditional correlation (DCC) model of Engle

(2002) in MGARCH. The DCC-based model allows for time-varying correlation among assets

while still assuming that each asset’s volatility follows a univariate stochastic volatility pro-

cess. Another parametrization based on DCC can be found in Asai and McAleer (2009b).

Other studies have proposed even more flexible models that allow for both time-varying

volatilities and correlations among assets.

In this paper, we propose a new MSV model that builds upon a recently developed pa-

rameterization of the correlation matrix. This parameterization, first introduced in Archakov

and Hansen (2021), is a generalization of the well-known Fisher z-transformation (GFT here-

after) from the bivariate case to the multivariate case. It has been successfully used in other

models, such as the multivariate realized GARCH model of Archakov et al. (2024a) and the

dynamic conditional score model of Hafner and Wang (2023). It has also been suggested

for the purpose of generating random correlation matrices in Archakov et al. (2024b) and
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macroeconomic forecasting in Arias et al. (2023). Recent simulation and empirical evidence

in Bucci et al. (2022) shows that this parameterization provides more accurate forecasts of

the realized covariance matrix than other existing methods. Our paper is among the first

studies that introduce GFT to the MSV literature.1

Our new MSV model allows the underlying latent variables that determine the correla-

tions among assets to have an unrestricted domain because the correlation matrix is always

valid by construction. In addition, the shocks to the volatility dynamics and the correlation

dynamics are fully separated in our model. This is an appealing feature, as in practice, these

two types of shocks may be determined by completely distinct factors. Finally, our model

is invariant to the reordering of assets, which eliminates the need for an ex-ante ordering of

assets. All of these features indicate that our model is highly flexible and imposes a minimal

level of ex-ante restrictions.

Beyond our basic model, we also propose two extensions that have been proved to be

beneficial in modeling multivariate volatility. The first one includes asymmetric effects in our

model and the second incorporates information from realized measures when high-frequency

data is available.

The importance of accommodating asymmetric effects in the volatility literature has

long been recognized. For equity returns, it has been emphasized that bad news has a

greater impact on future volatility than good news, known as the leverage effect. This has

been incorporated in several existing MSV models, such as Asai and McAleer (2006) and

Asai and McAleer (2009a). To allow for asymmetric effects across multiple assets in an

MSV model, Ishihara et al. (2016) and Asai et al. (2022) propose to consider the lower-

diagonal elements of the matrix logarithm of the covariance matrix and assume that the

return vector is correlated with modeled variables, which they call cross-leverage. However,

this approach is inconsistent with the original idea of leverage effect since the latent variables

are generated by complex nonlinear transformations of the covariance matrix and correspond

to both volatility and correlation. As argued in Asai et al. (2006), leverage should refer only

to the negative correlations between the current return and future volatility. To address this

issue, in the present paper, we extend the basic MSV model to allow explicitly for volatilities

and returns to be correlated.

Classical MSV modelling relies solely on daily return data for estimation, thus not fully

harnessing the available information. An additional valuable source for capturing return

fluctuations is realized volatility (RV), computed from intra-day high-frequency data; for a

1While Arias et al. (2023) introduce the Fisher transformation to a MSV model, both volatility and
correlation are assumed to be non-stationary in Arias et al. (2023). This random walk assumption is well
known to be violated for financial assets. In our model, we do not make the random walk assumption.
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comprehensive overview, refer to Andersen et al. (2010). Research indicates that models

integrating realized measures can significantly enhance parameter estimation efficiency and

model fit, as highlighted in works by Hansen et al. (2012) and Hurn et al. (2020). Motivated

by these insights, literature has introduced SV models – termed RSV models – that leverage

both return series and RV data. Prior studies integrating univariate SV models with realized

measures include Koopman and Scharth (2012), Venter and de Jongh (2014), and Asai et al.

(2017). Recent advancements in multivariate modeling along this line include Shirota et al.

(2017), Kurose and Omori (2020), Yamauchi and Omori (2020) and Asai et al. (2022). In

our study, we extend this approach by integrating realized measures into our MSV model.

This augmentation involves applying the new transformation to the realized covariance ma-

trix, furnishing additional measurements to the latent variables. As suggested by Yamauchi

and Omori (2020), this additional information plays a crucial role in stabilizing parameter

estimation processes.

In our study, we introduce a Bayesian statistical framework for analyzing the proposed

MSV models. Different from the conventional Bayesian MSV literature, which predominantly

employs standard Markov chain Monte Carlo (MCMC) techniques, we adopt a recently de-

veloped Particle MCMC (PMCMC) algorithm. PMCMC algorithms have gained attraction

following the seminal work by Andrieu et al. (2010) and have found applications across di-

verse domains. While theoretically versatile for a wide spectrum of models, the practical

efficacy of PMCMC algorithms hinges on several factors and necessitates meticulous evalua-

tion. In the present paper, we opt for the Particle Gibbs Ancestor Sampling (PGAS) method

of Lindsten et al. (2014), a refined version of the Particle Gibbs (PG) sampler that offers

enhanced mixing properties, even with a small number of particles.

Our inference procedure involves an inverse transformation that is generally time-consuming

due to the lack of a closed-form solution. Inefficient handling of this transformation could

impose constraints on the scalability of our model. To surmount this obstacle, we propose

ways to improve the numerical method of Archakov and Hansen (2021). We present exten-

sive simulation evidence to justify our choice of the estimation strategy and provide useful

guidance for empirical applications.

The rest of the paper is organized as follows. Section 2 introduces the new parametriza-

tion of correlation matrix, and presents our basic MSV model. Section 3 introduces the

estimation and inferential method based on the PGAS algorithm. Section 4 focuses on the

efficient treatment of the inversion transform in our inference procedure. Section 5 reports

simulation evidence to support our proposed method. Section 6 extends our basic model

to incorporate the leverage effect and the realized measures. Empirical studies are provided

in Section 7. Section 8 concludes. The Online Supplement includes additional details and
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materials that complement and support our main text.

Throughout the paper, we let diag(A) denote the column vector formed by the diagonal

elements of a square matrix A or the diagonal matrix whose diagonal elements are elements

in A if A is a column vector;2 vech(A) denote the p(p+ 1)/2× 1 column-vector obtained by

vectorizing only the lower triangular part of a p-dimensional matrix A (including the diagonal

elements); vecl(A) denote the p(p− 1)/2× 1 column-vector containing all lower off-diagonal

elements of A (excluding the diagonal elements); Ip denote a p-dimensional identity matrix,

1p denote a p-dimensional column vector of ones; I(x) denote the indicator function.

2 A New Multivariate Stochastic Volatility Model

In this section, we introduce the generalized Fisher transformation (GFT) of Archakov and

Hansen (2021) (AH hereafter), and propose a new MSV model that utilizes GFT. Section

A.1 in Online Supplement provides a comprehensive review of existing MSV models, with a

focus on the specification of dynamic covariance matrix.

2.1 Generalized Fisher transformation of correlation matrix

When the correlation coefficient between two random variables, say ρ, is to be modeled,

an essential constraint is that its value must be within the interval (−1, 1). To avoid the

complexity introduced by this constraint in modeling, one can instead model the Fisher

z-transformation of ρ, defined as

g =
1

2
log

1 + ρ

1− ρ
:= F (ρ) (1)

It is easy to show that

ρ = F−1(g) =
exp(2g)− 1

exp(2g) + 1
∈ (−1, 1), ∀g ∈ (−∞,∞) . (2)

Therefore, one can impose any structure on F (ρ) and transform it back to obtain ρ without

worrying about the validity of the resulting correlation coefficient. This idea was first intro-

duced to the MSV literature by Yu and Meyer (2006) when the number of assets is two.3

Unfortunately, it is acknowledged by Yu and Meyer (2006) that this approach “is not easy

to be generalized into higher dimension situations”. In particular, a pairwise transformation

2If A is a square matrix, diag(diag(A)) is a diagonal matrix whose diagonal elements are the diagonal
elements in A.

3Note that the expression used in Yu and Meyer (2006) is slightly different from (1), with the latter one
aligning with the definition of GFT in case p = 2.
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applied to each entry in a high-dimensional correlation matrix, though seems to be natural,

is not a valid choice as it fails to ensure the positive-definiteness of the resulting correlation

matrix in general.

Clearly, it is desirable to obtain a valid high-dimensional extension to the Fisher z-

transformation. This is the exact contribution made in AH. To fix the idea, let R be a valid

p-dimensional correlation matrix and4

G = logR =
∞∑
k=1

(−1)k(R− I)k

k
.

Note that the convergence of the infinite summation and hence, the existence ofG are ensured

by the fact that R is a correlation matrix. Furthermore, let q = vecl(G). In summary, GFT

of R is defined by the mapping q = vecl(logR). One of key theoretical contributions of AH

is demonstrating that this mapping is bijective. Thus, given any p(p−1)
2

-dimensional vector

q, there exists a unique and valid p-dimensional correlation matrix R. Although the inverse

mapping from q to R does not have a closed-form expression when p > 2, R can be obtained

numerically from q using an iterative algorithm as shown in AH; see Section 4 below for

more discussions on computational issues.

When p = 2, AH show that the above-defined transformation reduces to the Fisher z-

transformation. The new transformation retains the advantages of the Fisher z-transformation

and enjoy some additional desirable properties. First and foremost, it is very flexible in the

sense that, when modeling q, no algebraic constraint is needed. This suggests that we can

consider any reasonable dynamics for q without worrying about the positive-definiteness of

the resulting correlation matrix. Second, compared with original elements in R, the sample

distribution of elements in q is often closer to Gaussian due to the use of log transformation.

Hence, it is reasonable to model elements of q via a Gaussian process. Third, this trans-

formation is invariant to the order of the variables. This is in sharp contrast to that based

on the Cholesky decomposition. Fourth, although elements of q depend on R in a nonlinear

way, many interesting properties in R carry over to G = log(R), including the equicorrelation

structure and the block-equicorrelation structure; see Archakov and Hansen (2024). For the

sake of notational simplicity, in the rest of the paper, we refer to the mapping vecl(log(·))
as F (·) and its inverse as F−1(·).

4This formulation of matrix logarithm is correct only for R sufficiently close to the identity matrix, for
the sum to exist. See Higham (2008) for a more general definition of matrix logarithm.
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2.2 Basic MSV-GFT model

To introduce our basic MSV model, for t = 1, · · · , T , let rt = (r1t, ..., rpt)
′ denote the p × 1

vector of asset returns and ht = (h1t, ..., hpt)
′ the vector of latent log-volatilities of these

returns at time t. Let Vt = exp (diag(ht)). Let qt = (q1t, ..., qdt)
′ denote the vector of latent

variables at time t that underlie all the correlation coefficients in Rt, where d = p(p−1)
2

. In

particular, qt is connected to Rt through the transformation detailed in Section 2.1. Our

basic MSV model, which we refer to as MSV-GFT, is given by

rt = V
1/2
t ϵt, ϵt ∼ N(0, Rt), (3a)

Vt = exp (diag(ht)) , (3b)

qt = F (Rt), (3c)

ht+1 = µh + Φh(ht − µh) + ηht, ηht ∼ N(0,Σh), (3d)

qt+1 = µq + Φq(qt − µq) + ηqt, ηqt ∼ N(0,Σq), (3e)

h0 ∼ N
(
µh, (Ip − Φ2

h)
−1Σh

)
, q0 ∼ N

(
µq, (Id − Φ2

q)
−1Σq

)
, (3f)

where ϵt = (ϵ1t, ..., ϵpt)
′, ηht = (ηh1t, ..., ηhpt)

′, ηqt = (ηq1t, ..., ηqdt)
′, µh = (µh1, ..., µhp)

′, µq =

(µq1, ..., µqd)
′, Φh = diag((ϕh1, ..., ϕhp)

′), Φq = diag((ϕq1, ..., ϕqd)
′), and t = 1, ..., T . It is

assumed that ϵt, ηht and ηqt are independent. This implies that no leverage (neither self-

leverage or cross-leverage) effect is allowed. Such an assumption will be relaxed in Section 6.1.

It also implies that the shocks to the volatility dynamics (i.e. ηht) are completely separated

from those to the correlation dynamics (i.e. ηqt). To reduce the number of parameters, we

further assume that Σh = diag((σ2
h1, ..., σ

2
hp)

′) and Σq = diag((σ2
q1, ..., σ

2
qd)

′).

In MSV-GFT, ht is a p-dimensional latent variable that determines the volatilities via

the exponential transformation and qt is a d-dimensional latent variable that determines the

correlation coefficients via the F transformation. Elements of two types of latent variables

are assumed to follow independent Gaussian AR(1) processes.5 It is important to note

that in MSV-GFT, persistence in elements of qt can be heterogeneous across pairs. This

is in sharp contrast to models based on the idea of DCC or the Wishart autoregression,

where persistence of all the correlation sequences is assumed to be the same. Yamauchi and

Omori (2020) propose to model the dynamics of Fisher-transformed pairwise correlations by

random walks without drift. This is equivalent to imposing µq = 0 and Φh = Id in (3e). Our

5Section 7.3 provides empirical evidence based on high-frequency data that supports the independent
Gaussian assumption for GFT-transformed correlations qt. See also Section 4.4 of Archakov et al. (2024a)
for a similar finding.
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specification is apparently more flexible and realistic than theirs.

3 Inference of MSV-GFT Model

Due to the difficulty of evaluating the likelihood function, the literature on MSV models

relies on Bayesian methods to carry out statistical inference. In this section, we discuss in

details the estimation of our MSV-GFT model within a Bayesian framework.

3.1 Gibbs sampler based on particle filter

In this paper, instead of using standard MCMC techniques,6 we apply a PMCMC method

known as PG, due to Andrieu et al. (2010), to estimate the proposed MSV model.7 The

intuition is to construct a high-dimensional efficient Markov kernel for latent processes using

the particle filter. See Section B in Online Supplement for a brief introduction to PG.

As a PMCMC method, PG enjoys a few desirable properties compared with standard

MCMC methods. First, relative to the single-move sampler, a significant improvement can

be achieved in terms of efficiency by PG.

Second, unlike the multi-move samplers that are model dependent, PG requires a minimal

modification across different models, as long as they could be cast into a state-space form.

Third, an important by-product of the filtering strategy is the evaluation of likelihood

p(r|θ), where r = (r1, · · · , rT )′. Once p(r|θ) is known, the marginal likelihood p(r) can be

calculated easily. Two popular approaches have been used in practice to compare competing

Bayesian models. The first one is based on the Bayes factor and the second one on the

Deviance Information Criterion (DIC).8 The computation of the Bayes factor requires p(r)

while the computation of DIC requires p(r|θ). Hence, model comparison is straightforward

in PG.

6See Section A.2 in Online Supplement for a review of other Bayesian estimation methods for MSV
model, with discussions on their pros and cons.

7Another PMCMC method potentially applicable here is Particle Metropolis-Hasting. See Xu and Jasra
(2019) for its application in MSV model with constant correlation matrix and cross-leverage. It is not chosen,
however, as it requires an accurate estimation of the likelihood and hence a very large number of particles.

8When comparing two candidate models (nested or non-nested), the log marginal likelihood of the first
model minus that of the second model leads to the log Bayes factor (BF); see Kass and Raftery (1995). DIC
is a Bayesian version of AIC with the aim of favouring models that are likely to make good predictions; see
Spiegelhalter et al. (2002) and Li et al. (2020). The smaller DIC, the better the model.

7



3.2 Particle Gibbs with ancestor sampling

As noted in Lindsten et al. (2014) and Chopin and Singh (2015), the mixing of the Markov

kernel induced by PG can be rather slow when there is path degeneracy. For the high-

dimensional problem, such as the one we consider in this paper, path degeneracy is inevitable.

To overcome this problem, Lindsten et al. (2014) propose to use an additional step called

ancestor sampling in PG. The PGAS algorithm enjoys fast mixing of the Markov kernel

even only a seemingly small number of particles are used in the underlying particle filter.

Informally, in the original PG, when degeneracy occurs, the particle system collapses toward

the chosen reference trajectory. Whereas, in the PGAS, it degenerates toward something

entirely different. As a consequence, the update rates of latent variables are much higher

with the additional ancestor sampling step. Therefore, the mixing is much faster.9 This

approach has also been used in Gong and Stoffer (2021) for efficient fitting of stochastic

volatility. They show that, for univariate SV model, PGAS algorithm mixes well enough

with only 20 particles.

For our purpose, a fast mixing under a small number of particles is highly desirable, as

our likelihood function contains a component that has no closed-form solution and thus must

be computed numerically. Although the cost for one-time computation is relatively low, it

soon becomes infeasible when a vast number of particles are included in the system. Indeed,

for MCMC with S iterations, if the sample size is T and N particles are used, F−1(·) must

be evaluated S × T ×N times. As S and T are usually quite large in practice, we can gain

a lot in terms of computational efficiency by using the PGAS algorithm. In summary, we

believe that PGAS is a suitable estimation tool given our model setup. Its performance will

be further examined in simulation in Section 5.

3.3 Bayesian inference of MSV-GFT

We now present the Bayesian analysis of our MSV-GFT model. The first step is to specify

the prior distributions of all the parameters θ = (µh, µq, ϕh, ϕq, σ
2
h, σ

2
q )

′. In this regard, our

specification follows those adopted in Kim et al. (1998). For µh and µq, we assume indepen-

dent multivariate normal distributions. The persistence parameters ϕh and ϕq are assumed

to have Beta priors. The prior distribution of σh and σq are chosen to be inverse gamma. In

summary, for i = 1, ..., p and j = 1, ..., d, we choose the following prior distributions:

� µhi ∼ N(mµ0, s
2
µ0) and µqj ∼ N(mµ0, s

2
µ0);

�
ϕhi+1

2
∼ Beta(a, b) and

ϕqj+1

2
∼ Beta(a, b);

9Lindsten et al. (2014) also show that for a state-space model, PGAS is probabilistically equivalent to
the particle Gibbs sampler with a backward smoothing step under certain conditions.
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� σ2
hi ∼ IG(nm0

2
, dm0

2
) and σ2

qj ∼ IG(nm0

2
, dm0

2
),

where mµ0, s
2
µ0, a, b, nm0, dm0 are hyperparameters.

To carry out the inference, we implement a Gibbs sampler with four blocks. In the

following, we use θ/α to denote the parameters θ excluding α. The algorithm proceeds as:

1. Initialize h, q and θ.

2. Draw h, q|r, θ.

3. Draw µh, µq|r, h, q, θ/(µh,µq).

4. Draw ϕh, ϕq|r, h, q, θ/(ϕh,ϕq).

5. Draw σ2
h, σ

2
q |r, h, q, θ/(σ2

h,σ
2
q )
.

Iteration over steps 2-5 consists of a complete sweep of MCMC sampler. We apply PGAS

introduced in Section 3.2 to sample the latent variables h and q given all the observations

r and one particular set of parameter values. The detailed description of the algorithm is

presented in Section C in Online Supplement. On the other hand, from the joint posterior

density, it is straightforward to sample each element in θ given one realization of latent

processes h and q. The details are provided in Section E in Online Supplement.

4 Inverting GFT

4.1 Review of AH’s method

For the Bayesian method introduced in Section 3, the most time-consuming step is the

evaluation of F−1(·). The scalability of our model depends critically on how this step is

efficiently handled.

In general a closed-form expression for F−1(·) is not available. AH proposes a numerical

solution to F−1(·) as a root-finding problem. The idea is as follows. Since logRt must be

symmetric, it is uniquely identified through its diagonal elements zt = (z1t, · · · , zpt)′ given
all the off-diagonal elements qt. As Rt = exp(logRt), finding a valid correlation matrix Rt

given qt is thus equivalent to finding an appropriate p× 1 vector zt. Using the fact that all

the diagonal elements of a correlation matrix must be one, zt can be found through solving

the following equation

diag
(
eA[zt]

)
= 1p, (4)

where A is a symmetric matrix with vecl(A) = qt and A[zt] highlights the fact that diag(A) =

zt. As long as we find z∗t that solves (4), the correlation matrix Rt is straightforwardly
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recovered through Rt = exp(A[z∗t ]). AH point out that (4) is a system of nonlinear equations

and propose a fixed-point iteration method to solve this root-finding problem.

Algorithm 1: AH’s method

Data: q ; //
p(p−1)

2
× 1 vector

Result: z ; // p× 1 vector

1 Set initial Value: z0 = 0p and f(z0) = inf

2 for k = 0 : MaxIteration do

3 if ||f(z)||2 < ϵ then

4 Return z

5 else

6 Update z: zk+1 = zk − f(zk) ; // Complexity: O(p3)

We summarize AH’s method in Algorithm 1.10 The time complexity of this algorithm is

O(p3K), which is determined by two factors. The first factor is the cost for each iteration,

which is dominated by the matrix exponential operation with the O(p3) time complexity. The

second factor is the number of iterations (K) before convergence. AH show that in general

K = O(log p). However, the exact value of K is sensitive to the correlation structure.

Simply put, when R is nearly singular, a large K is needed for the fixed-point algorithm

to converge. In the following section, we consider two modifications that may potentially

reduce the computational cost of inverting GFT.

4.2 Newton’s Method and Broyden’s Method

It is well-known that faster convergence to find roots may be achieved by using the Jacobian

matrix. This motivates us to consider two alternative methods to AH’s algorithm. The

first approach is the classical Newton’s method. Specifically, in each iteration, we utilize

the closed-form expression of the Jacobian matrix, whose analytic expressions are given in

Appendix of Archakov and Hansen (2021). This approach is summarized in Algorithm 2

below with the definition of J(z) given in Section D of Online Supplement.

Unlike the fixed-point algorithm, Newton’s method converges only if the initial value is in

the neighborhood of the true root. Therefore, we propose to first conduct a few fixed-point

updates before starting Newton’s iteration. In practice, we find that running the fixed-point

update just once is enough before implementing Newton’s method in almost all cases.11

While Newton’s method usually converges faster than the fixed-point iteration, it requires

10When implementing all algorithms, we set the maximum number of iterations to 1000 and the conver-
gence criterion ϵ to 1× 10−6.

11Indeed, in our experiment, only 3 out of 10000 cases require more than one updates.
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Algorithm 2: GFTI based on Newton’s method

Data: q ; //
p(p−1)

2
× 1 vector

Result: z ; // p× 1 vector

1 Set initial Value: z0 = −f(0p) and f(z0) = inf
2 for k = 0 : MaxIteration do
3 if ||f(zk)||2 < ϵ then
4 Return z

5 else
6 Compute Jacobian: Jk = J(zk) ; // Complexity: O(p4)
7 Update z: zk+1 = zk − J−1

k f(zk) ; // Complexity: O(p3)

calculation of Jacobian, which increases the time complexity to O(p4) and can be quite time-

consuming if p is very large. To avoid the substantial cost required in computing Jacobian,

we consider a quasi-Newton approach known as Broyden’s method. The fundamental idea

is to compute the Jacobian matrix only in the first iteration and then perform rank-one

updates in subsequent iterations. Broyden’s method is reported in Algorithm 3.

Algorithm 3: GFTI based on Broyden’s method

Data: q ; //
p(p−1)

2
× 1 vector

Result: z ; // p× 1 vector

1 Set initial Value: z0 = −f(0p) and f(z0) = inf
2 for k = 0 : MaxIteration do
3 if ||f(zk)||2 < ϵ then
4 Return z

5 else
6 if k = 0 then
7 Compute Jacobian: Jk = J(zk) ; // Complexity: O(p4)

8 else
9 Update Jacobian:

10 ∆f(zk) = f(zk)− f(zk−1); // Complexity: O(p3)
11 ∆zk = zk − zk−1

12 Jk = Jk−1 +
∆f(zk)−Jk−1∆zk

||∆zk||2
∆z′k

13 Update z: zk+1 = zk − J−1
k f(zk) ; // Complexity: O(p3)

As we only need to compute the Jacobian once in Broyden’s method, the total time com-

plexity is close to O(p3). In comparison to AH’s fixed-point technique, Broyden’s method

exhibits accelerated convergence rates but demands a higher computational time per itera-

tion. Relative to Newton’s method, when p is sufficiently large, we anticipate a reduction
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in the computational time per iteration by Broyden’s method, albeit at the cost of slower

convergence.

4.3 Comparison with AH’s algorithm

In line with AH’s analysis, the convergence rate in AH’s method depends upon the singular-

ity level of the correlation matrix, a characteristic often gauged by the minimum eigenvalue

denoted as λmin.
12 For a correlation matrix to be invertible, λmin must fall within the range

of zero to one. If the correlation matrix is near-singular (λmin ≈ 0), AH’s method requires a

large number of iterations, potentially rendering alternative algorithms utilizing Jacobian in-

formation more computationally effective. Conversely, in scenarios where the correlation ma-

trix approaches an identity matrix (λmin ≈ 1), the convergence in AH’s method is expedited,

obviating the necessity for Jacobian matrix computations. Thus, the comparative computa-

tional efficiency gains or losses associated with the adoption of Jacobian-based methodologies

demand meticulous evaluation through comprehensive empirical investigations. We design

two experiments to compare the performance of three methods.

Following AH, we first compare three methods based on the following Toeplitz-type

correlation matrix

R = [Rij], i = 1, . . . , p, j = 1, . . . , p,

where Rij = ρ|i−j| with ρ = [0.5, 0.9, 0.99] and p ∈ {3, 4, · · · , 100}. For the dimensions

considered, three values of ρ corresponds to log(λmin) ∈ [−0.9, 1.1], [−2.67,−2.94] and

[−5.01,−5.29], respectively. In general, a larger value of ρ implies that the correlation

matrix has a smaller λmin and hence is closer to singularity.

The top panels of Figure 1 depict the average number of iterations required by the three

methods as the model dimension p changes. It can be seen that, for Newton’s method

and Broyden’s method, the required number of iterations are insensitive to both p and ρ.

In almost all cases, both algorithms converge after 4 or 5 iterations. This stands in stark

contrast to AH’s method, which is remarkably sensitive to ρ. For instance, AH’s method

demands approximately 45 iterations for convergence, a figure that decreases to around 20

iterations when ρ = 0.9. Even in the least singular scenario (ρ = 0.5), AH’s algorithm

necessitates a higher number of iterations to achieve convergence in comparison to the other

two methods.

However, a lower iteration count does not necessarily translate to an overall reduction in

computational expenses. As previously mentioned, both Newton’s method and Broyden’s

12An operational challenge arises from the fact that the exact value of λmin remains unknown until
after the GFT inversion is conducted. Nevertheless, as highlighted in AH, the maximum absolute value of
transformed variables q can serve as a dependable proxy for λmin.
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method entail the computation of the Jacobian matrix. To assess the balance between con-

vergence speed and Jacobian computation, the lower panels of Figure 1 depict the CPU time

taken by the three methods against p. We observe that, due to the O(p4) time complexity

at each iteration, Newton’s method encounters a sharp escalation in CPU time when p in-

creases. For example, when ρ = 0.5 and p = 100, the total CPU time required for Newton’s

method surpasses that of the other two methods by more than threefold. Consequently, it is

apparent that Newton’s method is ill-suited for scenarios with large p. Broyden’s method, on

the other hand, exhibits significant computational advantage over AH’s method for ρ = 0.99,

but is less attractive when ρ = 0.5. Intuitively, if the correlation matrix is close to singularity

(i.e. a large ρ), Broyden’s method demands fewer iterations. Given that it computes the

Jacobian only once, the overall computational burden is lighter compared to AH’s method.

However, when the correlation matrix veers away from singularity (i.e., at lower ρ values),

the fixed-point algorithm requires only marginally more iterations than Broyden’s method.

In such scenarios, the expenses incurred due to Jacobian calculation outweigh the savings

derived from a reduced iteration count.

Next, we make a comparison based on randomly generated correlation matrices. For each

p ∈ {5, 10, 15, 20}, we generate 100, 000 distinct correlation matrices and categorize them

into different groups based on the log(λmin) value.13 The generating mechanism is akin to

that in AH. Figure 2 depicts the CPU time taken by the three methods against log(λmin).

Notably, all three algorithms exhibit increased computational demands with higher p. How-

ever, the cumulative computational costs of Newton’s method and Broyden’s method demon-

strate significantly lower sensitivity to log(λmin) in comparison to AH’s method. Conversely,

the computational expenses associated with AH’s method surge notably as log(λmin) be-

comes more negative (i.e. the correlation matrix is closer to singularity). When log(λmin)

approaches zero, signifying closeness to an identity matrix, Broyden’s method emerges as

the most cost-effective option among the three methods, as depicted in the insets of each

subplot.14

In conclusion, our experimental findings indicate that the performance advantages of

the three algorithms hinge on both the dimensionality and singularity characteristics of the

correlation matrix. Given the necessity to generate a substantial number of correlation ma-

trices within the particle-filter-based method, with some matrices possessing small λmin, we

determine that Broyden’s method generally surpasses the other two options. Consequently,

it has been selected for the inversion of GFT in both simulation and empirical studies. While

13The range of log(λmin) is set to [−20, 0], which is partitioned into 50 groups. For each group, we
calculate the average CPU time for all matrices belonging to the same group.

14This trend holds except in scenarios where log(λmin) is extremely close to zero, a scenario which is
empirically not relevant.
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it is important to note that Broyden’s method might become less advantageous compared

to AH’s algorithm in scenarios with very high p, it is crucial to acknowledge that attempt-

ing to directly estimate the MSV model with a large p remains unfeasible regardless of the

algorithm utilized. For moderate values of p, our analysis reveals that Broyden’s method

can potentially provide a substantial time-saving advantage, reducing computational time

by approximately 85% in comparison to AH’s method.

5 Simulation Studies

To investigate the performance of our estimation procedure, we conduct some simulation

exercises in this section. The design of our experiment is frequentist in nature, as we fix the

parameters at their true values and generate data from the same data generating process

with 1000 replications. We use the posterior mean as a point estimator for all the parameters.

Since the true values are known, we are thus able to calculate estimation bias (defined as

the difference between the true values and the average value of the posterior means) and the

standard deviation.15

For the purpose of evaluating the sampling efficiency of PGAS algorithm, following Kim

et al. (1998), we calculate the average inefficiency factor (IF), which is defined as the variance

of sample mean from MCMC sampling divided by that from a hypothetical sampler which

draws independent samples. The variance of MCMC sample mean is the square of numerical

standard error estimated by

NSE = 1 +
2BM

BM − 1

BM∑
i=1

K

(
i

BM

)
ρ̂(i),

where ρ̂(i) is estimated autocorrelation at lag i, BM is the bandwidth and K(·) is the Parzen
kernel. We choose the bandwidth BM to be 1000. A smaller IF indicates a better mixing of

the Markov chain and thereby a higher sampling efficiency.

Our data generating process is the basic MSV-GFT model with p = 4. There are 24

parameters in the model, whose true values are given by:

1. µh1 = µh2 = µh3 = µh4 = 0.3 and µq1 = µq2 = µq3 = µq4 = 0.7,

2. ϕh1 = ϕh2 = ϕh3 = ϕh4 = 0.9 and ϕq1 = ϕq2 = ϕq3 = ϕq4 = 0.8,

3. σ2
h1 = σ2

h2 = σ2
h3 = σ2

h4 = 0.05 and σ2
q1 = σ2

q2 = σ2
q3 = σ2

q4 = 0.05.

15Here, the standard deviation refers to the variation across replications, rather than the numerical
standard error of MCMC sampler introduced below.
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All the simulation results reported in this section are based on 5000 MCMC iterations,

among which the first 1000 samples are discarded as burn-in period.16 We consider three

different sample sizes, namely T = 500, 1000, 2000, as well as three numbers of particles,

namely N = 50, 100, 200. It is worthwhile to mention that, the simulated data used across

different particle numbers for given sample size are the same, while it changes when the

sample size increases. To save the space, we only report the results for h1 and q1. The

results for other latent processes are similar and hence omitted.

Table 1 reports the average values of the posterior means, standard deviations and IFs

across replications of µh1, ϕh1, σ
2
h1, µq1, ϕq1 and σ2

q1. It can be seen that even for a small

sample size (such as 500) and a relatively small number of particles (such as 50), the posterior

means for both µh1 and µq1 are reasonably close to their respective true values, although

there is an downward bias for both µh1 and µq1. Nevertheless, it can be seen that the bias

shrinks towards zero when T expands. As expected, the standard deviations for both µh1

and µq1 substantially decrease as T increases while an increasing number of particles has no

effect in this regard.

Meanwhile, the persistence parameters ϕh1 and ϕq1 can be estimated accurately, even with

500 observations and 50 particles. The estimates have very small biases and low standard

deviations. With 200 particles, the bias almost completely vanishes. Substantial downward

biases are observed for σ2
h1 and σ2

q1 when sample size is 500. This bias is insensitive to the

number of particles. Fortunately, it can be improved when more observations are available.

Indeed, we observe that if T = 2000, the bias becomes much smaller for σ2
h1 and completely

vanishes for σ2
q1.

Finally, the IF varies little as we change the sample size, but improves when the number

of particles increases. Consistent with earlier studies, the IF is the lowest for µ’s and the

highest for σ2’s. Compared with the traditional single-move or multi-move Gibbs sampler

(for example, see Kim et al. (1998)), our new PGAS sampler enjoys a much better mixing

property. In summary, the simulation results confirm that our chosen approach works well

for the model considered in our study. In light of the good performance, 200 particles are

used for the empirical applications reported later.

To offer an overview of the computational demands of our model and the proposed

estimation strategy, the final column in Table 1 presents the computational costs (measured

in CPU hours) associated with our inference procedure across different combinations of

(T,N). This CPU time estimation is based on running 5000 MCMC iterations in MATLAB

R2023b on a desktop computer featuring an AMD Ryzen 9 7950X 16-Core Processor running

at 4.50 GHz. Evidently, the computational burden increases linearly with both the sample

16Examination of the autocorrelation function suggests that MCMC well converges after 1000 iterations.
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size and the number of particles. For instance, with 2000 observations and 200 particles, the

complete in-sample analysis requires approximately 8.5 hours to execute.

6 Model Extensions with Leverage Effects and Real-

ized Measures

6.1 MSVL-GFT model and its Bayesian inference

To incorporate asymmetric effect, we assume that(
ϵt

ηht

)
∼ N

((
0

0

)
,

(
Rt R

1
2
t ΩΣ

1
2
h

Σ
1
2
hΩR

1
2
t Σh

))
, (3g)

where Ω = diag(ρ) and ρ = (ρ1, ..., ρp)
′. The model defined by equations (3a)-(3g) is referred

to as MSVL-GFT.

The Bayesian analysis for MSVL-GFT is a simple extension to that for MSV-GFT

with additional p parameters characterizing the leverage effect ρ. Following Yu (2005),

we set the prior distributions for these extra parameters as ρi ∼ U(−1, 1). Redefining

θ = (µh, µq, ϕh, ϕq, σ
2
h, σ

2
q , ρ, γµ)

′, we can make inference for MSVL-GFT model by imple-

menting a Gibbs sampler as in Section 3.3 with an additional block drawing ρ|r, h, θ/(ρ).

6.2 RMSV(L)-GFT model and its Bayesian inference

When realized measures for the latent process ht and qt are available, we expect that incor-

porating them into our baseline MSV-GFT model may improve its empirical performance.

Specifically, we assume that the researchers have access to the p × p realized covariance

matrices (denoted by Cr
t ) computed from intra-day high-frequency returns. Let

Cr
t = (V r

t )
1/2Rr

t (V
r
t )

1/2, (5)

where the superscripts denote realized measures. V r
t is a diagonal matrix collecting all the

realized variances and Rr
t is the realized correlation matrix. Equation (5) is the realized

version of traditional variance-correlation decomposition. Since the latent variables in MSV-

GFT are the transformation of the original variances and the correlation coefficients, we

apply the same transformation to the realized covariance. Specifically, we define

hrt = (hr1t, ..., h
r
pt)

′ = diag(log(V r
t )

1/2),

qrt = (qr1t, ..., q
r
dt)

′ = F (Rr
t ).

(6)
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It can be seen that hrt and q
r
t are the observed empirical measures of the latent variables, ht

and qt, respectively. We hence expect that time variation in these realized measures contains

information about the dynamics of the corresponding latent variables.

As is well known in the literature, there may exist non-trivial measurement errors in

hrt and qrt , because neither are perfect measurements of the latent variables due to the

microstructure noise, nontrading hours, nonsynchronous trading, and so forth. Bearing

this in mind, we model the relationship between the latent variables and their realized

counterparts by

hrt = ψh + ht + ξht, ξht ∼ N(0,Σr
h), (7)

qrt = ψq + qt + ξqt, ξqt ∼ N(0,Σr
q), (8)

where ψh = (ψh1, ..., ψhp)
′ and ψq = (ψq1, ..., ψqd)

′ capture potential approximation er-

rors in the realized measures.17 We further assume Σr
h = diag((η2h1, ...η

2
hp)

′) and Σr
q =

diag((η2q1, ..., η
2
qd)

′). Combining equations (3a)-(3f) with equations (7)-(8), we get the real-

ized MSV-GFT (RMSV-GFT) model. Besides, it may also be desirable to allow leverage

effects defined by (3g) in RMSV-GFT. Such a specification is referred to as RMSVL-GFT.

It can be seen that extra measurement equations have been added to the MSV-GFT

model. These additional equations are based on the transformation of realized measure and

the same transformation applied to the latent covariance matrix. In the literature, it has

been shown that the realized volatility converges to the integrated volatility and the same

applies to the logarithmic versions. However, Barndorff-Nielsen and Shephard (2002) argued

that the approximation of the log integrated volatility by the log realized volatility usually

performs better in practice. This property has been used in Hansen and Huang (2016) to

introduce a realized EGARCH model and in Phillips and Yu (2009) to construct a two-stage

method to estimate continuous time models.

Similar to MSV-GFT model, RMSV(L)-GFT model can be estimated using our PGAS-

based MCMC algorithm as well. Details of inference can be found in Section F of Online

Supplement. Note that the estimation time of models with the leverage effect and/or realized

measures is almost the same as the baseline MSV-GFT model. This is not surprising because

the main bulk of the computational cost lies in the inversion of GFT and adding either the

leverage effect or realized measures does not change the times or speed of inverting GFT.

17Equation (7) has been used for constructing univariate realized stochastic volatility models by, for
instance, Takahashi et al. (2009) and Koopman and Scharth (2012). Equation (8) is proposed in Yamauchi
and Omori (2020) as a building block of their RMSV model based on the pairwise Fisher transformation.
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7 Empirical Studies

In this section, we conduct an empirical analysis of the proposed models and compare them

with several existing competitors, evaluating the performance of alternative MSV models

through both in-sample fit and out-of-sample forecasting.

7.1 Data description

Our analysis focuses on daily close-to-close log-returns of six stocks, namely, JPMorgan

Chase & Co (JPM), Goldman Sachs Group Inc (GS), Honeywell International Inc (HON),

Caterpillar Inc (CAT), Johnson & Johnson (JNJ) and Amgen Inc (AMGN).18 Our full sample

period is from January 3, 2006 to December 31, 2015, covering 2516 trading days. The log-

return sequences are plotted in Figure 3 as the red dashed line. Panel (a) of Table 2 presents

a set of summary statistics, as well as the pairwise sample correlations. It can be observed

that the returns exhibit strong positive co-movement and the degree of co-movement varies

across different pairs, with the correlation coefficient ranging from 0.32 to 0.74.19

For each stocks, intraday transaction data were obtained from the TAQ database, which

were cleaned using the method suggested in Barndorff-Nielsen et al. (2009). From the high-

frequency data, we compute the realized kernel estimates of the 6× 6 integrated covariance

for each trading day. From the realized covariance, we obtain hrt and qrt by applying the

logarithm transformation and GFT, respectively. The daily annualized realized volatility

sequences are plotted in Figure 3 as the blue solid line. Time series of the realized correlations

are presented in Figure 4 with the red dotted line depicting the sample average and the blue

dashed line showing the corresponding correlations computed using daily data. Note that

both the level and the persistence of these sequences exhibit some heterogeneity. Panel (b)

of Table 2 presents a set of summary statistics for each realized volatility sequence, together

with the time series average of all realized correlations. An interesting finding from this table

is that the level of co-movement implied by the realized correlations is about half of that

suggested by the daily returns, which can be visualized in Figure 4 as well.

7.2 Specifications of competing models

For comparison, we consider the following three categories of model specifications:

1. MSV models

18The data for daily returns were obtained from Yahoo Finance at https://finance.yahoo.com/.
19As suggested by a referee, it might be instructive to estimate and analyze alternative sets of variables

with different dynamic correlation structures to demonstrate the robustness of empirical results. Due to the
huge computational cost of our analysis, this exercise will be left for future research.
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(a) MSV-CC defined by (3a)-(3d) and Rt = R for all t.

(b) MSV-GFT.

(c) MSV-Chol. This is a model based on Cholesky decomposition proposed by Lopes

et al. (2010).20

(d) MSV-DCC. This is the model proposed in Asai and McAleer (2009b), where a

DCC-type structure with a Wishart transition dynamics is used to characterize

the movement of the correlation matrix.

2. MSV models with the leverage effect

(a) MSVL-CC. This is the MSV-CC model with the leverage effect defined in (3g).

(b) MSVL-GFT.

(c) MSVL-Chol. This is the MSV-Chol model with the leverage effect proposed in

Shirota et al. (2017).21

(d) MSVL-DCC. This is the MSV-DCC model with additional assumption (3g).

3. MSV models that incorporate the realized measures.

(a) RMSV-CC. This is the MSV-CC model with additional assumption (7).

(b) RMSVL-CC. This is the MSVL-CC model with additional assumption (7).

(c) RMSV-GFT.

(d) RMSVL-GFT.

It is important to note that all candidate models except for those based on the Cholesky

decomposition share the same parametrization of the volatility dynamics. The key difference

among these models is in the way how the correlation dynamics is specified. To facilitate

the comparison, all models are analyzed under the Bayesian framework and estimated by

MCMC. In particular, models based on the DCC specification are estimated by a single-

move sampler following Asai and McAleer (2009a), while the estimation of MSV(L)-Chol is

conducted using the PGAS algorithm introduced in Section 3.2 with 100 particles.

20When estimating the MSV-Chol model, we arbitrarily choose the order of JPM, GS, HON, CAT, JNJ
and AMGN. The results may be sensitive to ordering; see Arias et al. (2023) for detailed discussions. For the
application considered here, there is no reason to prefer one particular ordering a priori. Ideally, one could
try all possible orderings (in total 6! = 720) and pick the best one. This strategy is practically infeasible.

21Note that for the MSVL-Chol model, the leverage effect is defined as the negative correlation between
the innovation to returns and that to the diagonal elements of the Cholesky decomposition. This is different
from the definition in all other MSV models that we consider.
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7.3 In-sample analysis

We first consider the full sample analysis using all available data. We draw 20000 MCMC

samples and discard first 2000 as the burn-in period. The number of particles used is set

to 200. Before reporting in-sample estimation results, we first examine the validity of the

independent Gaussian assumption that we made for the elements of qt in (3e). Though qt is

not observed, we can take advantage of the corresponding realized measure as a reasonable

proxy. Following Archakov et al. (2024a), we depict the Q-Q plots for the transformed re-

alized correlations, qrt , in Figure 5. These plots indicate that all GFT-transformed realized

correlations can be well modelled by Gaussian distributions, corroborating the discovery in

Archakov et al. (2024a) and the specification outlined in equation (3e). To further support

the use of GTF, in Figure 6, we present the contour plots for selected pairs of realized corre-

lations, together with the bivariate Fisher-transformed and generalized Fisher-transformed

counterparts. For three subplots in the first row, ρij denotes the realized correlation between

asset i and j, with i = 1, · · · , 6 corresponds to {JPM, GS, HON, CAT, JNJ, AMGN}. For

three subplots in the second row, gij denotes the bivariate Fisher-transformation, defined

by (1), of ρij. For three subplots in the third row, qi denotes the i
th variable generated by

applying GFT on 6×6 realized correlation matrices. An noteworthy finding from Figure 6 is

that GFT produces variables much less correlated than both realized correlations and their

bivariate Fisher-transformed counterparts. This result provides further evidence supporting

our assumption of independence when specifying shocks to elements of qt. In MSV models

proposed in Yamauchi and Omori (2020), all pairwise Fisher-transformed variables are as-

sumed to be generated by independent random walks.22 Figure 6 questions the validity of

such an assumption and suggests that modeling GFT-transformed variables independently

aligns more with reality, at least for equity returns.23

We now report the parameter estimates for the RMSVL-GFT model.24 Table 3 presents

the posterior statistics of parameters related to log volatility sequences ht. The statistics

we consider include the posterior means (in the first row), the posterior standard deviations

(in the parenthesis), and the 95% credible intervals (in the fourth row). Also reported are

22A subtle point is that the dependence among these variables is in fact implicitly introduced in their
estimation procedure. Note that the single-move algorithm they propose is based on conditional restrictions
so that the range of a correlation is determined by all other correlations.

23As suggested by a referee, in Section G of Online Supplement, we make a detailed comparison between
our GFT-based specification and correlation modeling based on pairwise Fisher transformation. We find
that the former is significantly superior, both in-sample and out-of-sample.

24For p = 6, RMSVL-GFT has 21 latent variables, including 6 log volatilities and 15 GFT-transformed
correlations. Each latent variable induces 3 parameters in autoregressive dynamics and 2 in measurement
equation of realized measure. Along with 6 coefficients for leverage effect, the total number of model param-
eters is 111.
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the IFs (in the third row). Our observations reveal that the posterior means and standard

deviations of all parameters linked to volatility dynamics closely align with existing literature.

In particular, all log volatility sequences have a very high level of persistence, with the

autoregressive root of ϕh close to but smaller than 1. The IFs are relatively small across

the board, indicating effective mixing of the MCMC draws. Furthermore, the leverage effect

ρ is always significantly negative with a value ranging from -0.1832 to -0.4536. Consistent

with findings from prior studies like Koopman and Scharth (2012) and Yamauchi and Omori

(2020), the bias parameters ψh is consistently significantly negative. This is well anticipated

as realized volatility contains the information during market trading hours and thereby

accounts for only a fraction of variation of close-to-close returns.

Table 4 follows a structure akin to Table 3 but focuses on parameters that characterize

transformed correlations qt. First and foremost, it can be seen that the posterior means of ϕq

varies a lot, with the minimum value being 0.71 and maximum 0.97. This suggests a great

deal of heterogeneity in the level of persistency in the elements of qt. While the transformed

correlation is close to a unit root process in some cases, it can be quite stationary in other

cases. Second, we observe that the posterior means of µq also differ considerably among

q’s. Third, the posterior means of σ2
q are all significantly different from zero, suggesting the

correlation coefficients are time-varying. These findings forcefully highlights the importance

of allowing unique dynamics for each correlation sequence. Another notable finding from

Table 4 is that the estimated bias parameters ψq are always significantly negative, implying

that qrt is a biased version of underlying transformed correlation qt and on average suffers

from underestimation. This finding aligns with the results in Yamauchi and Omori (2020),

where a negative bias in Fisher-transformed realized pairwise correlations is noted. It is

worth noting that this bias aligns with the trend of smaller average realized correlations

compared to the daily sample correlations as observed in Table 2 and Figure 4.

An interesting observation from parameter estimation is that the magnitude of σ2
q is

quite small, suggesting that qt is closer to be deterministic. This finding aligns with the

result in Yamauchi and Omori (2020). To explain this phenomenon, note that (7) and (8)

in RMSVL-GFT impose a restriction that the unconditional variance of realized measures

is equal to that of the latent variables plus the variance of the noise. As a consequence,

the values of σ2
q are related to the unconditional variance of qrt as well as the signal-to-noise

ratio of the realized correlations. Figure 7 plots the sequences of posterior means of the

selected log volatilities (top panel) and those of the pairwise correlations (bottom panel),

both filtered from the RMSVL-GFT model (the red dash-dotted line). Also plotted are the

corresponding realized measures with bias ψh and ψq removed (the blue solid line). The

latent variables obtained from the RMSVL-GFT model exhibit a very similar pattern to
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their realized counterparts. However, the total variation of correlation is smaller. Moreover,

we observe that for correlations, model-implied sequences are much smoother than observed

realized measures, which suggests that realized correlations contain a large noise. This is

not the case for the realized volatility, whose dynamics can be largely explained by the

variation of the latent variable ht.
25 Such a conclusion can also be obtained if we contrast

R-squared of (7) with that of (8). Indeed, for the measurement equations of ht, we observe

that R2 is higher than 85% in most cases. For qt, on the other hand, we find it usually less

than 30%. Our estimation results therefore highlight the difference in information content

between realized volatilities and correlations.

To assess whether the flexibility in MSV-GFT leads to better in-sample statistical per-

formance, we first compare the marginal likelihoods of daily returns, using the approach

suggested by Chib (1995). When computing the likelihood ordinate, we use the auxiliary

particle filter of Pitt and Shephard (1999). We also compare DIC values of alternative mod-

els using DIC1 of Spiegelhalter et al. (2002); see Li et al. (2020) for discussions why DIC1 is

used for latent variable models. As our main interest lies in the evaluation of relative merits

of various model specifications, we only consider candidates that base solely on daily returns

in this exercise. The results are presented in Table 5, which also summarizes the number of

parameters in each model. Within models without realized measures and leverage effect, our

new MSV-GFT model markedly outperforms all other MSV candidates based on both the

log marginal likelihood and DIC, providing compelling evidence in favor of the specification

based on GFT. Moreover, as expected, the in-sample fitness of MSV-GFT can be further

improved by introducing the leverage effect.

7.4 Out-of-sample performance

In this subsection, comparisons of short-term out-of-sample forecasting ability are conducted

based on both statistical and economic loss functions. The forecast period is from January

2, 2013 to December 31, 2015, spanning three years and consisting of 755 trading days. For

each out-of-sample trading day (say t), we use expanding window approach to re-estimate the

model and generate the one-step-ahead forecast of the covariance matrix Ĉt|t−1 by computing

the posterior mean of Ct conditional on all available observations up to period t− 1.

Our first exercise focuses on the statistical performance reflected by the likelihood of

return series. In particular, for each specification and in each out-of-sample trading day, we

first evaluate the predictive log-likelihood of daily returns. For trading day t, this quantity

25Similar patterns can be found in Figure 2 of Yamauchi and Omori (2020).
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is defined as

log p(rt|r1:t−1), t ∈ {T0 + 1, · · · , T},

for MSV models without realized measures and

log p(rt|r1:t−1, h
r
1:t−1, q

r
1:t−1), t ∈ {T0 + 1, · · · , T},

for RMSV models, where T0 denotes the in-sample size and x1:t−1 = (x′1, · · · , x′t−1)
′. We then

obtain the average out-of-sample predictive return log-likelihoods of each candidate (R)MSV

model. The results covering entire out-of-sample period as well as three sub-years can be

found in Table 6, where the improvement of log-likelihood relative to that of MSV-CC are

reported. Italic figures in the parenthesis are the corresponding p-values of model confidence

set (MCS) of Hansen et al. (2011).26 MCS1 are p-values when comparison is confined to

models without realized measures and MCS2 are for the set of all candidates. Underlined

values in Table 6 are for the best performing models according to MCS1, while boldface

numbers are for the best performing models according to MCS2.

As expected, all values reported are positive, indicating a better forecasting ability of

dynamic models over the simple constant correlation model. Confining to competitors based

on daily returns only, we observe that the GFT-based models dominate except for second

sub-year, with or without incorporating the leverage effect. Overall, the DCC specification

ranks third, outperformed by MSV(L)-Chol. Another notable finding from Table 6 is that

incorporating realized measures into our GFT-based specification leads to additional dra-

matic improvement of the out-of-sample predictive return likelihood. This can be explained

by the fact that taking into account the realized information can significantly stabilize the

inference of parameters by reducing the variance of estimators. Overall, our analysis suggests

the most flexible RMSVL-GFT model is preferred in terms of its ability in predicting the

return distribution.

We then turn to the economic loss function, which is also practically relevant for covari-

ance modeling. We construct the global minimum variance (GMV) portfolio for each model

and compare their average squared returns. According to Markowitz (1952), the GMV port-

folio is optimal as it has the smallest variance among all portfolios on the efficient frontier.

At period t− 1, we construct the GMV portfolio with the optimal weights wt = (w1t, ..., wpt)

where27

wt =
Ĉ−1
t|t−11p

1′
pĈ

−1
t|t−11p

, (9)

26A p-value larger than, say 0.1, indicates that the model belongs to the set of the best performers at the
90% confidence level.

27We assume negative weights are allowed so that short-sells are possible.
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and the optimal portfolio return at time t is then obtained as Rp
t = w′

trt.

In addition to the MSV models discussed earlier, we also consider a portfolio with equal

weights as a benchmark, which is frequently used in practice. Furthermore, to investigate

the relative merits of our parameter-driven MSV models compared with observation-driven

models, in our analysis, we consider the DCC model of Engle (2002) and BEKK model

of Engle and Kroner (1995). Following a suggestion from a reviewer, we also incorporate

into our analysis a simplified version of the GFT-based dynamic conditional score model of

Hafner and Wang (2023). In particular, returns are assumed to be conditionally Gaussian,

with the conditional volatility of each asset following the GARCH(1,1) process and the

log correlation matrix being driven by the conditional scores of the likelihood. Using our

notation, the dynamics of transformed correlations in this model can be expressed as

qt+1 = ω + A
∂lt
∂qt

+Bqt,

where ω is a d × 1 vector, A and B are d × d diagonal matrix and lt is the log conditional

likelihood of rt. The detailed expression of ∂lt
∂qt

can be found in Theorem 1 of Hafner and

Wang (2023). We estimate this model using the two-step approach explained in Section 3.2

of Hafner and Wang (2023). We refer to this model as GARCH-GFT-DCS.

To enable a fair comparison across models, we assume that all stocks have equal expected

returns and focus solely on the variance of the portfolio. Specifically, we measure the portfolio

variance by computing the average squared return over out-of-sample periods. To check the

robustness of our analysis, we again present the analogous results for each of the three years

in the out-of-sample period. The results are shown in Table 7, accompanied by corresponding

MCS p-values. Similar to Table 6, MCS1 are p-values when comparison is confined to models

without realized measures and MCS2 are for all candidates. Underlined GMV values identify

best models without realized measures according to MCS1, while boldface numbers identify

the best model among all competitors according to MCS2.

The portfolios based on equal weights and GARCH-type models consistently display no-

tably higher variances in almost all scenarios, making these strategies less favorable options.

Interestingly, among the GARCH-type specifications, the GARCH-GFT-DSC model exhibits

best performance. Besides, from the insights provided in Table 7, several key conclusions

can be drawn. First and foremost, confining to MSV models without leverage and realized

measures, we observe that MSV-GFT dominates all other competitors, both for the full

out-of-sample period and the two out of three sub-periods. More impressively, for the full

period, among all models without realized information and leverage, only the MSV-GFT

models belong to the 90% MCS2. This outcomes strongly underscore the efficacy of utiliz-
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ing GFT for dynamic correlation matrix specification. Secondly, our analysis indicates that

MSVL models consistently outperform their MSV counterparts in most instances, aligning

with the significant impact of the leverage effect observed in-sample. Indeed, we find that

the MSVL-GFT model ranks highest according to MCS1 except for 2014, in which MSVL-

DCC is better. Thirdly, the highly flexible RMSVL-GFT model yields the lowest overall

average squared return and it also excels in 2015. Following closely are the RMSV-GFT

and RMSV(L)-CC models, each incorporating additional measurements derived from real-

ized data. Furthermore, it is worth noting that, for all choices of sample period, models

with realized information always belong to the 90% MCS2.
28 Across all sub-periods, the

RMSV models demonstrate a marked advantage over their MSV counterparts. These find-

ings underscore the substantial benefits of integrating both daily and high-frequency data in

enhancing asset allocation strategies.

In summary, our analysis indicates that the MSV models utilizing GFT, along with the

inclusion of the leverage effect and/or realized measures, offer more dependable results for

out-of-sample covariance forecasting and portfolio construction.

8 Conclusion

We present a new approach to modeling multivariate stochastic volatility in this paper. Our

approach uses a generalized version of Fisher’s z-transformation to dynamically characterize

the correlation structure in a highly flexible manner. One key advantage of our model is that

it can automatically generate a positive-definite correlation matrix, while also completely

separate the driving forces underlying volatilities and correlations. We go a step further by

extending the model to incorporate both the leverage effect and the realized measures.

In contrast to numerous existing studies that rely on conventional Bayesian inference

methods, we utilize a Gibbs sampler coupled with a particle filter to conduct inference for our

model. A novel contribution we make to the literature is our introduction of two alternative

algorithms, namely Newton’s method and Broyden’s method, alongside AH’s algorithm to

solve systems of nonlinear equations – an essential step in the estimation process. We

conduct experiments to assess the performance of these three algorithms and advocate for

the practical application of Broyden’s method based on our findings. We showcase the

efficacy of our estimation approach for the model. Overall, our proposed model stands out

as a potent and versatile tool for capturing the intricate dynamics of multivariate stochastic

volatility within financial markets.

28Note that if we only consider the universe of four RMSV models, then RMSV(L)-CC will not belong to
90% MCS.
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Our empirical results (with p = 6) highlight that this adaptable approach to modeling

multivariate stochastic volatility enhances the in-sample fitting to stock return volatilities.

Furthermore, by integrating the leverage effect and realized measures into the updated model

specification, we observe improvements in both in-sample and out-of-sample forecasting ac-

curacies compared to numerous existing models.

While a single digit for the dimension of assets appears a restriction, estimation of a low-

dimensional MSV model can help understand important features in data and hence, provide

guidance to choose more restrictive MSV models for high dimensional data. For example,

after we estimate our six-dimensional MSV model, we find that it is critical to allow the

pairwise correlation coefficient sequences to have different levels of persistence. A reasonable

restrictive MSV model for high-dimensional data must retain this feature.

An unrestrictive MSV model with p being hundreds or even thousands of assets will

impose a significant computational challenge because the computational burden of imple-

menting the model increases exponentially with the number of assets. In such scenarios,

dimension reduction strategies such as enforcing a block structure or introducing latent

common factors become necessary. There are two potential factor-based specifications that

one may consider.

The first one assumes

rt = Λft + Ω1/2et, (10)

where Λ is a p × K matrix of factor loadings with K << p, ft is a K-dimensional vector

of factors that is assumed to follow Model (3a)-(3f), Ω is a p × p (possibly diagonal) co-

variance matrix, and et is a vector of p independent standard normal variates without serial

dependence. The second one imposes a factor structure directly on qt, that is,

qt = Λft, (11)

where Λ is a p(p−1)/2×K loading matrix with K << p(p−1)/2 and ft is a K-dimensional

vector of factors. We may then specify a new model by adding equation (11) to (3a)-(3f) and

replace qt in (3e) by ft. In the Section H of Online Supplement, we discuss these specifications

in greater details.

It is well known in the literature that even when p is in the range of hundreds or even

thousands, the number of volatility factors (i.e., K in equation (10) and (11)) is always a

low single digit (see for example, Ding et al. (2025) and references therein). As a result, we

expect Broyden’s method and hence, our estimation method may continue to be useful. We

defer the exploration of how to estimate high-dimensional MSV models and the investigation

of the relative performance of alternative models to future endeavors.
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Figure 1: Comparison of alternative root-finding methods based on Toeplitz matrices.
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Notes: This figure plots the average required iterations (top panels) and the computational time (bottom panels) for the three
algorithms as a function of p. All plots are based on the Toeplitz matrices, which becomes more singular as the value of ρ
increases.
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Figure 2: Comparison of alternative root-finding methods based on randomly generated matrices.

-20 -15 -10 -5 0
0

0.5

1

1.5

2

2.5

T
im

e
 c

o
s
t 

(s
)

p = 5

AH

Newton

Broyden

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

T
im

e
 c

o
s
t 

(s
)

-20 -15 -10 -5 0
0

0.5

1

1.5

2

2.5

T
im

e
 c

o
s
t 

(s
)

p = 10

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

T
im

e
 c

o
s
t 

(s
)

-20 -15 -10 -5 0
0

0.5

1

1.5

2

2.5

T
im

e
 c

o
s
t 
(s

)

p = 15

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

T
im

e
 c

o
s
t 

(s
)

-20 -15 -10 -5 0
0

0.5

1

1.5

2

2.5

T
im

e
 c

o
s
t 
(s

)

p = 20

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

T
im

e
 c

o
s
t 

(s
)

Notes: This figure plots the average computational time for the three algorithms as a function of log(λmin) when p ∈
{5, 10, 15, 20}. For each p and log(λmin), a large number of correlation matrices are generated randomly. The inset in each
subplot zooms in the area near zero.
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Table 1: Simulation results for MSV-GFT with p = 4

T N Volatility Correlation Time cost (h)
µh1 ϕh1 σh1 µq1 ϕq1 σq1

true 0.3 0.9 0.05 0.7 0.8 0.05

500 50
Mean 0.295 0.899 0.047 0.676 0.811 0.048

0.49std 0.141 0.045 0.023 0.085 0.081 0.026
IF 22.536 123.418 218.199 33.591 143.971 245.731

500 100
Mean 0.296 0.900 0.047 0.676 0.811 0.048

1.00std 0.142 0.045 0.023 0.085 0.081 0.026
IF 11.692 98.971 175.112 21.513 115.681 198.900

500 200
Mean 0.296 0.900 0.047 0.676 0.811 0.048

2.09std 0.142 0.045 0.023 0.084 0.081 0.026
IF 6.735 80.288 142.103 15.589 94.680 160.444

1000 50
Mean 0.296 0.900 0.049 0.688 0.803 0.050

1.00std 0.091 0.032 0.017 0.054 0.066 0.021
IF 17.709 136.979 219.401 32.800 179.264 279.643

1000 100
Mean 0.296 0.900 0.049 0.688 0.803 0.050

2.00std 0.091 0.032 0.017 0.054 0.067 0.021
IF 9.051 107.458 170.971 23.102 147.555 229.836

1000 200
Mean 0.297 0.900 0.049 0.688 0.803 0.050

4.25std 0.091 0.032 0.017 0.055 0.067 0.021
IF 5.377 88.112 139.847 17.727 128.492 196.301

2000 50
Mean 0.298 0.901 0.049 0.692 0.800 0.050

1.99std 0.062 0.023 0.012 0.037 0.051 0.016
IF 15.464 139.000 216.425 32.151 208.696 303.972

2000 100
Mean 0.298 0.900 0.049 0.693 0.799 0.050

4.01std 0.062 0.023 0.012 0.037 0.051 0.016
IF 8.205 106.982 165.828 23.064 174.045 252.155

2000 200
Mean 0.298 0.901 0.049 0.692 0.801 0.050

8.51std 0.062 0.023 0.012 0.037 0.052 0.016
IF 4.853 91.032 140.521 18.461 154.004 220.199

Notes: T is the number of observations for each asset. N is the number of particles used in PGAS. Mean,
std and IF are the average value of posterior means, the standard error of the posterior means, and the
average inefficiency factor, respectively. All these three statistics are computed across 1000 replications. The
computational time is the number of hours for 5000 MCMC iterations in MATLAB R2023b on a desktop
computer with an AMD Ryzen 9 7950X 16-Core Processor and 4.50 GHz memory.
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Figure 3: Daily return and realized volatility.
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Notes: This figure plots the time series of daily returns (the red dashed line and the left y-axis) and the corresponding daily
annualized realized volatilities (the blue solid line and the right y-axis) for six equities (JPM, GS, HON, CAT, JNJ and AMGN)
considered in the empirical application. The sample period is from January 3 2006 to December 30 2015.
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Table 2: Descriptive statistics for empirical analysis

(a). daily returns
JPM GS HON CAT JNJ AMGN

Mean 0.0579 0.0456 0.0557 0.0289 0.0260 0.0427
Std 2.7668 2.5390 1.7267 2.0997 1.0265 1.7104
Skewness 1.0053 0.9618 0.0592 0.1055 0.6825 0.6735
Kurtosis 18.8782 20.4724 7.5136 8.7327 17.1011 10.4860
Max 25.0379 26.4218 11.6905 14.6937 12.1892 13.8755
Min -20.7863 -19.0057 -9.4644 -14.5468 -7.7052 -9.4674
JB 0.001 0.001 0.001 0.001 0.001 0.001

sample correlation

1
0.74 1
0.58 0.57 1
0.52 0.54 0.71 1
0.43 0.46 0.56 0.47 1
0.33 0.32 0.44 0.33 0.52 1

(b). realized volatilities/correlations
JPM GS HON CAT JNJ AMGN

Mean 4.4968 4.2611 2.2009 3.0795 0.8862 2.0891
Std 11.5413 13.7358 4.5665 5.5186 1.8443 2.9782
Skewness 8.7142 15.9009 12.3628 7.7342 12.5043 9.6341
Kurtosis 117.8498 350.1991 268.5557 101.7275 249.3983 159.9696
Max 224.8679 361.6185 129.3694 115.8542 49.9017 71.4977
Min 0.1139 0.2076 0.1198 0.1932 0.0112 0.1962
JB 0.001 0.001 0.001 0.001 0.001 0.001

average realized
correlations

1
0.46 1
0.33 0.29 1
0.34 0.31 0.37 1
0.26 0.22 0.27 0.23 1
0.22 0.19 0.22 0.19 0.25 1

Notes: This table reports the summary statistics for the daily log-returns and realized measures of six
equities. The sample period is from January 3, 2006 to December 31, 2015. JB denotes the p-values of
Jarque-Bera normality test. For panel (b), the upper part contains the summary statistics for realized
volatilities, while the lower part reports the time series average of each realized correlation.

36



Figure 4: Dynamics of realized correlations.
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Notes: This figure plots the time series of all pairwise realized correlations considered in the
empirical application. The red dotted line depicts the time series average for each realized
correlation sequences. The blue dashed line depicts the corresponding sample correlations
computed using daily data. The sample period is from January 3 2006 to December 30 2015.
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Figure 5: Q-Q plots for transformed realized correlations.

-4 -3 -2 -1 0 1 2

-0.5

0

0.5

1

-4 -2 0 2 4

-0.5

0

0.5

1

-4 -2 0 2 4

-0.5

0

0.5

1

-4 -2 0 2 4

-0.5

0

0.5

1

-4 -2 0 2 4

-0.5

0

0.5

1

-4 -2 0 2 4

-0.5

0

0.5

1

-4 -2 0 2 4

-0.5

0

0.5

1

-4 -2 0 2 4

-0.5

0

0.5

1

-4 -2 0 2 4

-0.5

0

0.5

1

-4 -2 0 2 4

-0.5

0

0.5

1

-4 -2 0 2 4

-0.5

0

0.5

1

-4 -2 0 2 4

-0.5

0

0.5

1

-4 -2 0 2 4

-0.5

0

0.5

1

-4 -2 0 2 4

-0.5

0

0.5

1

-4 -2 0 2 4

-0.5

0

0.5

1

Notes: This figure depicts contour plots of selected realized correlations considered in the
empirical application. The results are based on the sample period from January 3 2006
to December 30 2015, which has 2,516 daily observations. The quantiles of their empirical
distributions are plotted against the corresponding quantiles of the normal distribution.
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Figure 6: Contour plots for selected (transformed) realized correlations.
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Notes: This figure depicts contour plots of selected pairs of realized correlations (the first
row), bivariate Fisher-transformed counterparts (the second row) and GFT variables (the
third row). For subplots in the first row, ρij denotes the realized correlation between asset i
and j, with i = 1, · · · , 6 corresponds to {JPM, GS, HON, CAT, JNJ, AMGN}. For subplots
in the second row, gij denote the bivariate Fisher-transformation of ρij. For subplots in the
third row, qi denote the i

th variable generated by applying GFT on 6×6 realized correlation
matrices.
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Table 3: In-sample volatility estimation results for RMSVL-GFT model

µh ϕh σ2
h ψh η2h ρ

JPM

0.9066 0.9742 0.0624 -0.3367 0.1145 -0.2821
(0.2035) (0.0050) (0.0054) (0.0301) (0.0058) -0.0262
1.5871 5.1228 22.5061 31.4243 14.0086 13.8807

[0.5003,1.3053] [0.9643,0.9836] [0.0524,0.0736] [-0.3943,-0.2767] [0.1033,0.1261] [-0.3344,-0.2319]

GS

0.9700 0.9723 0.0461 -0.3059 0.1405 -0.3197
(0.1631) (0.0053) (0.0042) (0.0290) (0.0060) (0.0267)
1.9536 5.0324 17.5200 22.6178 9.5674 16.0523

[0.6469,1.2880] [0.9618,0.9822] [0.0383,0.0546] [-0.3619,-0.2481] [0.1291,0.1524] [-0.3726,-0.2682]

HON

0.5549 0.9705 0.0425 -0.3307 0.1301 -0.4536
(0.1464) (0.0056) (0.0044) (0.0283) (0.0060) (0.0353)
1.8690 9.2886 35.0743 28.1210 18.1513 33.5945

[0.2635,0.8474] [0.9592,0.9812] [0.0344,0.0516] [-0.3871,-0.2749] [0.1185,0.1421] [-0.5245,-0.3861]

CAT

0.9246 0.9728 0.0387 -0.3421 0.1134 -0.2259
(0.1539) (0.0053) (0.0040) (0.0292) (0.0052) (0.0267)
2.9799 8.3413 28.8584 36.1329 13.1749 12.7290

[0.6191,1.2260] [0.9619,0.9829] [0.0312,0.0471] [-0.4013,-0.2859] [0.1035,0.1240] [-0.2800,-0.1756]

JNJ

-0.5300 0.9593 0.0414 -0.0598 0.1322 -0.2917
(0.1066) (0.0068) (0.0042) (0.0310) (0.0058) (0.0266)
4.8144 10.1458 25.9069 34.8798 11.5275 12.9620

[-0.7402,-0.3186] [0.9456,0.9719] [0.0338,0.0502] [-0.1200,0.0007] [0.1213,0.1440] [-0.3449,-0.2399]

AMGN

0.5731 0.9291 0.0566 -0.1813 0.1424 -0.1832
(0.0739) (0.0102) (0.0063) (0.0297) (0.0067) (0.0235)
5.8587 21.3422 40.1928 26.7798 19.7796 7.9495

[0.4287,0.7184] [0.9085,0.9482] [0.0451,0.0700] [-0.2389,-0.1235] [0.1295,0.1559] [-0.2308,-0.1381]

Notes: This table reports the in-sample volatility-related parameter estimation results based on RMSVL-GFT. The sample period is
from January 3, 2006 to December 31, 2015. For each parameter, we report its posterior mean, posterior standard deviation (number in
the parenthesis), inefficiency factor, as well as the 95% credible interval using the 2.5th and 97.5th percentiles of the MCMC draws.
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Table 4: In-sample correlation estimation results for RMSVL-GFT model

µq ϕq σ2
q ψq η2q

q1

0.8209 0.9718 0.0013 -0.3619 0.0332

(0.0315) (0.0068) (0.0002) (0.0158) (0.0011)

81.2793 135.9620 276.5013 328.3459 38.5393

[0.7574,0.8813] [0.9578,0.9843] [0.0010,0.0018] [-0.3861,-0.3299] [0.0312,0.0354]

q2

0.3870 0.9129 0.0016 -0.1437 0.0297

(0.0152) (0.0195) (0.0004) (0.0126) (0.0010)

201.5734 253.1221 330.0832 301.0712 76.2051

[0.3607,0.4215] [0.8710,0.9466] [0.0009,0.0025] [-0.1761,-0.1248] [0.0277,0.0318]

q3

0.2959 0.9020 0.0017 -0.0427 0.0266

(0.0126) (0.0223) (0.0004) (0.0096) (0.0010)

158.5033 263.6150 328.2505 259.4481 95.9343

[0.2709,0.3196] [0.8575,0.9441] [0.0008,0.0026] [-0.0605,-0.0242] [0.0247,0.0285]

q4

0.3008 0.8813 0.0022 -0.1196 0.0253

(0.0162) (0.0236) (0.0005) (0.0145) (0.0010)

259.8706 247.8345 321.7477 327.5475 121.6425

[0.2713,0.3323] [0.8340,0.9237] [0.0012,0.0031] [-0.1469,-0.0943] [0.0235,0.0272]

q5

0.1696 0.7306 0.0034 -0.0284 0.0226

(0.0178) (0.0759) (0.0012) (0.0178) (0.0012)

325.5295 326.6328 349.2177 336.9915 223.8341

[0.1372,0.2130] [0.5655,0.8552] [0.0017,0.0063] [-0.0721,0.0037] [0.0200,0.0247]

q6

0.3128 0.9625 0.0006 -0.1065 0.0272

(0.0159) (0.0088) (0.0001) (0.0086) (0.0008)

80.5803 171.1830 285.5487 279.1870 18.7110

[0.2812,0.3437] [0.9423,0.9773] [0.0004,0.0009] [-0.1235,-0.0886] [0.0257,0.0289]

q7

0.3211 0.9507 0.0007 -0.0966 0.0263

(0.0154) (0.0101) (0.0001) (0.0119) (0.0008)

164.8006 157.5036 275.1092 319.9081 22.1908

[0.2888,0.3495] [0.9285,0.9683] [0.0005,0.0010] [-0.1166,-0.0694] [0.0248,0.0279]

q8

0.2270 0.7097 0.0032 -0.0899 0.0212

(0.0111) (0.0663) (0.0010) (0.0108) (0.0010)

269.9458 299.4386 325.6539 287.5220 177.0645

[0.2040,0.2473] [0.5513,0.8102] [0.0019,0.0058] [-0.1088,-0.0672] [0.0188,0.0230]

q9

0.1738 0.7293 0.0025 -0.0538 0.0218

(0.0138) (0.0759) (0.0008) (0.0135) (0.0009)

310.3938 324.1396 346.0053 319.2184 133.4191

[0.1516,0.2020] [0.5617,0.8583] [0.0012,0.0042] [-0.0813,-0.0322] [0.0201,0.0235]

( To be continued)
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q10

0.5888 0.9746 0.0012 -0.2580 0.0350

(0.0318) (0.0060) (0.0002) (0.0138) (0.0011)

55.8941 128.2431 288.2593 312.3583 42.3190

[0.5246,0.6497] [0.9623,0.9859] [0.0009,0.0017] [-0.2804,-0.2269] [0.0328,0.0372]

q11

0.3472 0.9432 0.0012 -0.1335 0.0300

(0.0162) (0.0125) (0.0003) (0.0102) (0.0010)

121.9742 211.4949 318.4378 275.3242 51.9069

[0.3166,0.3792] [0.9148,0.9634] [0.0009,0.0019] [-0.1538,-0.1147] [0.0281,0.0319]

q12

0.2706 0.9195 0.0009 -0.1145 0.0277

(0.0138) (0.0173) (0.0002) (0.0122) (0.0009)

228.7777 226.2120 292.3517 314.5477 25.7573

[0.2421,0.2969] [0.8819,0.9506] [0.0006,0.0013] [-0.1375,-0.0884] [0.0261,0.0294]

q13

0.1984 0.9124 0.0013 -0.0475 0.0267

(0.0149) (0.0204) (0.0003) (0.0130) (0.0009)

229.7456 261.5111 326.0511 311.8691 53.1734

[0.1692,0.2251] [0.8638,0.9465] [0.0008,0.0020] [-0.0685,-0.0228] [0.0250,0.0285]

q14

0.1351 0.8536 0.0021 -0.0116 0.0240

(0.0120) (0.0292) (0.0005) (0.0107) (0.0009)

215.9103 256.1655 314.9568 279.6245 105.6430

[0.1094,0.1580] [0.7909,0.9037] [0.0014,0.0035] [-0.0321,0.0129] [0.0222,0.0257]

q15

0.3801 0.9591 0.0007 -0.1647 0.0287

(0.0169) (0.0118) (0.0002) (0.0117) (0.0009)

136.7918 255.0702 344.3820 319.4239 50.2741

[0.3475,0.4132] [0.9293,0.9772] [0.0004,0.0012] [-0.1867,-0.1447] [0.0270,0.0305]

Notes: This table reports the in-sample correlation-related parameter estimation results based on RMSVL-

GFT. The sample period is from January 3, 2006 to December 31, 2015. For each parameter, we report its

posterior mean, posterior standard deviation (number in the parenthesis), inefficiency factor, as well as the

95% credible interval constructed using the 2.5th and 97.5th percentiles of the MCMC draws.
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Figure 7: Filtered and (bias-corrected) realized measures in the empirical application.

Notes: This figure plots the posterior mean of selected log-volatility sequences (top panel) and pairwise correlation sequences
(bottom panel) implied by RMSVL-GFT (the red dash-dotted line), accompanied by the corresponding bias-corrected realized
measures (the blue solid line) and 95% credible intervals (yellow shaded area). The sample period is from January 3 2006 to
December 30 2015.
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Table 5: In-sample model comparison

# of params log-lik DIC

MSV

MSV-CC 39 -24171 48356

MSV-DCC 41 -24120 48283

MSV-GFT 63 -24005 48226

MSV-Chol 63 -24061 48252

MSVL

MSVL-CC 45 -24102 48258

MSVL-DCC 47 -24077 48193

MSVL-GFT 69 -23996 48150

MSVL-Chol 69 -24003 48187

Notes: This table reports the number of parameters
(# of params), the log marginal likelihood (log-lik) and
deviance information criterion (DIC) values of compet-
ing models. The results are based on daily returns of
JPM, GS, HON, CAT, JNJ and AMGN from January
3, 2006 to December 30, 2015.
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Table 6: Model comparison based on out-of-sample predictive likelihood of returns.

Overall 2013 2014 2015

pred-ll MCS1 MCS2 pred-ll MCS1 MCS2 pred-ll MCS1 MCS2 pred-ll MCS1 MCS2

MSV

MSV-CC .000 (0.019 ) (0.003 ) .000 (0.716 ) (0.406 ) .000 (0.383 ) (0.323 ) .000 (0.017 ) (0.013 )

MSV-DCC .082 (0.691 ) (0.304 ) .060 (0.993 ) (0.724 ) .069 (1.000 ) (0.892 ) .116 (0.064 ) (0.083 )

MSV-GFT .104 (0.885 ) (0.574 ) .072 (0.993 ) (0.724 ) .046 (0.985 ) (0.892 ) .193 (0.511 ) (0.622 )

MSV-Chol .091 (0.885 ) (0.574 ) .058 (0.993 ) (0.794 ) .043 (0.985 ) (0.892 ) .172 (0.436 ) (0.305 )

MSVL

MSVL-CC .013 (0.040 ) (0.004 ) .003 (0.735 ) (0.498 ) .003 (0.383 ) (0.126 ) .033 (0.005 ) (0.003 )

MSVL-DCC .089 (0.885 ) (0.479 ) .063 (0.993 ) (0.794 ) .055 (0.985 ) (0.892 ) .150 (0.074 ) (0.141 )

MSVL-GFT .119 (1.000 ) (0.574 ) .081 (1.000 ) (0.794 ) .045 (0.985 ) (0.867 ) .232 (1.000 ) (0.622 )

MSVL-Chol .092 (0.885 ) (0.574 ) .067 (0.993 ) (0.794 ) .037 (0.985 ) (0.892 ) .172 (0.511 ) (0.305 )

RMSV(L)

RMSV-CC .108 (0.574 ) .118 (0.794 ) .009 (0.605 ) .197 (0.622 )

RMSV-GFT .175 (0.574 ) .175 (0.946 ) .090 (0.892 ) .262 (1.000 )

RMSVL-CC .108 (0.574 ) .119 (0.794 ) .010 (0.640 ) .197 (0.622 )

RMSVL-GFT .176 (1.000 ) .175 (1.000 ) .092 (1.000 ) .261 (0.622 )

Notes: This table reports the predictive log-likelihoods (pred-ll) of returns for all competing MSV models relative to MSV-CC. MCS2 is the p-value
for model confidence set for all candidate models. MCS1 is the p-value when comparison is confined to models without realized measures. Underlined
values for the best models according to MCS1. Boldface values are for the best model according to MCS2.
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Table 7: Model comparison based on out-of-sample portfolio construction.

Overall 2013 2014 2015

GMV MCS1 MCS2 GMV MCS1 MCS2 GMV MCS1 MCS2 GMV MCS1 MCS2

MSV

MSV-CC 0.797 (0.073 ) (0.003 ) 0.592 (0.000 ) (0.010 ) 0.722 (0.571 ) (0.107 ) 1.079 (0.344 ) (0.181 )

MSV-DCC 0.783 (0.201 ) (0.044 ) 0.575 (0.076 ) (0.322 ) 0.716 (1.000 ) (0.115 ) 1.060 (0.393 ) (0.295 )

MSV-GFT 0.767 (0.588 ) (0.257 ) 0.548 (0.488 ) (0.794 ) 0.743 (0.571 ) (0.107 ) 1.012 (0.560 ) (0.599 )

MSV-Chol 0.803 (0.073 ) (0.003 ) 0.597 (0.488 ) (0.417 ) 0.756 (0.571 ) (0.107 ) 1.056 (0.281 ) (0.031 )

MSVL

MSVL-CC 0.786 (0.073 ) (0.003 ) 0.583 (0.067 ) (0.067 ) 0.720 (0.571 ) (0.107 ) 1.055 (0.393 ) (0.092 )

MSVL-DCC 0.772 (0.588 ) (0.050 ) 0.567 (0.417 ) (0.417 ) 0.713 (0.728 ) (0.107 ) 1.037 (0.560 ) (0.295 )

MSVL-GFT 0.756 (1.000 ) (0.367 ) 0.537 (1.000 ) (1.000 ) 0.741 (0.554 ) (0.081 ) 0.992 (1.000 ) (0.763 )

MSVL-Chol 0.801 (0.017 ) (0.000 ) 0.586 (0.417 ) (0.417 ) 0.769 (0.296 ) (0.001 ) 1.049 (0.281 ) (0.015 )

GARCH

GARCH-DCC 0.811 (0.003 ) (0.000 ) 0.617 (0.000 ) (0.000 ) 0.746 (0.426 ) (0.032 ) 1.071 (0.344 ) (0.074 )

GARCH-BEKK 0.849 (0.003 ) (0.000 ) 0.652 (0.076 ) (0.051 ) 0.794 (0.426 ) (0.107 ) 1.103 (0.344 ) (0.029 )

GARCH-GFT-DCS 0.809 (0.003 ) (0.000 ) 0.607 (0.000 ) (0.000 ) 0.759 (0.426 ) (0.050 ) 1.063 (0.281 ) (0.031 )

RMSV(L)

RMSV-CC 0.734 (0.367 ) 0.563 (0.417 ) 0.672 (0.139 ) 0.968 (0.763 )

RMSV-GFT 0.719 (0.933 ) 0.545 (0.970 ) 0.669 (1.000 ) 0.945 (0.763 )

RMSVL-CC 0.734 (0.367 ) 0.563 (0.417 ) 0.672 (0.115 ) 0.967 (0.763 )

RMSVL-GFT 0.719 (1.000 ) 0.546 (0.945 ) 0.669 (0.150 ) 0.944 (1.000 )

EW 0.948 (0.003 ) (0.000 ) 0.758 (0.000 ) (0.000 ) 0.761 (0.554 ) (0.107 ) 1.327 (0.073 ) (0.006 )

Notes: This table reports the average squared returns of the global minimum variance (GMV) portfolio for all competing MSV and MGARCH models,
together with that of a equal-weight portfolio. MCS2 are model confidence set p-values based on absolute portfolio returns when all candidate models are
considered. MCS1 are p-values when comparison is confined to models without realized measures. Underlined GMV values identify best models without
realized measures according to MCS1. GMV values in boldface identify the best model according to MCS2.
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Online Supplement to “Multivariate Stochastic Volatil-

ity Models based on Generalized Fisher Transforma-

tion” by Han Chen, Yijie Fei, Jun Yu

(Not for Publication)1

This Online Supplement includes details of review of existing MSV models and their in-

ference, introduction to PG, details of PGAS algorithm, expression of the Jacobian for GFTI,

details of sampling model parameters of MSV-GFT, inference for RMSVL-GFT model, ex-

tension to high dimensions and comparison with estimation based on pairwise Fisher trans-

formation.

A Review of existing MSV models and their inference

A.1 Model specifications

The existing MSV literature is vast, with numerous studies proposing alternative modeling

strategies and estimation techniques. Two comprehensive reviews of the literature are Asai

et al. (2006) and Chib et al. (2009). In this section, we focus on the models proposed over the

last decade, which have aimed to address the challenge of ensuring the positive-definiteness

of the variance-covariance matrix. We provide a critical review of these recent models and

their parametrizations.2

The basic structure of the MSV model is

rt|Ct ∼ N(0, Ct),

where rt is a vector of q asset returns. We aim at characterizing the dynamics of its variance-

covariance matrix Ct. Clearly, Ct must be symmetric and positive-definite for all t. Different

models rely on different techniques to ensure this positive-definiteness.

Broadly speaking, we can categorize the MSV models into two groups. In the first group,

a model is directly built for Ct. In the second group, a variance-covariance decomposition is

first carried out and then each component in the decomposition is modeled separately.

1We would like to thank Viktor Todorov (the co-editor), an associate editor, two referees, and Peter
Hansen for useful discussions and comments. Han Chen (Email: hanchen@hnu.edu.cn) and Yijie Fei (Email:
yijiefei@hnu.edu.cn), College of Finance and Statistics, Hunan University, 109 Shijiachong Road, Changsha,
China. Jun Yu (Email: junyu@um.edu.mo), Faculty of Business Administration, University of Macau,
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Within the first group of models, four methods have been considered. The first method is

based on the matrix exponential. For example, Ishihara et al. (2016) and Asai et al. (2022)

assume that

Ct = exp(Ht/2),

and propose to model vech(Ht) as a vector autoregressive (VAR) process. By the definition

of the matrix exponential, Ct is guaranteed to be positive-definite. The major drawback

of this model is that the relationship between latent variables and the original volatili-

ties/correlations is highly nonlinear and hence, hard to interpret.

The second method utilizes the well-known Cholesky decomposition. For instance, Lopes

et al. (2010) propose to decompose Ct as

Ct = AtHtA
′
t,

where Ht is a diagonal matrix and At is a lower triangular matrix, and then model all the

nonzero elements in At and Ht as the autoregressive process. Similarly, Nakajima (2017),

Shirota et al. (2017) and Zaharieva et al. (2020) also use this decomposition to set up their

MSV models. Unfortunately, in the Cholesky decomposition, order matters. That is, the

resulting variance-covariance matrix depends on the ordering of assets. This dependence

is highly undesirable as the performance of the model depends on the ordering. See Arias

et al. (2023) for a detailed discussion on the macroeconomic forecasting performance of MSV

based on this specification. Moreover, the dynamics of the volatilities and the correlations

are not separated.

The third method takes advantage of the Wishart distribution, whose support includes

only positive-definite matrices. This approach is considered in Gouriéroux et al. (2009),

where a Wishart autoregressive (AR) process is used. Specifically, they assume that

Ct =
m∑
i=1

xitx
′
it,

xit = Axi,t−1 + ϵit and ϵit ∼ N(0,Σ),

where (m,A,Σ) are unknown parameters. Alternatively, one can also model Ct using the

inverse Wishart as in Philipov and Glickman (2006). In this case, we have

C−1
t |v, C−1

t−1 ∼ Wishart

(
v,

1

v
(A1/2)(C−1

t−1)
d(A1/2)′

)
,

where (v, d, A) are unknown parameters. Clearly, the dynamics of the volatilities and the

correlations are not separated.
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Dellaportas et al. (2023) point out that Wishart-based MSV models are not able to scale

well with p, the number of assets, as the computational complexity is O(p3). In view of this

drawback, they propose a new MSV model assuming Gaussian latent processes for functions

of the eigenvalues and rotation angles of Ct. In particular, the spectral decomposition implies

that

Ct = PtΛtP
′
t ,

where Λt is a diagonal matrix of eigenvalues and Pt is the eigenvector matrix. They further

decompose Pt as a product of p(p−1)/2 rotation matrices, whose elements are modeled after

transformation. This parameterization leads to O(p2) complexity and thus more scalable.

Nevertheless, the modeled variables in this setup are still hard to interpret.

Models in the second group treat the volatilities and the correlation matrix separately and

is amenable to easy interpretation of driving factors of volatilities and correlations. Consider

the following decomposition

Ct = V
1/2
t RtV

1/2
t , (A.1)

where Vt is a diagonal matrix collecting all the variances, and Rt is the correlation matrix.

By construction, the diagonal elements of Rt are ones and the off-diagonal elements of Rt

are pair-wise correlation coefficients. For our purpose, the major difference in model designs

within this group lies in how Rt is parameterized. The critical issue in this setup is to ensure

Rt is a valid correlation matrix, such as the positive-definiteness, symmetry, all the diagonal

elements being one, all the off-diagonal elements taking values in [−1, 1]. The first and the

simplest model in this fashion is the constant correlation MSV in Harvey et al. (1994), where

Rt = R, for all t. (A.2)

A similar assumption is made in Chan et al. (2006), Asai and McAleer (2006), and Ishi-

hara and Omori (2012). Although the assumption of constant correlation makes statistical

inference simple, it is too restrictive for financial time series.

To allow for time-varying correlations, Asai and McAleer (2009b) consider two models,

both motivated by the dynamic conditional correlation (DCC) model of Engle (2002). The

idea is to write the correlation matrix as

Rt = Q̃−1
t QtQ̃

−1
t ,

where Q̃t = (diag(diag(Qt))
1/2. By construction, all diagonal elements of Rt are ones and Rt

is a valid correlation matrix as long as Qt is symmetric positive-definite. The two existing
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Wishart-distribution-based models for Qt are, respectively,

Qt+1 = (1− ϕ)Q̄+ ϕQt + Ξt, where Ξt ∼ Wishart(k,Λ),

and

Q−1
t+1|k,Q−1

t ∼ Wishart

(
k,

1

k
Q

−ϕ/2
t ΛQ

−ϕ/2
t

)
,

where the unknown parameters are k, ϕ,Λ. Asai and McAleer (2009b) argue that the second

one is preferred, which is also used in Arias et al. (2023) for macroeconomic forecasting.

Inspired by the dynamic equicorrelation (DECO) model of Engle and Kelly (2012),

Kurose and Omori (2016) propose to model Rt as

Rt = (1− ρt)I + ρtJ,

where I is an identity matrix, and J is a square matrix with all elements being ones. To ensure

that ρt is within (−1, 1), Kurose and Omori (2016) model the Fisher z-transformation of ρt

as an autoregressive process. As in the model of Yamauchi and Omori (2020), a lower bound

for ρt is needed to guarantee the positive-definiteness of Rt. This lower bound approaches

zero as the number of assets goes to infinity.

Following Yu and Meyer (2006), Yamauchi and Omori (2020) propose to model the

pairwise correlations by the Fisher z-transformation. That is, letting Rt = {ρij,t} and

gij,t =
1

2
log

1 + ρij,t
1− ρij,t

:= F (ρij,t) , (A.3)

they assume that gij,t follows a random walk process for any i ̸= j. By construction, |ρij,t| <
1. When p = 2, that is, only two returns are modeled, this transformation ensures the

positive-definiteness of Rt. However, if p > 2, this element-wise operation does not guarantee

the positive-definiteness of Rt. Yamauchi and Omori (2020) further derive algebraic bounds

for ρij,t that ensure the positive-definiteness of Rt. The bounds for one particular ρij,t are

conditional on all other elements in Rt. Therefore, the restriction is well suited for the

single-move Gibbs sampling technique, but hard to be implemented by other estimation

methods.

A.2 Standard Bayesian inference for MSV models

Unlike GARCH-type models, which can be estimated straightforwardly by the frequentist

maximum likelihood (ML) method, estimating SV models are particularly challenging in

terms of likelihood-based estimation and inference. The difficulty mainly arises from the

high-dimensional latent variables involved in SV models. To be more specific, to obtain the
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likelihood function of SV models, one needs to integrate out all the latent variables from the

joint probability density of observables and latent variables, that is,

p(r|θ) =
∫
p(r, x|θ)dz =

∫
p(r|h, q,θ)p(h|θ)p(q|θ)dhdq.

Unfortunately, such an integration, being ((p+ d)× T )-dimensional, does not have the ana-

lytical solution.

In the context of MSV, there is an extra difficulty with the ML method. MSV models

involve a large number of parameters (i.e. the dimension of θ is large). The ML method

requires numerical maximization of log p(r|θ) over θ. This often imposes a numerical chal-

lenge.

To deal with these two complications, the MSV literature rely on Bayesian methods to

conduct statistical inference. A popular choice is standard MCMC methods which conduct

the Bayesian posterior analysis based on p(r|θ, x) which is more tractable than p(r|θ). In

particular, standard MCMC methods consists of alternately updating the component of x

conditional on θ and θ conditional on x. A single-move MCMC method draws a single

element of x at a time while a multiple-move MCMC method draws a block of elements of

x at a time.

Standard MCMC algorithms have been applied to estimate MSV models in the liter-

ature. Yu and Meyer (2006) use the single-move algorithm to estimate several bivariate

MSV models. Yamauchi and Omori (2020) use the single-move algorithm to estimate the

pairwise-Fisher-transformation-based MSV model. However, the single-move algorithm is

well known to be inefficient, as it generates highly autocorrelated Markov chains, suggesting

a vast amount of random draws are required to achieve a satisfactory accuracy of estimation.

To improve efficiency, Ishihara and Omori (2012), Ishihara et al. (2016), Kurose and

Omori (2016) have resorted to the multi-move algorithms to estimate different MSV models.

These studies are built on some earlier works by De Jong and Shephard (1995), Pitt and

Shephard (1999), Kim et al. (1998), and Watanabe and Omori (2004) in the univariate time

series context. The multi-move samplers often require the second-order approximation to the

target distribution. In general the derivation of the approximation is complicated and model

dependent, making a generic multi-move algorithm not possible. Arias et al. (2023) propose

a novel elliptical slice sampling method for estimating a time-varying parameter VAR with

innovations following MSV-GFT. Assuming random walk dynamics for all latent variables,

they successfully implement this method to quarterly data of four macroeconomic variables.

Their approach can be treated as a different type of multi-move sampler. For our application

with thousands of daily financial observations, however, slice sampler is impractical due to

heavy computational cost.
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When latent variables of various degree of persistence co-exist in a model, the single-

move sampler and the multi-move sampler may be combined. This idea is exploited in Asai

and McAleer (2009b) where the multi-move sampler is applied to the latent variables that

determine volatilities and the single-move sampler is applied to the latent variables that

determine the correlations.

While standard MCMC algorithms can draw random samples from p(θ, x|r), additional
efforts are needed to compute the likelihood p(r|θ) and the marginal likelihood p(r) of the

model. The marginal likelihood is an important quantity for model comparison.

B Introduction to PG approach

To fix some notations, let r = (r′1, ..., r
′
T )

′, h = (h′1, ..., h
′
T )

′, q = (q′1, ..., q
′
T )

′, x = (h′, q′)′ :=

(x′1, ..., x
′
T )

′ so that xt = (h′t, q
′
t)

′. Vector x contains all latent variables and vector xt contains

all latent variables at period t. We use x1:t to denote (x′1, ..., x
′
t)

′ for any t = 1, · · · , T , θ
denote the set of parameters in the model, and p(r|θ) denote the likelihood function of the

model.

Consider a general state-space model given by

rt|xt = x, θ ∼ f(·|x, θ),
xt+1|xt = x, θ ∼ g(·|x, θ), and x1 ∼ µθ(·).

(B.1)

where f(·|x, θ) is the measurement density, g(·|x, θ) is the transition probability density and

µθ(·) is the initial density.

To sample from p(θ, x1:T |r1:T ), a Gibbs sampler draws alternately from the two conditional

densities, p(θ|x1:T , r1:T ) and p(x1:T |r1:T , θ). PG draws random samples from p(x1:T |r1:T , θ)
based on the particle filter, which is applicable as long as the measurement density f(·|x, θ)
can be numerically evaluated and the transition density g(·|x, θ) can be simulated.3

The particle filter combines importance sampling and Monte Carlo simulations to approx-

imate the target distribution. The key idea is to represent the distribution by a set of random

samples with the corresponding weights and calculate the quantity of interest based on these

samples and weights. Let {x(i)1:t, w
(i)
t }Ni=1 be a random measure, where {x(i)1:t, i = 1, ..., N} is a

set of support points and {w(i)
t , i = 1, ..., N} are the associated weights. Each point is called

a particle, and N is the number of particles used. The approximate distribution can then

3Despite its general applicability, when implementing particle filter for a particular model, many subtle
issues must be considered. These include how to choose a proper importance density, how many particles
to use, and whether a resampling step should be added. For a thorough discussion, see Arulampalam et al.
(2002) and Johansen and Doucet (2008).
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be written as

p̂θ(dx1:t|r1:t) =
N∑
i=1

w
(i)
t δx(i)1:t

(dx1:t),

where r1:t is similarly defined and δ(·) is the Dirac delta function. p̂θ is a discrete weighted

approximation to the target distribution pθ. Apparently, the accuracy of the approximation

can be improved if an increasing number of particles are included. Doing so, however, also

dramatically raises the computational burden.

To obtain the weights, one resorts to importance sampling. That is, one samples N times

from a candidate distribution, say qθ(x1:t|r1:t), and assign the weight

w
(i)
t ∝ pθ(x

(i)
1:t|r1:t)/qθ(x

(i)
1:t|r1:t)

to each sample drawn. In practice, it is hard, if not impossible, to pick up a proper importance

density for the joint distribution of x1:t conditional on the data when sample size is large.

Hence, this approach usually proceeds in a sequential fashion. Specifically, the importance

density is chosen to admit the factorization such that

qθ(x1:t|r1:t) = qθ(xt|xt−1, rt)qθ(x1:t−1|r1:t−1).

For any existing weighted sample {x(i)1:t−1, w
(i)
1:t−1} that follows from pθ(x1:t−1|r1:t−1), we aug-

ment it with the new state x
(i)
t randomly drawn from qθ(xt|xt−1, rt). The joint sample,

(x
(i)
t−1, x

(i)
t ) is then a realization from the targeted joint importance density. The correspond-

ing weight for ith sample can easily be updated through

w̃
(i)
t ∝ w

(i)
t−1

fθ(rt|x(i)t )gθ(x
(i)
t |x(i)t−1)

qθ(x
(i)
t |x(i)t−1, rt)

,

and normalized to be w
(i)
t = 1

N

∑N
i=1 w̃

(i)
t . An unavoidable problem of this procedure, known

as degeneracy, is that after a few iterations, only one particle has a non-negligible weight,

which means a large computational cost is spent on particles with almost no contribution.

To alleviate this problem, a resampling step is necessary. An important by-product of

this filtering strategy is an approximation to pθ(r1:t|r1:t−1), which has a simple formula

p̂θ(r1:t|r1:t−1) = 1
N

∑N
i=1w

(i)
t . The likelihood can then be easily obtained as p̂θ(r1:T ) =

p̂θ(r1)
∏T

t=2 p̂θ(r1:t|r1:t−1).

One subtlety to note is that, to ensure the targeted joint density is indeed the invariant

distribution of a Markov chain, we have to modify the particle filter when applying PG.

Specifically, one particle trajectory must be specified a priori to serve as a reference. This

modified version is known in the literature as conditional particle filter. The intuition is that
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this particular path can guide the simulated particles to move within a relevant region of the

state space. See Theorem 5 of Andrieu et al. (2010) for more details.

C Details of PGAS algorithm

Consider a state-space model in the form of model (B.1). The output of a PGAS algorithm is

a random draw from the joint distribution pθ(x1:T |r1:T ), conditional on one particular set of

parameter values. In the following, we omit parameters in all densities with an understanding

that they depend on the same θ. The input of this algorithm, except for θ, is a reference

trajectory of x1:T , which is a sample from the last MCMC iteration. Let us denote that

reference trajectory by x′1:T . Then, the algorithm proceeds as following:

� Draw x
(i)
1 from q1(x1|r1), for i = 1, 2, ..., N − 1.

� Set x
(N)
1 = x′1.

� Set w
(i)
1 = f(r1|x(i)1 )/q1(x

(i)
1 |r1), for i = 1, 2, ..., N .

� For t = 2 to T , do the following:

– Generate {x̃(i)1:t−1}N−1
i=1 by sampling with replacement N − 1 times from {x(i)1:t−1}Ni=1

with probabilities proportional to the importance weights {w(i)
t−1}Ni=1.

– Draw J from {1, 2, ..., N} with probabilities proportional to w
(i)
t−1g(x

′
t|x

(i)
t−1) and

then set x̃
(N)
1:t−1 = x

(J)
1:t−1.

– Simulate x
(i)
t from qt(xt|x̃(i)t−1, rt), for i = 1, 2, ..., N − 1.

– Set x
(N)
t = x′t.

– Set x
(i)
i:t = (x̃

(i)
1:t−1, x

(i)
t ).

– Set weight to be w
(i)
t = f(rt|x(i)t )g(x

(i)
t |x̃(i)t−1)/qt(x

(i)
t |x̃(i)t−1, rt), for i = 1, 2, ..., N .

� Draw k from {1, 2, ..., N} with probabilities proportional to w
(i)
T and return x∗1:T = x

(k)
1:T .

Note that this procedure is very similar to the original PG sampler. A major modification

is in drawing J , where a new index is drawn and thus the N th trajectory may not be the

reference one from the last iteration. In the conditional PG, on the contrary, we fix the last

particle to follow the input trajectory x′1:T . It is also worth mentioning that the probability

of drawing J depends on g(x′t|x
(i)
t−1) and x

′
t is drawn in the last iteration conditional on all

observations r1:t. Therefore, this step makes the algorithm more like a smoothing instead of

filtering.
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D Expression of the Jacobian for GFTI

Let δ(z) = diag
(
eA[z]

)
be the left-hand side of equation (4) in main text. Let A[z] =

QΛQ′, where Λ is the diagonal matrix with the eigenvalues, λ1, · · · , λp, of A[z] and Q is the

orthonormal matrix with corresponding eigenvectors. Further define Ξ as a p2 × p2 diagonal

matrix with elements given by

ξij = Ξ(i−1)p+j,(i−1)p+j =

eλi if λi = λj
eλi−eλj
λi−λj if λi ̸= λj

.

Following Appendix of Archakov and Hansen (2021), we have

J(z) = [D(z)]−1H(z),

where D(z) = diag(δ1, · · · , δp) is a p × p diagonal matrix and H(z) is a p × p matrix with

elements given by

[H(z)]ij = (Qi,. ⊗Qi,.)Ξ(Qi,. ⊗Qi,.)
′ =

p∑
k=1

p∑
l=1

qikqjkqilqjlξkl,

where qij and Qi,. denote the (i, j)th element and ith row of Q, respectively. From the above

expression, it is straightforward to note that the time complexity of computing J(z) is O(p4).

E Details of Sampling Model Parameters of MSV-GFT

The joint posterior distribution can be written as

p(θ, h, q|r) ∝ p(r|θ, h, q)p(θ, h, q)
= f(r|h, q)gθ(h)gθ(q)π(θ)

= f(r1|h1, q1)gθ(h1)gθ(q1)
T∏
t=2

[f(rt|ht, qt)gθ(ht|ht−1)gθ(qt|qt−1)] π(θ)

=
T∏
t=1

[(
p∑
i=1

hit

)
|Rt|−1/2 exp

[
−1

2
r′t(V

1/2
t RtV

1/2
t )−1rt

]]
(E.1)

×
T∏
t=2

p∏
i=1

[
(σ2

hi)
−1/2 exp

(
− 1

2σ2
hi

(hit+1 − µhi − ϕhi(hit − µhi))
2

)]

×
T∏
t=2

d∏
j=1

[
(σ2

qj)
−1/2 exp

(
− 1

2σ2
qj

(qjt+1 − µqj − ϕqj(qjt − µqj))
2

)]
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×
p∏
i=1

(
σ2
hi

1− ϕ2
hi

)−1/2

exp

(
− (hi1 − µh1)

2

2σ2
hi/(1− ϕ2

hi)

)

×
d∏
j=1

(
σ2
qj

1− ϕ2
qj

)−1/2

exp

(
− (qj1 − µq1)

2

2σ2
qj/(1− ϕ2

qj)

)
π(θ).

To sample from the posterior distribution of parameters conditional on the realization of

latent variables, we can do the following:

1. We can directly sample from the full conditional distribution of µhi and µqi which a

normal distribution. For i = 1, ..., p and j = 1, ..., d,

µhi|r, h, q, θ/µhi ∼ N
(
m̃hµ, s̃

2
hµ

)
and µqj|r, h, q, θ/µqj ∼ N

(
m̃qµ, s̃

2
qµ

)
, (E.2)

where

m̃hµ = s̃2hµ

{
1− ϕ2

hi

σ2
hi

hi1 +
1− ϕhi
σ2
hi

T−1∑
t=1

(hit+1 − ϕhihit)

}
,

m̃qµ = s̃2qµ

{
1− ϕ2

qj

σ2
qj

qj1 +
1− ϕqj
σ2
qj

T−1∑
t=1

(qjt+1 − ϕqjqjt)

}
,

and

s̃2hµ = σ2
hi

[
(T − 1)(1− ϕhi)

2 + (1− ϕhi)
2
]−1

,

s̃2qµ = σ2
qj

[
(T − 1)(1− ϕqj)

2 + (1− ϕqj)
2
]−1

.

2. To draw random samples from the full conditional distribution of ϕhi and ϕqi, one can

resort to the Metropolis-Hasting sampler. Since

log p(ϕhi|r, h, q, θ/ϕhi) ∝ log p(hi|ϕhi, θ/ϕhi) + log π(ϕhi) (E.3)

= log π(ϕhi)−
(hi1 − µhi)

2(1− ϕ2
hi)

2σ2
hi

+
1

2
log(1 + ϕ2

hi)

−
∑T−1

t=1 [(hit+1 − µhi)− ϕhi(hit − µhi)]
2

2σ2
hi

,

we draw ϕ∗
hi from the proposal normal density N

(
ϕ̂hi, Vϕhi

)
, where

ϕ̂hi =

∑T−1
t=1 (hit+1 − µhi)(hit − µhi)∑T−1

t=1 (hit − µhi)2
,
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is the ordinary least square estimator of ϕhi given hi and

Vϕhi = σ2
hi

[
T−1∑
t=1

(hit − µhi)
2

]−1

.

Then, the draw is accepted with probability min
[
1, exp

{
g(ϕ∗

hi)/g(ϕ
(i−1)
hi )

}]
, where

ϕ
(i−1)
hi is the sample from the last MCMC iteration and

g(ϕhi) = log π(ϕhi)−
(hi1 − µhi)

2(1− ϕ2
hi)

2σ2
hi

+
1

2
log(1 + ϕ2

hi).

ϕqi can be treated in the same fashion.

3. Similar to the case for µ, due to the conjugacy, draws of σ2
hi can come from an inverse

gamma distribution. For i = 1, ..., p and j = 1, ..., d,

σ2
hi|r, h, q, θ/σ2

hi
∼ IG

(
ñm
2
,
d̃hm
2

)
and σ2

qj|r, h, q, θ/σ2
qj
∼ IG

(
ñm
2
,
d̃qm
2

)
, (E.4)

where ñm = nm0 + T and

d̃hm = dm0 + (hi1 − µhi)
2(1− ϕ2

hi) +
T−1∑
t=1

[(hit+1 − µhi)− ϕhi(hit − µhi)]
2 ,

d̃qm = dm0 + (qj1 − µqj)
2(1− ϕ2

qj) +
T−1∑
t=1

[(qjt+1 − µqj)− ϕqj(qjt − µqj)]
2 .

F Inference for RMSVL-GFT model

Estimating MSV models with realized measures typically is computationally intensive and

relies heavily on simulation-based methods. Many studies in this domain employ either

Bayesian inference with a single-move MCMC sampler or maximum simulated likelihood.

The latter technique, introduced in Koopman and Scharth (2012) and utilized by Asai et al.

(2022), is a common choice. In our case, we cannot utilize the maximum simulated likeli-

hood approach because for the relatively modest dimensionality of p = 6 considered in our

empirical analysis, this method would necessitate an exceedingly large number of iterations

before the maximization process converges, rendering it impractical.

Our PGAS-based Bayesian method can be straightforwardly modified to estimate the

RMSV-GFT and RMSVL-GFT models. Note that the parameters of RMSVL-GFT model

are θ = (µh, µq, ϕh, ϕq, σ
2
h, σ

2
q , ρ, ψh, ψq,Σ

r
h,Σ

r
q)

′. For additional parameters involved in (7)
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and (8), we impose the following normal-inverse-gamma priors:

� ψhi ∼ N(mψ0, s
2
ψ0) and ψqj ∼ N(mψ0, s

2
ψ0);

� η2hi ∼ IG(nm0

2
, ηm0

2
) and η2qj ∼ IG(nm0

2
, ηm0

2
).

Let hr = (hr
′

1 , ..., h
r′
T )

′ and qr = (qr
′

1 , ..., q
r′
T )

′. The Gibbs sampler for the extended model

with realized measures and leverage effect works as follows:

1. Initialize h, q and θ.

2. Draw h, q|r, hr, qr, θ.

3. Draw µh, µq|r, h, q, θ/(µh,µq).

4. Draw ϕh, ϕq|r, h, q, θ/(ϕh,ϕq).

5. Draw σ2
h, σ

2
q |r, h, q, θ/(σ2

h,σ
2
q )
.

6. Draw ρ|r, h, θ/(ρ)

7. Draw Σr
h,Σ

r
q|h, q, hr, qr, θ/(Σr

h,Σ
r
q).

8. Draw ψh, ψq|h, q, hr, qr, θ/(ψh,ψq).

Iterating over steps 2-8 consists of a complete sweep of MCMC sampling. The PGAS

algorithm introduced in Section 3.1 is used to sample the latent variables h and q, conditional

on daily returns and realized measures.

Specifically, as (7) and (8) are two extra measurement equations independent of the

original ones, the conditional likelihood can be written as

p (r, hr, qr|h, q, θ) = p
(
r|h, q, θ/(ψh,ψq ,Σr

h,Σ
r
q)

)
p
(
hr, qr|h, q, ψh, ψq,Σr

h,Σ
r
q

)
. (F.1)

and θ, h, q can then be drawn from the full posterior distribution

p (θ, h, q|r, hr, qr) ∝ p
(
r|h, q, θ/(ψh,ψq ,Σr

h,Σ
r
q)

)
p
(
hr, qr|h, q, ψh, ψq,Σr

h,Σ
r
q

)
p(h, q, θ). (F.2)

All the parameters except for (ρ, ψh, ψq,Σ
r
h,Σ

r
q) can be sampled exactly the same as in (E.2),

(E.3) and (E.4).

To draw the leverage parameter ρ, note that the conditional distribution of ht+1|ht, rt, θ
is

ht+1|ht, rt, qt, θ/(ρ)θ ∼ N

(
µh + ϕh(ht − µh)) + ΩΣ

1
2
h zt,Σh − ΩΣhΩ

′
)

12



where Ω = diag(ρ). The posterior distribution of ρ is

f(ρ|h, r, q, θ/(ρ)) ∝
T−1∏
t=1

f(ht+1|ht, rt, qt, θ/(ρ))I(ρ ∈ (−1, 1))

and a random walk Metropolis Hasting sampler can be conducted to draw ρ.

To draw ψh and Σr
h, note that we have following conditional distribution:

ψhi|h, hr, θ/ψhi
∼ N

(
m̃hiψ, s̃

2
hiψ

)
and η2hi|h, hr, θ/η2hi ∼ IG

(
ñm
2
,
η̃hi
2

)
, (F.3)

where

m̃hiψ = s̃2hiψ

(
mψ0

T
+

T∑
t=1

(hrit − hit)

)
, s̃2hiψ =

(
1

s2ψ0
+

T

η2hi

)−1

,

and

ñm = nm0 + T , η̃hi =
ηm0

2
+

∑T
t=1(h

r
it − hit)

2

2
.

The sampling from these distributions are straightforward. Drawing ψq and Σr
q can be dealt

with similarly.

G Comparison with models based on pairwise Fisher transforma-

tion

In this section, we compare our MSV-GFT specification with the specification that models

each correlations in a pairwise fashion. For the latter approach that is denoted by MSV-P, the

volatility of each asset is assumed to follow a univariate SV dynamics. As for the comovement

structure among assets, we model each bivariate correlation by the Fisher transformation

defined by equation (A.3) following the setup in Yu and Meyer (2006) and assume these

correlation sequences are independent. For all latent volatility and (pairwise) correlation

sequences, we obtain their posterior distributions by applying MCMC simulation based on

PGAS algorithm. The posterior means are then taken as our estimator for those latent

variables.

An apparent advantage of estimating correlations in a pairwise manner is that we can

avoid inverting GFT operation numerically, as the inverse of bivariate Fisher transformation

admits a closed-form expression. Moreover, for a p-dimensional model, we have p(p − 1)/2

pairwise independent correlation sequences to be modelled and estimated, which can be

dealt with by taking advantage of parallel computing. This can dramatically enhance the

computational efficiency.

As indicated in the contour plot depicted in Figure 6, the bivariate Fisher transformed

13



correlation sequences are generally more correlated than those produced by GFT. To measure

the information loss due to the pairwise approach, we calculate the total bivariate marginal

log-likelihood defined by

logML :=

p∑
i=1

p∑
j=i+1

log p(ri, rj),

where ri = (ri1, · · · , riT )′ collects all returns of asset i, for both MSV-P and MSV-GFT model,

without and with the leverage effect. The first row of Table G.1 reports the values of total

bivariate marginal log-likelihood. Clearly our GFT-based specifications outperform their

bivariate pairwise counterpart, suggesting an improved in-sample fit of our GFT approach

than the bivariate approach.

As an alternative way to compare performance of the two types of models, for each pair

of assets together with the sum of all pairs, we calculate the average bivariate predictive

log-likelihoods defined by

1

T − T0

T∑
t=T0+1

log p
(
rit, r

j
t |ri1:t−1, r

j
1:t−1

)
,

for pairwise modeling approach and

1

T − T0

T∑
t=T0+1

log p
(
rit, r

j
t |r1:t−1

)
,

for our MSV-GFT model. The results can be found in the lower part of Table G.1, where

the figures in the parenthesis are the p-values of the MCS test. In almost all cases, our

GFT-based specifications significantly outperform their pairwise counterpart.

A serious conceptual problem with the bivariate approach is that the correlation matrix

from all bivariate models may not be positive-definite, as mentioned earlier. This problem

can hinder possible applications of MSV-P. A solution proposed in Yamauchi and Omori

(2020) is to impose conditional restrictions on each correlation given all other correlations.

In this paper, following the suggestion from a referee, we consider the projections method

proposed in Higham (2002) to ensure positive-definiteness. The idea is to apply a reasonable

transformation to obtain a closest counterpart in the space spanned by all valid correla-

tion matrices. The method can be readily implemented using MATLAB built-in function

nearcorr. Formally, for each period t, let the matrix obtained by inserting all pairwise

14



Table G.1: Comparison based on MSV-GFT and MSV-P

MSV-GFT MSV-P MSVL-GFT MSVL-P

In-sample

logML -124992 -126242 -123826 -124929

Out-of-sample

JPM vs. GS -2.8032 (0.50) -2.8231 (0.01) -2.7995 (1.00) -2.8176 (0.02)

JPM vs. HON -2.9012 (0.01) -2.9037 (0.00) -2.8814 (1.00) -2.8831 (0.13)

JPM vs. CAT -3.2432 (0.16) -3.2447 (0.16) -3.2335 (1.00) -3.2340 (0.77)

JPM vs. JNJ -2.7862 (0.37) -2.7878 (0.24) -2.7786 (1.00) -2.7799 (0.63)

JPM vs. AMGN -3.4987 (0.90) -3.4989 (0.90) -3.4971 (1.00) -3.4971 (0.99)

GS vs. HON -2.9191 (0.01) -2.9205 (0.01) -2.8991 (1.00) -2.9016 (0.06)

GS vs. CAT -3.2293 (0.51) -3.2286 (0.61) -3.2243 (0.80) -3.2240 (1.00)

GS vs. JNJ -2.8144 (0.64) -2.8163 (0.36) -2.8091 (1.00) -2.8115 (0.64)

GS vs. AMGN -3.5146 (1.00) -3.5170 (0.53) -3.5147 (0.98) -3.5176 (0.53)

HON vs. CAT -3.0225 (0.00) -3.0199 (0.00) -2.9939 (0.08) -2.9909 (1.00)

HON vs. JNJ -2.6022 (0.03) -2.6067 (0.00) -2.5799 (1.00) -2.5859 (0.03)

HON vs. AMGN -3.3270 (0.02) -3.3292 (0.00) -3.3073 (1.00) -3.3118 (0.02)

CAT vs. JNJ -2.9506 (0.29) -2.9521 (0.15) -2.9407 (1.00) -2.9419 (0.56)

CAT vs. AMGN -3.6271 (0.97) -3.6271 (0.97) -3.6254 (1.00) -3.6270 (0.97)

JNJ vs. AMGN -3.0687 (0.35) -3.0699 (0.31) -3.0617 (1.00) -3.0636 (0.35)

Total -45.8120 (0.02) -46.2602 (0.00) -45.6552 (1.00) -46.1004 (0.00)

predicted correlations be denoted by R̂pw
t . We define

R̃pw
t =

R̂
pw
t , if R̂pw

t is positive definite

nearcorr(R̂pw
t ), if R̂pw

t is not positive definite
(G.1)

where the positive-definiteness of R̂pw
t is determined by whether its minimum eigenvalue is

positive. We denote the approach MSV(L)-P(C).

To compare the performance of MSV-GFT and MSV-P(C), we consider the construction

of the global minimum variance portfolio, which requires a positive-definite forecast of the

correlation matrix. Table G.2 reports the average squared return of the global minimum

variance portfolio over entire out-of-sample period and three sub-periods, accompanied by

the corresponding MCS p-values. The best model for each sample period is highlighted by

boldface. We find again that our GFT-based models have superior performance compared

with the pairwise counterparts. Such a lead is consistent across different sample periods and

statistically significant in terms of the MCS test in many cases. Our comparison once again

demonstrates for the superiority of the GFT approach.
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Table G.2: Comparison MSV-GFT and MSV-P(C) based on portfolio construction

Overall 2013 2014 2015

MSV-GFT 0.767 (0.302 ) 0.548 (0.241 ) 0.743 (1.000 ) 1.012 (0.355 )

MSVL-GFT 0.756 (1.000 ) 0.537 (1.000 ) 0.741 (0.654 ) 0.992 (1.000 )

MSV-P(C) 0.780 (0.002 ) 0.556 (0.005 ) 0.763 (0.185 ) 1.021 (0.085 )

MSVL-P(C) 0.772 (0.011 ) 0.544 (0.226 ) 0.761 (0.185 ) 1.012 (0.355 )

H Extension to high dimensions

In this section, we briefly discuss the possible extensions of our MSV-GFT model to higher-

dimensional case. As the computational burden of implementing the model increases expo-

nentially with the number of assets, it may become impractical to use the model without

imposing further restrictions.

A natural way to reduce the dimension of our MSV-GFT model is to assume certain

factor structure. There are two specifications that can serve for this purpose. The first one

stipulates that the p × 1 return vector rt follows an additive factor structure featuring K

factors:

rt = Λft + Ω1/2et, (H.1)

where Λ is a p×K matrix of factor loadings, ft is a K-dimensional vector that is assumed

to be generated by the MSV-GFT model (3a)-(3f) introduced in the main paper, Ω is a p×p
(possibly diagonal) covariance matrix and et is a vector of p independent standard normal

variates without serial dependence. In this model, the covariance matrix of returns Σr,t can

be decomposed into two parts:

Σr,t = ΛΣf,tΛ
′ + Ω.

Note that if Ω is not diagonal, both parts will contribute to the comovement among assets.

Such a specification has been widely used in the literature; see, for instance, Asai et al.

(2006) and reference therein. In almost all cases, the number of factors K is pre-determined

and no more than ten. Note that for identification purpose, constraints must be imposed on

Λ. Following Dellaportas et al. (2023) and denoting (i, j)-th element of Λ by λij, we may set

λij = 0 for i < j, i ≤ K and λii = 1 for i ≤ K. The inference of this model is very similar to

MSV-GFT model without factor structure. Although additional steps in Gibbs sampler must

be conducted to draw extra parameters Λ and Ω conditional on all other parameters and

latent processes, they are straightforward and fast. Indeed, conditional on ft, equation (H.1)

is nothing more than a linear regression and it is trivial to draw from the posterior distribution

of coefficients Λ and Ω if conjugate priors are assumed. Though empirically attractive, a

drawback of this linear additive factor model is that it imposes a low-dimensional factor
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structure on both p volatilities and d = p(p− 1)/2 correlations. It implies that the dynamic

volatility of p assets in such a model is assumed to be determined by that of K factors.

This additional restriction may not be necessary for high-dimensional implementation as the

number of volatilities grows linearly with the dimension, unlike correlations, whose quantity

suffers a quadratic increase.4

The second specification, proposed in Archakov et al. (2024a), imposes factor structure

directly on p(p− 1)/2 GFT-transformed correlations qt. In the same spirit, we may assume

that

qt = Λft, (H.2)

where Λ is a d×K loading matrix with the number of factors K in general much less than

d. We may then specify a new model by adding equation (H.2) to (3a)-(3f) in the main

paper and replace qt in (3e) by ft. This enables us to significantly reduce the number of

latent correlation variables from d to K while still maintain p latent volatility variables.

The inference for this specification is again similar to the MSV-GFT model without factors,

with an extra step to sample from the conditional posterior distribution of Λ. As fewer

latent variables are involved, the accuracy of MCMC estimation is expected to be improved.

It is worth noting that there is a subtle yet important computational difference from the

estimation of first specification above. When estimating the additive factor model (H.1) using

PGAS-based MCMC, GFT inverse (denoted by F−1(·) in the main paper) is only operated

on K(K − 1)/2 × 1 vectors, corresponding to the number of correlations of ft. For model

involves specification (H.2), however, GFT inverse must be implemented to p(p − 1)/2 × 1

vectors. This is because in general F−1(qt) = F−1(Λft) can not be expressed as a simple

transformation of F−1(ft). In fact, unless the dimension of ft is
1
2
l(l − 1) for some positive

integer l, F−1(ft) is not even well-defined. As a result, we still have to compute F−1(qt) for

likelihood evaluation purpose, which is quite time-consuming.

As pointed out by Archakov et al. (2024a), an important special example of the second

specification above is when pre-determined block structure is available, in which case the

matrix Λ is known and thereby the inference can be further simplified. A block structure

arises naturally in applications where the correlation between two variables is defined by

their group classification. For example, we may assign stocks from the same sector as one

cluster and the number of blocks K will then be equal to that of sectors; see Archakov and

Hansen (2024) for an empirical illustration.

For our inference procedure, an important computational merit of making such an as-

sumption is that the complexity of our algorithm can be dramatically reduced. To see this,

consider following simple example. Assume that a 5 × 5 correlation matrix C is known to

4Furthermore, each volatility can be dealt with separately and hence parallel computing may be utilized
to reduce computational cost. This does not apply to correlations, which must be tackled simultaneously.
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have following structure

C =



1 ρ11 ρ12 ρ12 ρ12

ρ11 1 ρ12 ρ12 ρ12

ρ12 ρ12 1 ρ22 ρ22

ρ12 ρ12 ρ22 1 ρ22

ρ12 ρ12 ρ22 ρ22 1


.

By Corollary 1 of Archakov and Hansen (2024), the block structure will be preserved after

logarithm transformation and hence we must have

F (C) = vecl(logC) = (q11, q12 ∗ 1′
6, q22 ∗ 1′

3)
′

for some (q11, q12, q22). Now suppose that F (C) is given and we wish to recover matrix C.

Without invoking block structure, GFT inverse of a 10-dimensional vector must be computed.

To avoid this calculation, note that GFT inverse is equivalent to solving following nonlinear

system of equations

diag
(
eA[z]

)
= 15,

where

A[z] = logC =



x1 q11 q12 q12 q12

q11 x1 q12 q12 q12

q12 q12 x2 q22 q22

q12 q12 q22 x2 q22

q12 q12 q22 q22 x2


.

and the unknowns are z = (z1, z2)
′. Define

Ã = exp

[(
z1 + q11

√
6q12√

6q12 z2 + 2q22

)]
,

again by Corollary 1 of Archakov and Hansen (2024), we can straightforwardly verify that

diag
(
eA[z]

)
=


(

1
2
Ã11 +

1
2
ez1−q11

)
· 12(

1
3
Ã22 +

2
3
ez2−q22

)
· 13


where Ã11 and Ã22 are two diagonal elements of Ã. Therefore, the problem is reduced to
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solving following nonlinear system of equations1
2
Ã11 +

1
2
ez1−q11 = 1

1
3
Ã22 +

2
3
ez2−q22 = 1

which is expected to be much faster to compute.

More generally, if p assets can be categorize into K blocks, we can reduce the problem of

inverting a p(p−1)/2×1 vector to solving a nonlinear system of equations with K unknowns,

which in turn can be tackled by the fixed-point iteration algorithm described in Theorem

3.3 of Archakov et al. (2024b). This type of dimension reduction has also been employed

in Tong et al. (2024) to construct high-dimensional score-driven dynamic correlation models

with clusters. In fact, for applications with hundreds of assets, the number of blocks involved

may still be large and our MSV-GFT model may not be feasible if we directly employ the

fixed-point iteration proposed in Archakov et al. (2024b). If that is the case, it is possible to

further speed up their algorithm again by taking advantage of Newton or Broyden’s method.

We leave a detailed investigation in this respect for future endeavors.
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