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 A B S T R A C T

This paper provides a theoretical justification for the Deviance Information Criterion (DIC) as a 
Bayesian model selection tool using MCMC output. Unlike Akaike Information Criterion (AIC) 
and Bayesian Information Criterion (BIC), which balance model adequacy against complexity 
without considering prior information, DIC incorporates priors into this trade-off. The contribu-
tions of this paper are two-fold. First, it demonstrates that when a plug-in predictive distribution 
— obtained by substituting parameter values with their optimal estimates to yield the plug-in 
estimated sampling distribution — is used under a set of regularity conditions, the DIC serves as 
an asymptotically unbiased estimator of the expected Kullback–Leibler divergence between the 
data-generating process and the plug-in predictive distribution. Second, it develops higher-order 
expansions for DIC and the effective number of parameters, highlighting the effect of the priors. 
We employ DIC to compare discrete-choice models, stochastic frontier models, and copula 
models in three empirical applications; the results align with theoretical expectations, showing 
the utility of DIC as a versatile tool outperforming the traditional model selection criteria. It 
is found that the logit model is better than the probit model for investigating the marginal 
effects of parents’ education on children’s completion of high school. Additionally, the stochastic 
frontier model with an exponential distribution better fits electricity utility data than the normal 
distribution. Finally, the chosen copula models for S&P index returns exhibit heavy tails and 
strong tail dependence. By modelling the effect of priors through higher order expansions, we 
also find the above empirical models outperforming their benchmark counterparts in terms of 
predictive accuracy.
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1. Introduction

A highly important statistical inference problem often faced by model builders and empirical researchers in economics is model 
selection. Many penalty-based information criteria have been proposed to select from a set of candidate models. In the frequentist 
statistical framework, perhaps the most popular information criterion is the Akaike’s Information Criterion (AIC) introduced by 
Akaike (1973). It balances the model fit and complexity by penalizing the number of parameters and is concerned with how 
the observed data predict the replicated data. AIC is computationally efficient, requiring only a single model fit, and it does not 
necessitate splitting the data, allowing the use of the entire dataset to estimate the model, leading to more stable parameter estimates. 
Compared to cross-validation, which involves repeatedly splitting the data and refitting the model, AIC is less computationally 
intensive and particularly advantageous when getting access to a separate test set is expensive. Importantly, AIC is asymptotically 
equivalent to leave-one-out cross-validation (LOOCV) under the assumption of independent and identically distributed (i.i.d.) 
observations, as demonstrated by Stone (1977). Additionally, Inoue and Kilian (2006) showed that minimizing AIC is equivalent 
to minimizing the out-of-sample one-step forecast mean squared error (MSE) for time series models under suitable conditions. This 
property makes AIC an attractive criterion for selecting models for forecasting.

Arguably one of the most important developments for model selection in the Bayesian literature in the last twenty years is the 
deviance information criterion (DIC) of Spiegelhalter et al. (2002).1 DIC is understood as a Bayesian version of AIC (Spiegelhalter 
et al., 2002; Claeskens and Hjort, 2008). Like AIC, it also trades off a measure of model adequacy against a measure of complexity. 
However, unlike AIC, DIC takes prior information into account.

DIC is constructed based on the posterior mean of the log-likelihood or the deviance and has several desirable features. First, DIC 
is easy to calculate when the likelihood function is available in closed-form, and the posterior distributions of models are obtained 
by Markov chain Monte Carlo (MCMC) simulation. Second, it applies to a wide range of statistical models. Third, unlike Bayes 
factors (BF), it is not subject to Jeffreys-Lindley-Barlett’s paradox and can be calculated when vague or even improper priors are 
used.

However, as acknowledged in Spiegelhalter et al. (2002, 2014), the decision-theoretic justification of DIC is not rigorous in the 
literature. In fact, in justification given by Spiegelhalter et al. (2002) is heuristic. This point is also acknowledged in Claeskens and 
Hjort (2008). The first contribution of the present paper is to provide a rigorous decision-theoretic justification to DIC purely in a 
frequentist setup. It can be shown that DIC is an asymptotically unbiased estimator of the expected Kullback–Leibler (KL) divergence 
between the data generating process (DGP) and the plug-in predictive distribution when the posterior mean is used. This justification 
is similar to how AIC has been justified. The second contribution of the present paper is to develop high-order expansions to DIC and 
the effective number of parameters that allow us to easily see the effect of the prior on DIC and the effective number of parameters.

The rest of the paper is organized as follows. Section 2 explains how to treat the model selection as a decision problem and 
provides a rigorous decision-theoretic justification to DIC of Spiegelhalter et al. (2002) under a set of regularity conditions. In 
Section 3, we give two examples to illustrate the effect of the prior distribution on DIC in finite samples. In Section 4, we apply 
DIC to compare alternative discrete-choice models, alternative stochastic frontier models and alternative copula models. Section 5 
concludes the paper. In the Appendix  A, Theorem  2.1 is proved and the expressions for the high order terms in Lemma  2.2 are 
given. The online supplement collects the proof of the lemmas in the paper.2

2. Decision-theoretic justification of DIC

There are essentially two strands of literature on model selection.3 The first strand aims to answer the following question — which 
model best explains the observed data? The BF (Kass and Raftery, 1995) and its variations belong to this strand. They compare models 
by examining ‘‘posterior probabilities’’ given the observed data and search for the ‘‘true’’ model. BIC is a large sample approximation 
to BF, although it is based on the maximum likelihood estimator. The second strand aims to answer the following question: Which 
model gives the best predictions of future observations generated by the same mechanism that gives the observed data? Clearly, 
this is a utility-based approach where the utility is set as prediction. Ideally, we would like to choose the model that gives the 
best overall predictions of future values. Some cross-validation-based criteria have been developed where the original sample is 
split into a training set and a validation set (Vehtari and Lampinen, 2002; Zhang and Yang, 2015). Unfortunately, different ways 
of sample splitting often lead to different outcomes. Alternatively, based on replication data generated by the exact mechanism 
that gives the observed data, some predictive information criteria have been proposed for model selection. They minimize a loss 
function associated with the predictive decisions. AIC and DIC are two well-known criteria in this framework. After the decision is 
made about which model should be used for prediction and how predictions should be made, a unique prediction action for future 
values can be obtained to fulfill the original goal. The latter approach is what we follow in the present paper. Given the relevance 
of prediction in practice, not surprisingly, such an approach to model selection has been widely used in applications.

1 According to Spiegelhalter et al. (2014), Spiegelhalter et al. (2002) was the third most cited paper in international mathematical sciences between 1998 
and 2008. Up to March 2025, it has received 15320 citations on Google Scholar.

2 Throughout the paper, we use ∶=, 𝐭𝐫, 𝑣𝑒𝑐, ⊗, 𝑜(1), 𝑜𝑝(1), 𝑂𝑝(1), 𝑝
→ to denote definitional equality, trace, vector operator that converts the matrix into a 

column vector, Kronecker product, tending to zero, tending to zero in probability, bounded in probability, convergence in probability, respectively. Moreover, 
we use �̃�𝑛, 𝜽𝑛, ̂𝜽𝑛, 𝜽𝑝𝑛 to denote a generic estimator, the posterior mean, the quasi maximum likelihood (QML) estimator, and the pseudo true parameter of 𝜽, 
respectively.

3 For more information about the literature, see Vehtari and Ojanen (2012) and Burnham and Anderson (2002).
2
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2.1. Predictive model selection as a decision problem

Assuming that the probabilistic behavior of observed data, 𝐲 = (𝑦1, 𝑦2,… , 𝑦𝑛)′ ∈ 𝐘, is described by a set of probabilistic models 
such as {𝑀𝑘

}𝐾
𝑘=1 =

{

𝑝
(

𝐲|𝜽𝑘,𝑀𝑘
)}𝐾

𝑘=1 where 𝑛 is the sample size, 𝜽𝑘 (without confusion, we simply write it as 𝜽) is the set of 
parameters in candidate model 𝑀𝑘, and 𝑝(⋅) is a probability density function (pdf). Formally, the model selection problem can be 
taken as a decision problem to select a model among {𝑀𝑘

}𝐾
𝑘=1 where the action space has 𝐾 elements, namely, {𝑑𝑘}𝐾𝑘=1, where 𝑑𝑘

means 𝑀𝑘 is selected.
For the decision problem, a loss function, 𝓁(𝐲, 𝑑𝑘), which measures the loss of decision 𝑑𝑘 as a function of 𝐲, must be specified. 

Given the loss function, the expected loss (or risk) can be defined as (Berger, 1985)

𝑅𝑖𝑠𝑘(𝑑𝑘) = 𝐸𝐲
[

𝓁(𝐲, 𝑑𝑘)
]

= ∫ 𝓁(𝐲, 𝑑𝑘)𝑔(𝐲)𝑑𝐲,

where 𝑔(𝐲) is the pdf of the DGP of 𝐲. Hence, the model selection problem is equivalent to optimizing the statistical decision,
𝑘∗ = argmin

𝑘
𝑅𝑖𝑠𝑘(𝑑𝑘).

Based on the set of candidate models {𝑀𝑘
}𝐾
𝑘=1, the model 𝑀𝑘∗  with the decision 𝑑𝑘∗  is selected.

Let 𝐲𝑟𝑒𝑝 = (𝑦1,𝑟𝑒𝑝,… , 𝑦𝑛,𝑟𝑒𝑝)′ be the hypothetically replicate data, independently generated by the exact mechanism that gives 𝐲. 
Assume the sample size in 𝐲𝑟𝑒𝑝 is the same as that in 𝐲 (i.e. 𝑛). Consider the predictive density of this replicate experiment for a 
candidate model 𝑀𝑘. The plug-in predictive density can be expressed as 𝑝

(

𝐲𝑟𝑒𝑝|�̃�𝑛(𝐲),𝑀𝑘
) for 𝑀𝑘 where �̃�𝑛(𝐲) is an estimate of 𝜽

based on 𝐲 (when there is no confusion we simply write �̃�𝑛(𝐲) as �̃�𝑛).
The quantity that has been used to measure the quality of the candidate model in terms of its ability to make predictions is the 

KL divergence between 𝑔 (𝐲𝑟𝑒𝑝
) and 𝑝 (𝐲𝑟𝑒𝑝|�̃�𝑛(𝐲),𝑀𝑘

) multiplied by 2,

2 ×𝐾𝐿
[

𝑔
(

𝐲𝑟𝑒𝑝
)

, 𝑝
(

𝐲𝑟𝑒𝑝|�̃�𝑛(𝐲),𝑀𝑘
)]

= 2∫ ln
𝑔
(

𝐲𝑟𝑒𝑝
)

𝑝
(

𝐲𝑟𝑒𝑝|�̃�𝑛(𝐲),𝑀𝑘
) 𝑔

(

𝐲𝑟𝑒𝑝
)

𝑑𝐲𝑟𝑒𝑝.

Naturally, the loss function associated with decision 𝑑𝑘 is

𝓁(𝐲, 𝑑𝑘) = 2 ×𝐾𝐿
[

𝑔
(

𝐲𝑟𝑒𝑝
)

, 𝑝
(

𝐲𝑟𝑒𝑝|�̃�𝑛(𝐲),𝑀𝑘
)]

= 2∫ ln
𝑔
(

𝐲𝑟𝑒𝑝
)

𝑝
(

𝐲𝑟𝑒𝑝|�̃�𝑛(𝐲),𝑀𝑘
) 𝑔

(

𝐲𝑟𝑒𝑝
)

𝑑𝐲𝑟𝑒𝑝.

As a result, the model selection problem is,
𝑘∗ = argmin

𝑘
𝑅𝑖𝑠𝑘(𝑑𝑘) = argmin

𝑘
𝐸𝐲

[

𝓁(𝐲, 𝑑𝑘)
]

= argmin
𝑘

{

𝐸𝐲𝐸𝐲𝑟𝑒𝑝
[

2 ln 𝑔
(

𝐲𝑟𝑒𝑝
)]

+ 𝐸𝐲𝐸𝐲𝑟𝑒𝑝
[

−2 ln 𝑝
(

𝐲𝑟𝑒𝑝|�̃�𝑛(𝐲),𝑀𝑘
)]

}

.

Since 𝑔 (𝐲𝑟𝑒𝑝
) is the DGP, 𝐸𝐲𝑟𝑒𝑝

[

2 ln 𝑔
(

𝐲𝑟𝑒𝑝
)] is the same across all candidate models, and hence, is dropped from the above equation. 

Consequently,

𝑘∗ = argmin
𝑘
𝑅𝑖𝑠𝑘(𝑑𝑘) = argmin

𝑘
𝐸𝐲𝐸𝐲𝑟𝑒𝑝

[

−2 ln 𝑝
(

𝐲𝑟𝑒𝑝|�̃�𝑛(𝐲),𝑀𝑘
)]

.

The smaller 𝑅𝑖𝑠𝑘(𝑑𝑘) is, the better the candidate model performs when using 𝑝
(

𝐲𝑟𝑒𝑝|�̃�𝑛(𝐲),𝑀𝑘
) to predict 𝑔 (𝐲𝑟𝑒𝑝

)

. The optimal 
decision makes it necessary to evaluate the risk.

2.2. AIC for predictive model selection

When there is no confusion, we simply write a generic candidate model 𝑝 (𝐲|𝜽,𝑀𝑘
) as 𝑝 (𝐲|𝜽) where 𝜽 ∈ 𝜣 ⊆ 𝑅𝑃  (i.e. the 

dimension of 𝜽 is 𝑃 ). When the candidate model is different, the value of 𝑃  may be different. Define AIC by
AIC = −2 ln 𝑝

(

𝐲|�̂�𝑛(𝐲)
)

+ 2𝑃 ,

where ̂𝜽𝑛(𝐲) is the QML estimate from 𝐲 defined by
�̂�𝑛(𝐲) = argmax

𝜽∈𝜣
ln 𝑝

(

𝐲|𝜽,𝑀𝑘
)

,

which is the global maximum interior to 𝜣.
Under a set of regularity conditions, it is well known (e.g. Burnham and Anderson (2002)) that AIC is an asymptotically unbiased 

estimator of 𝐸𝐲𝐸𝐲𝑟𝑒𝑝

[

−2 ln 𝑝
(

𝐲𝑟𝑒𝑝|�̂�𝑛(𝐲),𝑀𝑘

)]

, that is, as 𝑛→ ∞,

𝐸𝐲(AIC) − 𝐸𝐲𝐸𝐲𝑟𝑒𝑝

(

−2 ln 𝑝
(

𝐲𝑟𝑒𝑝|�̂�𝑛(𝐲)
))

→ 0.

The decision-theoretic justification of AIC rests on a frequentist framework. Specifically, it requires a careful choice of the KL 
divergence, the use of QML, and a set of regularity conditions that ensure √𝑛 -consistency and the asymptotic normality of QML. 
The penalty term in AIC arises from two sources. First, the pseudo true parameter value has to be estimated. Second, the estimate 
obtained from the observed data is not the same as that from the replicate data. Moreover, as pointed out in Burnham and Anderson 
(2002), the justification of AIC requires the candidate model to be a “good approximation” to the DGP.
3
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2.3. DIC

Spiegelhalter et al. (2002) propose DIC for Bayesian model selection. The criterion is based on the deviance
𝐷 (𝜽) = −2 ln 𝑝 (𝐲|𝜽) ,

and takes the form of 
DIC = 𝐷 (𝜽) + 𝑃𝐷. (1)

The first term, interpreted as a Bayesian measure of model fit, is defined as the posterior mean of the deviance, that is,
𝐷 (𝜽) = 𝐸𝜽|𝐲𝐷 (𝜽) = 𝐸𝜽|𝐲

[

−2 ln 𝑝 (𝐲|𝜽)
]

.

The better the model fits the data, the larger the log-likelihood value, and hence, the smaller the value for 𝐷 (𝜽). The second term, 
used to measure the model complexity and also known as the “effective number of parameters”, is defined as the difference between 
the posterior mean of the deviance and the deviance evaluated at the posterior mean of the parameters: 

𝑃𝐷 = 𝐷 (𝜽) −𝐷
(

𝜽𝑛(𝐲)
)

= −2∫

[

ln 𝑝 (𝐲|𝜽) − ln 𝑝
(

𝐲|𝜽𝑛(𝐲)
)]

𝑝 (𝜽|𝐲) 𝑑𝜽, (2)

where 𝜽𝑛(𝐲) is the posterior mean of 𝜽 based on 𝐲, defined by ∫ 𝜽𝑝 (𝜽|𝐲) 𝑑𝜽. When there is no confusion, we simply write 𝜽𝑛(𝐲) as 
𝜽𝑛.

DIC can be rewritten in two equivalent forms: 

DIC = 𝐷
(

𝜽𝑛
)

+ 2𝑃𝐷, (3)

and 
DIC = 2𝐷 (𝜽) −𝐷

(

𝜽𝑛
)

= −4𝐸𝜽|𝐲 ln 𝑝 (𝐲|𝜽) + 2 ln 𝑝
(

𝐲|𝜽𝑛
)

. (4)

DIC defined in Eq.  (3) bears similarity to AIC of Akaike (1973) and can be interpreted as a classical “plug-in” measure of fit 
plus a measure of complexity (i.e. 2𝑃𝐷, also known as the penalty term or the “optimism” in the model selection literature). In Eq. 
(1) the Bayesian measure, 𝐷 (𝜽), is the same as 𝐷

(

𝜽𝑛
)

+ 𝑃𝐷 that already includes 𝑃𝐷 as a penalty for model complexity and, thus, 
could be better thought of as a measure of model adequacy rather than pure goodness of fit.

Remark 2.1.  Unlike AIC that is based on the log-likelihood function (or deviance) with the quasi maximum likelihood (QML) 
estimate plugged in, DIC is based on the deviance with the posterior mean plugged in. The detachment of DIC from QML is important 
when candidate models are difficult to estimate by QML. In this case, applied researchers may prefer Bayesian estimation methods 
over QML. In Bayesian statistics, the recent development of Markov chain Monte Carlo (MCMC) methods has been a key step in 
making it possible to estimate large hierarchical models, which are hard to estimate by QML, making QML-based model comparison 
criteria hard to implement. Although the posterior mean may be equivalent to the QML estimate in the limit, they are different in 
finite samples.

However, as stated explicitly in Spiegelhalter et al. (2002) (Section 7.3 on Page 603 and the first paragraph on Page 605), the 
justification of DIC is informal and heuristic. It mixes a frequentist setup and a Bayesian setup. In the next subsection, we provide a 
rigorous decision-theoretic justification of DIC purely in a frequentist setup. Specifically, we show that when a proper loss function 
is selected, DIC is an unbiased estimator of the expected loss asymptotically.

2.4. Decision-theoretic justification of DIC

When developing DIC, Spiegelhalter et al. (2002) assumes that there is a true distribution for 𝐲 in Section 2.2, a pseudo-true 
parameter value 𝜽𝑝𝑛 for a candidate model also in Section 2.2, an independent replicate data set 𝐲𝑟𝑒𝑝 in Section 7.1. All these 
assumptions are identical to what has been done to justify AIC. Furthermore, as explained in Section 7.1 of Spiegelhalter et al. 
(2002), the goal for model selection is to estimate the expected loss where the expectation is taken with respect to 𝐲𝑟𝑒𝑝|𝜽𝑝𝑛. The 
assumptions and the goal indicate that a frequentist framework was considered. On the other hand, since the “optimism” associated 
with the natural estimator depends on a pseudo true parameter value 𝜽𝑝𝑛, instead of replacing it with a frequentist estimator and then 
finding the asymptotic property of the “optimism”, Spiegelhalter et al. (2002), in Sections 7.1 and 7.3, replace 𝜽𝑝𝑛 with a random 
quantity 𝜽 and then calculate the posterior mean of the “optimism”. As a result, a Bayesian framework is adopted when studying 
the behavior of “optimism”.

Spiegelhalter et al. (2002) do not explicitly specify the KL divergence function. However, from Eq.  (33) on Page 602, the loss 
function defined in the first paragraph on Page 603, and Eq.  (40) on Page 603, one may deduce that the following KL divergence 

𝐾𝐿
[

𝑝
(

𝐲𝑟𝑒𝑝|𝜽
)

, 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛(𝐲)
)]

= 𝐸𝐲𝑟𝑒𝑝|𝜽

⎡

⎢

⎢

⎢

ln
𝑝
(

𝐲𝑟𝑒𝑝|𝜽
)

𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛(𝐲)
)

⎤

⎥

⎥

⎥

(5)
4

⎣ ⎦
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was used.4 Hence, 

2 ×𝐾𝐿
[

𝑝
(

𝐲𝑟𝑒𝑝|𝜽
)

, 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛(𝐲)
)]

= 2𝐸𝐲𝑟𝑒𝑝|𝜽
(

ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽
))

+ 𝐸𝐲𝑟𝑒𝑝|𝜽

(

−2 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛(𝐲)
))

. (6)

With this KL function, unfortunately, the first term in the right hand side of Eq.  (6) is no longer a constant across candidate models. 
This is because, when the pseudo-true value is replaced by a random quantity 𝜽, the first term in the right hand side of Eq.  (6) is 
model dependent. This deficiency suggests another KL divergence function is needed.

As in AIC, we first consider the plug-in predictive distribution 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛(𝐲)
)

 in the following KL divergence

𝐾𝐿
[

𝑔
(

𝐲𝑟𝑒𝑝
)

, 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛(𝐲)
)]

= 𝐸𝐲𝑟𝑒𝑝

⎡

⎢

⎢

⎢

⎣

ln
𝑔
(

𝐲𝑟𝑒𝑝
)

𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛(𝐲)
)

⎤

⎥

⎥

⎥

⎦

.

The corresponding expected loss function of a statistical decision 𝑑𝑘 is

𝑅𝑖𝑠𝑘(𝑑𝑘) = 𝐸𝐲

⎧

⎪

⎨

⎪

⎩

𝐸𝐲𝑟𝑒𝑝

⎡

⎢

⎢

⎢

⎣

2 ln
𝑔
(

𝐲𝑟𝑒𝑝
)

𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛(𝐲),𝑀𝑘

)

⎤

⎥

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

= 𝐸𝐲𝐸𝐲𝑟𝑒𝑝
[

2 ln 𝑔
(

𝐲𝑟𝑒𝑝
)]

+ 𝐸𝐲𝐸𝐲𝑟𝑒𝑝

[

−2 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛(𝐲),𝑀𝑘

)]

.

Once again, since 𝐸𝐲𝐸𝐲𝑟𝑒𝑝
[

2 ln 𝑔
(

𝐲𝑟𝑒𝑝
)] is the same across candidate models, minimizing the expected loss function 𝑅𝑖𝑠𝑘(𝑑𝑘) is 

equivalent to minimizing

𝐸𝐲𝐸𝐲𝑟𝑒𝑝

[

−2 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛(𝐲),𝑀𝑘

)]

.

Denote the selected model by 𝑀𝑘∗ . Then 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛(𝐲),𝑀𝑘∗
)

 is used to generate future observations where 𝜽𝑛(𝐲) is the posterior 
mean of 𝜽 in 𝑀𝑘∗ .

We are now in the position to provide a rigorous decision-theoretic justification to DIC in a frequentist framework based 
on a set of regularity conditions. To do so, let us first fix some notations. Let 𝐲𝑡 = (𝑦0, 𝑦1,… , 𝑦𝑡) for any 0 ≤ 𝑡 ≤ 𝑛 and 
𝑙𝑡
(

𝐲𝑡,𝜽
)

= ln 𝑝
(

𝐲𝑡|𝜽
)

− ln 𝑝
(

𝐲𝑡−1|𝜽
) be the conditional log-likelihood for the 𝑡th observation for any 1 ≤ 𝑡 ≤ 𝑛. When there is 

no confusion, we suppress 𝑙𝑡
(

𝐲𝑡,𝜽
) as 𝑙𝑡 (𝜽) so that the log-likelihood function ln 𝑝 (𝐲|𝜽) is 

∑𝑛
𝑡=1 𝑙𝑡 (𝜽).5 Let ∇𝑗 𝑙𝑡 (𝜽) denote the 𝑗th 

derivative of 𝑙𝑡 (𝜽) and ∇𝑗 𝑙𝑡 (𝜽) = 𝑙𝑡 (𝜽) when 𝑗 = 0. Furthermore, define

𝐬
(

𝐲𝑡,𝜽
)

=
𝜕 ln 𝑝

(

𝐲𝑡|𝜽
)

𝜕𝜽
=

𝑡
∑

𝑖=1
∇𝑙𝑖 (𝜽) , 𝐡

(

𝐲𝑡,𝜽
)

=
𝜕2 ln 𝑝

(

𝐲𝑡|𝜽
)

𝜕𝜽𝜕𝜽′
=

𝑡
∑

𝑖=1
∇2𝑙𝑖 (𝜽) ,

𝐬𝑡 (𝜽) = ∇𝑙𝑡 (𝜽) = 𝐬
(

𝐲𝑡,𝜽
)

− 𝐬
(

𝐲𝑡−1,𝜽
)

, 𝐡𝑡 (𝜽) = ∇2𝑙𝑡 (𝜽) = 𝐡
(

𝐲𝑡,𝜽
)

− 𝐡
(

𝐲𝑡−1,𝜽
)

,

𝐁𝑛 (𝜽) = 𝑉 𝑎𝑟

[

1
√

𝑛

𝑛
∑

𝑡=1
▽𝑙𝑡 (𝜽)

]

, �̄�𝑛 (𝜽) =
1
𝑛

𝑛
∑

𝑡=1
𝐡𝑡 (𝜽) ,

�̄�𝑛 (𝜽) =
1
𝑛

𝑛
∑

𝑡=1

[

𝐬𝑡 (𝜽) − �̄� (𝜽)
] [

𝐬𝑡 (𝜽) − �̄� (𝜽)
]′ , �̄� (𝜽) = 1

𝑛

𝑛
∑

𝑡=1
𝐬𝑡 (𝜽) ,

𝐿𝑛 (𝜽) = ln 𝑝 (𝜽|𝐲) , 𝐿(𝑗)
𝑛 (𝜽) = 𝜕𝑗 ln 𝑝 (𝜽|𝐲) ∕𝜕𝜽𝑗 ,

𝐇𝑛 (𝜽) = ∫ �̄�𝑛 (𝜽) 𝑔 (𝐲) 𝑑𝐲, 𝐉𝑛 (𝜽) = ∫ �̄�𝑛 (𝜽) 𝑔 (𝐲) 𝑑𝐲.

In this paper, we impose the following regularity conditions.

Assumption 1. 𝜣 ⊂ 𝑅𝑃  is compact.

Assumption 2. {𝑦𝑡
}∞
𝑡=1 satisfies the strong mixing condition with the mixing coefficient 𝛼 (𝑚) = 𝑂

(

𝑚
−2𝑟
𝑟−2−𝜀

)

 for some 𝜀 > 0 and 
𝑟 > 2.

Assumption 3. For all 𝑡, 𝑙𝑡 (𝜽) satisfies the standard measurability and continuity condition, and the eight-times differentiability 
condition on 𝜣 almost surely.

4 In Eq.  (33) of Spiegelhalter et al. (2002), the expectation is taken with respect to 𝐲𝑟𝑒𝑝|𝜽𝑡 which corresponds to the candidate model. In AIC, the expectation 
is taken with respect to 𝐲𝑟𝑒𝑝 which corresponds to the DGP.

5 In the definition of log-likelihood, we ignore the initial condition ln 𝑝(𝑦0). For weakly dependent data, the impact of ignoring the initial condition is 
asymptotically negligible.
5
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Assumption 4. For 𝑗 = 0, 1, 2, for any 𝜽,𝜽′ ∈ 𝜣, ‖‖
‖

▽𝑗 𝑙𝑡 (𝜽) −▽𝑗 𝑙𝑡
(

𝜽′
)

‖

‖

‖

≤ 𝑐𝑗𝑡
(

𝐲𝑡
)

‖

‖

𝜽 − 𝜽′‖
‖

, where 𝑐𝑗𝑡
(

𝐲𝑡
) is a positive random variable 

with sup𝑡 𝐸 ‖

‖

‖

𝑐𝑗𝑡
(

𝐲𝑡
)

‖

‖

‖

< ∞ and

1
𝑛

𝑛
∑

𝑡=1

(

𝑐𝑗𝑡
(

𝐲𝑡
)

− 𝐸
(

𝑐𝑗𝑡
(

𝐲𝑡
)

)) 𝑝
→ 0.

Assumption 5. For 𝑗 = 0, 1, 2,… , 8, there exist 𝑀𝑡(𝑦𝑡), 𝑀 < ∞, 𝛿 > 6, and 𝑟 > 2 such that for all 𝜽 ∈ 𝜣, ▽𝑗 𝑙𝑡 (𝜽) exists, 
sup𝜽∈𝜣 ‖

‖

▽𝑗 𝑙𝑡 (𝜽)‖‖ ⩽ 𝑀𝑡(𝑦𝑡), sup𝑡 𝐸 ‖

‖

𝑀𝑡(𝐲𝑡)‖‖
𝑟+𝛿 ≤ 𝑀 . Moreover, for 𝑗 = 2, there exist a positive random variable 𝛼(𝑦𝑛), a finite 

constant 𝛼 < ∞, 𝛿 > 6, and 𝑟 > 2 such that for all 𝜽 ∈ 𝜣, ▽2𝑙𝑡 (𝜽) exists, inf𝜽∈𝜣 ‖

‖

�̄�𝑛 (𝜽)‖‖ ≥ 𝛼(𝑦𝑛), 𝐸 ‖𝛼(𝐲𝑛)‖𝑟+𝛿 ≥ 𝛼 and 
sup𝜽∈𝜣 𝐸

[

‖

‖

‖

�̄�−1
𝑛 (𝜽)‖‖

‖

8
]

<∞.

Assumption 6. {▽𝑗 𝑙𝑡 (𝜽)
} is 𝐿2-near epoch dependent on 

{

𝑦𝑡
}∞
𝑡=1 of size −1 for 𝑗 = 0, 𝐿8-strong near epoch dependent on 

{

𝑦𝑡
}∞
𝑡=1

of size −1 for 𝑗 = 1, 𝐿2-strong near epoch dependent on 
{

𝑦𝑡
}∞
𝑡=1 of size −1 for 𝑗 = 2 uniformly on 𝜣.

Assumption 7. Let 𝜽𝑝𝑛 be the pseudo-true value that minimizes the KL loss between the DGP and the candidate model

𝜽𝑝𝑛 = argmin
𝜽∈𝜣

1
𝑛 ∫ ln

𝑔(𝐲)
𝑝 (𝐲|𝜽)

𝑔(𝐲)𝑑𝐲,

where {𝜽𝑝𝑛
} is the sequence of minimizers that are interior to 𝜣 uniformly in 𝑛. For all 𝜀 > 0,

lim
𝑛→∞

sup sup
𝜣∖𝑁

(

𝜽𝑝𝑛 ,𝜀
)

1
𝑛

𝑛
∑

𝑡=1

{

𝐸
[

𝑙𝑡 (𝜽)
]

− 𝐸
[

𝑙𝑡
(

𝜽𝑝𝑛
)]}

< 0, (7)

where 𝑁 (

𝜽𝑝𝑛, 𝜀
) is the open ball of radius 𝜀 around 𝜽𝑝𝑛.

Assumption 8. The sequence {𝐇𝑛
(

𝜽𝑝𝑛
)} is negative definite and {𝐁𝑛

(

𝜽𝑝𝑛
)} is positive definite, both uniformly in 𝑛.

Assumption 9. 𝐇𝑛
(

𝜽𝑝𝑛
)

+ 𝐁𝑛
(

𝜽𝑝𝑛
)

= 𝑜 (1).

Assumption 10. The prior density 𝑝 (𝜽) is eight-times continuously differentiable, 𝑝 (𝜽𝑝𝑛
)

> 0 uniformly in 𝑛. Moreover, there exists 
an 𝑛∗ such that, for any 𝑛 > 𝑛∗, the posterior distribution 𝑝 (𝜽|𝐲) is proper, ∫ ‖𝜽‖2 𝑝 (𝜽|𝐲) 𝑑𝜽 < ∞.

Remark 2.2. Assumption  1 is the compactness condition. Assumptions  2 and 6 imply weak dependence in 𝑦𝑡 and 𝑙𝑡. The first 
part of Assumption  3 is the continuity condition. Assumption  4 is the Lipschitz condition for 𝑙𝑡 first introduced in Andrews (1987) 
to develop the uniform law of large numbers for dependent and heterogeneous stochastic processes. Assumption  5 contains the 
domination condition for 𝑙𝑡. Assumption  7 is the identification condition. These assumptions are well-known primitive conditions 
for developing the QML theory, namely consistency and asymptotic normality, for dependent and heterogeneous data; see, for 
example, Gallant and White (1988) and Wooldridge (1994).

Remark 2.3.  The eight-times differentiability condition in Assumption  3 and the domination condition for up to the eighth 
derivative of 𝑙𝑡 are important to develop a high order stochastic Laplace approximation. In particular, as shown in Kass et al. 
(1990), these two conditions, together with the well-known consistency condition for QML given by Eq.  (8) below, are sufficient 
for developing the Laplace approximation. This consistency condition requires that, for any 𝜀 > 0, there exists 𝐾1 (𝜀) > 0 such that 

lim
𝑛→∞

𝑃

(

sup
𝜣∖𝑁

(

𝜽𝑝𝑛 ,𝜀
)

1
𝑛

𝑛
∑

𝑡=1

[

𝑙𝑡 (𝜽) − 𝑙𝑡
(

𝜽𝑝𝑛
)]

< −𝐾1 (𝜀)

)

= 1. (8)

Our Assumption  7 is clearly more primitive than the consistency condition (8). In the following lemma, we show that Assumptions 
1–7, including the identification condition (7), are sufficient to ensure (8) as well as the concentration condition around the 
posterior mode given by Chen (1985). Together with Assumption  10, the concentration condition suggests that the stochastic 
Laplace approximation can be applied to the posterior distribution, and the asymptotic normality of the posterior distribution can 
be established. To the best of our knowledge, this is the first time in the literature that primitive conditions have been proposed for 
the stochastic Laplace approximation. Assumption  10 ensures the second moment of the posterior is bounded. Moreover, it implies 
that the prior is negligible asymptotically.
6
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Lemma 2.1.  If Assumptions  1–7 hold, then Eq. (8) holds. Furthermore, if Assumptions  1–7 hold, for any 𝜀 > 0, there exists 𝐾2 (𝜀) > 0
such that 

lim
𝑛→∞

𝑃

⎛

⎜

⎜

⎜

⎝

sup
𝜣∖𝑁

(

�̂�𝑛 ,𝜀
)

1
𝑛

[ 𝑛
∑

𝑡=1
𝑙𝑡 (𝜽) −

𝑛
∑

𝑡=1
𝑙𝑡
(

𝜽𝑝𝑛
)

]

< −𝐾2 (𝜀)

⎞

⎟

⎟

⎟

⎠

= 1. (9)

Let ⃖⃗𝜽𝑛 = argmax𝜽∈𝜣
∑𝑛
𝑡=1 𝑙𝑡 (𝜽) + ln 𝑝 (𝜽) be the posterior mode. If, in addition, Assumption  10 holds, then, for any 𝜀 > 0, there exists 

𝐾3 (𝜀) > 0 such that 

lim
𝑛→∞

𝑃

⎛

⎜

⎜

⎜

⎝

sup
𝜣∖𝑁

(

⃖⃗𝜽𝑛 ,𝜀
)

1
𝑛

( 𝑛
∑

𝑡=1

[

𝑙𝑡 (𝜽) − 𝑙𝑡
(

𝜽𝑝𝑛
)]

+ ln 𝑝 (𝜽) − ln 𝑝
(

𝜽𝑝𝑛
)

)

< −𝐾3 (𝜀)

⎞

⎟

⎟

⎟

⎠

= 1. (10)

Remark 2.4. Assumption  9 gives the exact requirement for “good approximation”. This generalizes the definition of information 
matrix equality (White, 1996). We now give an example where 𝐇𝑛

(

𝜽𝑝𝑛
)

+𝐁𝑛
(

𝜽𝑝𝑛
) is 𝑜 (1) but not zero in finite samples. Let the DGP 

be

𝑦𝑡 = 𝑥1𝑡𝛽0 + 𝑥2𝑡𝛾0 + 𝜀𝑡, 𝜀𝑡
𝑖𝑖𝑑∼ 𝑁(0, 𝜎20 ),

where (𝑥1𝑡, 𝑥2𝑡
) is iid over 𝑡 and independent of 𝜀𝑡. Assume that 𝛾0 = 𝛿0∕𝑛1∕2, where 𝛿0 is an unknown constant. Let the candidate 

model be

𝑦𝑡 = 𝑥1𝑡𝛽 + 𝑣𝑡, 𝑣𝑡
𝑖𝑖𝑑∼ 𝑁(0, 𝜎2).

In this case

𝑙𝑡 (𝜽) = −1
2
ln 2𝜋 − 1

2
ln 𝜎2 −

(

𝑦𝑡 − 𝑥1𝑡𝛽
)2

2𝜎2
,

where 𝜽 =
(

𝛽, 𝜎2
)′. In this case, the pseudo true value is 𝜽𝑝𝑛 =

(

𝛽𝑝𝑛 , 𝜎
2𝑝
𝑛

)′
, which maximizes 𝐸 [

𝑙𝑡 (𝜽)
]

, and can be expressed as

𝛽𝑝𝑛 = 𝛽0 + 𝑏𝛾0, 𝜎2𝑝𝑛 = 𝜎20 + 𝑐𝛾
2
0 ,

where 𝑏 = [

𝐸
(

𝑥21𝑡
)]−1 𝐸

(

𝑥1𝑡𝑥2𝑡
) and 𝑐 = 𝐸

(

𝑥22𝑡
)

−
[

𝐸
(

𝑥1𝑡𝑥2𝑡
)]2 [𝐸

(

𝑥21𝑡
)]−1. Hence,

−𝐸
[

𝐡𝑡
(

𝜽𝑝𝑛
)]

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐸
(

𝑥21𝑡
)

𝜎2𝑝𝑛
0

0 − 1

2
(

𝜎2𝑝𝑛
)2 +

𝜎20+𝑐𝛾
2
0

(

𝜎2𝑝𝑛
)3

⎤

⎥

⎥

⎥

⎥

⎦

,

−𝐇𝑛
(

𝜽𝑝𝑛
)

= −1
𝑛

𝑛
∑

𝑡=1
𝐸
[

𝐡𝑡
(

𝜽𝑝𝑛
)]

= −𝐸
[

𝐡𝑡
(

𝜽𝑝𝑛
)]

.

From the iid assumption, we have

𝑉 𝑎𝑟
(

𝑠𝑡
(

𝜽𝑝𝑛
))

= 𝐸
(

𝑠𝑡
(

𝜽𝑝𝑛
)

𝑠𝑡
(

𝜽𝑝𝑛
)′
)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜎20𝐸
(

𝑥1𝑡𝑥′1𝑡
)

𝜎2𝑝𝑛
+

𝑑1𝛾20
(

𝜎2𝑝𝑛
)2

𝑑2𝛾30

2
(

𝜎2𝑝𝑛
)2

𝑑2𝛾30

2
(

𝜎2𝑝𝑛
)2 − 1

4
(

𝜎2𝑝𝑛
)2 +

3𝜎20+6𝑐𝜎
2
0 𝛾

2
0+𝑑3𝛾

4
0

4
(

𝜎2𝑝𝑛
)4

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

where 𝑑𝑗 = 𝐸
[

𝑥4−𝑗−11𝑡
(

𝑥2𝑡 − 𝑥1𝑡𝑏
)𝑗+1

]

 for 𝑗 = 1, 2, 3 and

𝐁𝑛
(

𝜽𝑝𝑛
)

= 𝑉 𝑎𝑟

(

1
√

𝑛

𝑛
∑

𝑡=1
𝑠𝑡
(

𝜽𝑝𝑛
)

)

= 1
𝑛

𝑛
∑

𝑡=1
𝑉 𝑎𝑟

(

𝑠𝑡
(

𝜽𝑝𝑛
))

= 𝐉𝑛
(

𝜽𝑝𝑛
)

=

⎡

⎢

⎢

⎢

⎢

⎢

𝜎20𝐸
(

𝑥21𝑡
)

𝜎2𝑝𝑛
+

𝑑1𝛾20
(

𝜎2𝑝𝑛
)2

𝑑2𝛾30

2
(

𝜎2𝑝𝑛
)2

𝑑2𝛾30
(

2𝑝
)2 − 1

(

2𝑝
)2 +

3
(

𝜎20
)2

+6𝑐𝜎20 𝛾
2
0+𝑑3𝛾

4
0

(

2𝑝
)4

⎤

⎥

⎥

⎥

⎥

⎥

.
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Hence,

lim
𝑛→∞

𝐁𝑛
(

𝜽𝑝𝑛
)

= lim
𝑛→∞

𝐉𝑛
(

𝜽𝑝𝑛
)

= lim
𝑛→∞

−𝐇𝑛
(

𝜽𝑝𝑛
)

=

⎡

⎢

⎢

⎢

⎣

𝐸
(

𝑥21𝑡
)

𝜎20
0

0 1

2
(

𝜎20
)2

⎤

⎥

⎥

⎥

⎦

since 𝛾0 = 𝛿0∕𝑛1∕2. Thus, 𝐇𝑛
(

𝜽𝑝𝑛
)

+ 𝐁𝑛
(

𝜽𝑝𝑛
)

= 𝑜 (1). However, 𝐇𝑛
(

𝜽𝑝𝑛
)

+ 𝐁𝑛
(

𝜽𝑝𝑛
)

≠ 0 for any finite 𝑛. The violation of this assumption 
has implications for the expression of DIC and hence, its theoretical justification. This issue has been carefully investigated in Li 
et al. (2020).

Remark 2.5.  The first part of Assumptions  5 and 6 are used to justify AIC; see Li et al. (2024) for more details. The second part 
of Assumption  5 is used to bound the approximation errors of the Laplace approximations of the posterior mean and the posterior 
mean variance; see, for example, see Huggins et al. (2018).

To develop the Laplace approximation, we need to fix more notations. For the convenience of exposition, we let �̄�(𝑗)
𝑛 (𝜽) =

1
𝑛
∑𝑛
𝑡=1 ∇

𝑗 𝑙𝑡 (𝜽) for 𝑗 = 3, 4, 5. Let 𝜋 (𝜽) = ln 𝑝 (𝜽), 𝑝, 𝜋, ∇𝑗𝑝, and ∇𝑗𝜋 be the values of functions, 𝑝 (𝜽), 𝜋 (𝜽), ∇𝑗𝑝 (𝜽), and ∇𝑗𝜋 (𝜽)
evaluated at ̂𝜽𝑛. The next lemma extends Theorem 4 of Kass et al. (1990) to a higher order in matrix form.

Lemma 2.2.  Under Assumptions  1–10, we have, as 𝑛→ ∞,

∫ 𝑙𝑡 (𝜽) 𝑝 (𝜽) 𝑝 (𝐲|𝜽) 𝑑𝜽
∫ 𝑝 (𝜽) 𝑝 (𝐲|𝜽) 𝑑𝜽

(11)

= 𝑙𝑡
(

�̂�𝑛
)

+ 1
𝑛
𝐵𝑡,1 +

1
𝑛2

(

𝐵1
𝑡,21 + 𝐵

2
𝑡,21 + 𝐵𝑡,22 − 𝐵4𝐵𝑡,1

)

+ 𝑂𝑝
(

𝑛−3
)

,

where 𝐵𝑡,1, 𝐵1
𝑡,21, 𝐵

2
𝑡,21, 𝐵𝑡,22, 𝐵4 are all 𝑂𝑝(1) with the expressions given in Appendix  A.2.

The following lemma develops a high-order expansion of 𝑃𝐷 and DIC.

Lemma 2.3.  Under Assumptions  1–10, we have, as 𝑛→ ∞,

𝑃𝐷 = 𝑃 + 1
𝑛
𝐶1 −

1
𝑛
𝐶2 + 𝑂𝑝

(

𝑛−2
)

,

DIC = AIC + 1
𝑛
𝐷1 +

1
𝑛
𝐷2 + 𝑂𝑝

(

𝑛−2
)

,

where

𝐶1 = 1
4
𝐭𝐫

(

𝐴2
)

− 1
6
𝐴3 = 𝑂𝑝 (1) ,

𝐶2 = 𝐭𝐫
[

�̄�𝑛

(

�̂�𝑛
)−1

∇2𝜋
]

= 𝑂𝑝 (1) ,

𝐷1 = −1
4
𝐴1 +

1
2
𝐭𝐫

(

𝐴2
)

− 1
3
𝐴3 = 𝑂𝑝 (1) ,

𝐷2 = 𝐶21 − 2𝐶2 − 𝐶23 = 𝑂𝑝 (1) ,

with

𝐴1 = 𝑣𝑒𝑐
(

�̄�𝑛

(

�̂�𝑛
)−1

)′
�̄�(3)
𝑛

(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1

�̄�(3)
𝑛

(

�̂�𝑛
)′
𝑣𝑒𝑐

(

�̄�𝑛

(

�̂�𝑛
)−1

)

,

𝐴2 =
[

�̄�𝑛

(

�̂�𝑛
)−1

⊗ 𝑣𝑒𝑐
(

�̄�𝑛

(

�̂�𝑛
)−1

)]′
�̄�(4)
𝑛

(

�̂�𝑛
)

,

𝐴3 = 𝑣𝑒𝑐
(

�̄�(3)
𝑛

(

�̂�𝑛
))′

[

�̄�𝑛

(

�̂�𝑛
)−1

⊗ �̄�𝑛

(

�̂�𝑛
)−1

⊗ �̄�𝑛

(

�̂�𝑛
)−1

]

𝑣𝑒𝑐
(

�̄�(3)
𝑛

(

�̂�𝑛
))

,

𝐶21 = ∇𝜋′�̄�𝑛

(

�̂�𝑛
)−1

�̄�(3)
𝑛

(

�̂�𝑛
)′
𝑣𝑒𝑐

(

�̄�𝑛

(

�̂�𝑛
)−1

)

,

𝐶23 = ∇𝜋′�̄�𝑛

(

�̂�𝑛
)−1

∇𝜋.

Theorem 2.1.  Under Assumptions  1–10, we have, as 𝑛 → ∞,

𝐸𝐲𝐸𝐲𝑟𝑒𝑝

[

−2 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛(𝐲)
)]

= 𝐸𝐲 (DIC) + 𝑜(1).

Remark 2.6.  DIC is an unbiased estimator of 𝐸𝐲𝐸𝐲𝑟𝑒𝑝

[

−2 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛(𝐲)
)]

 asymptotically, according to Theorem  2.1 . Hence, the 
decision-theoretic justification to DIC is that DIC selects a model that asymptotically minimizes the expected loss, which is the 
expected KL divergence between the DGP and the plug-in predictive density 𝑝

(

𝐲 |𝜽 (𝐲)
)

. A key difference between AIC and DIC 
8

𝑟𝑒𝑝 𝑛
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is that the plug-in predictive density is based on different estimators of 𝜽. In AIC, the QML estimate, �̂�𝑛(𝐲), is used. In DIC, the 
posterior mean, 𝜽𝑛(𝐲), is used. In this sense, DIC is the Bayesian version of AIC.

Remark 2.7.  The justification of DIC remains valid if the posterior mean is replaced with the posterior mode or with the QML 
estimator and/or if 𝑃𝐷 is replaced with 𝑃 . This is because the justification of DIC requires the information matrix identity to hold 
asymptotically, and the posterior distribution to converge to a normal distribution (more specifically, the posterior mean minus the 
posterior mode converges to zero and the posterior variance converges to zero).

Remark 2.8.  In AIC, the number of parameters, 𝑃 , is used to measure model complexity. When the prior is informative, the prior 
imposes additional restrictions on the parameter space, and hence, 𝑃𝐷 may not be close to 𝑃  in finite samples. A useful contribution 
of DIC is to provide a way to measure the model complexity when the prior information is incorporated; see Brooks (2002). From 
Lemma  2.3, the effect of prior on 𝑃𝐷 depends on 𝐶2, which can be thought of as a measure of the ratio of the information in the 
prior to the information in the likelihood about the parameters. The effect of prior on DIC depends on 𝐷2, which in turn depends 
on 𝐶21, 𝐶2, and 𝐶23.

Remark 2.9.  If 𝑝 (𝐲|𝜽) has a closed-form expression, DIC is trivially computable from the MCMC output. The computational 
tractability, together with the versatility of MCMC and the fact that DIC is incorporated into a Bayesian software, WinBUGS, are 
among the reasons why DIC has enjoyed a very wide range of applications.

Remark 2.10.  Although the theoretic framework under which we justify DIC is general, it requires consistency of the posterior 
mean, the asymptotic normal approximation to the posterior distribution, and the asymptotic normality to the QML estimator. When 
there are latent variables in the candidate model under which the number of latent variables grows as 𝑛 grows, consistency and the 
asymptotic normality may not hold if the parameter space is enlarged to include latent variables. As a result, our decision-theoretic 
justification DIC is not applicable. A recent study by Li et al. (2020) provides a modification to DIC to compare latent variable 
models.

3. Examples

In this section, we use two examples from Spiegelhalter et al. (2002), namely, the normal linear model with known sampling 
precision and the normal linear model with unknown sampling precision, to illustrate the properties of DIC. In particular, we pay 
attention to the effect of prior on 𝑃𝐷 and DIC.

3.1. The normal linear model with known sampling precision

The general hierarchical normal model described by Lindley and Smith (1972) is 
𝐲 ∼ 𝑁

(

𝐹1𝜽1, 𝐺1
)

, (12)

and the conjugate prior for 𝜽1 is 
𝜽1 ∼ 𝑁

(

𝐹2𝝓, 𝐺2
)

, (13)

where 𝐹1 is 𝑛 × 𝑃  matrix, 𝜽1 is a 𝑃 × 1 vector, 𝐺1 is 𝑛 × 𝑛 matrix. Assume 𝐺1, 𝐹2, 𝝓, and 𝐺2 are all known. In this case, 𝜽 = 𝜽1. The 
log likelihood function is

𝐿 (𝐲|𝜽) = − 𝑛
2
ln 2𝜋 − 1

2
ln |
|

𝐺1
|

|

− 1
2
(

𝐲 − 𝐹1𝜽1
)′ 𝐺−1

1
(

𝐲 − 𝐹1𝜽1
)

.

It is easy to see that the QML estimate of 𝜽 is 
�̂�𝑛 =

(

𝐹 ′
1𝐺

−1
1 𝐹1

)−1 𝐹 ′
1𝐺

−1
1 𝐲. (14)

The log prior density is

𝜋 (𝜽) = −𝑃
2
ln 2𝜋 − 1

2
ln |
|

𝐺2
|

|

− 1
2
(

𝜽1 − 𝐹2𝝓
)′ 𝐺−1

2
(

𝜽1 − 𝐹2𝝓
)

.

It is well-known that the posterior distribution of 𝜽 is
𝜽|𝐲 ∼ 𝑁 (𝑉 𝑏, 𝑉 ) ,

where

𝑉 =
(

𝐹 ′
1𝐺

−1
1 𝐹1 + 𝐺−1

2
)−1 , (15)

𝑏 = 𝐹 ′
1𝐺

−1
1 𝐲 + 𝐺−1

2 𝐹2𝝓. (16)

By Lemma  2.3, we have

𝜽 = �̂� − 1 �̄�
(

�̂�
)−1

∇𝜋
(

�̂�
)

+ 𝑂
(

𝑛−2
)

, (17)
9

𝑛 𝑛 𝑛 𝑛 𝑛 𝑛 𝑝
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𝑉 = −1
𝑛
�̄�𝑛

(

�̂�𝑛
)−1

+ 𝑂𝑝
(

𝑛−2
)

, (18)

𝑃𝐷 = 𝑃 − 1
𝑛
𝐭𝐫

[

�̄�𝑛

(

�̂�𝑛
)−1

∇2𝜋
(

�̂�𝑛
)

]

+ 𝑂𝑝
(

𝑛−2
)

, (19)

where ∇𝜋
(

�̂�𝑛
)

= 𝐺−1
2

(

�̂�𝑛 − 𝐹2𝝓
)

 and ∇2𝜋
(

�̂�𝑛
)

= −𝐺−1
2 .

In (19), one can see the effect of prior on 𝑃𝐷 via ∇2𝜋
(

�̂�𝑛
)

, which is determined by the curvature of the density of prior at ̂𝜽𝑛. 
Note that the third order derivative of the log likelihood function 𝐿 (𝐲|𝜽) is zero. Thus, 𝐷1 = 𝐶21 = 0 and the effect of prior on DIC 
is

𝐷2 = −2𝐶2 − 𝐶23 = −2𝐭𝐫
[

�̄�𝑛

(

�̂�𝑛
)−1

∇2𝜋
(

�̂�𝑛
)

]

− ∇𝜋
(

�̂�𝑛
)′

�̄�𝑛

(

�̂�𝑛
)−1

∇𝜋
(

�̂�𝑛
)

.

Hence, by Lemma  2.3, we have

DIC = AIC + 1
𝑛
𝐷2 + 𝑂𝑝

(

𝑛−2
)

.

Spiegelhalter et al. (2002) express 𝑃𝐷 as 

𝑃𝐷 = 𝐭𝐫
[

𝐹 ′
1𝐺

−1
1 𝐹1𝑉

]

= 𝐭𝐫
[

−𝐿(−2)
(

𝜽𝑛
)

𝑉
]

= 𝑃 − 𝐭𝐫
[

𝐺−1
2 𝑉

]

, (20)

where 𝐿(−2) (𝜽) is the inverse of 𝐿(2) (𝜽) and 𝐿(2) (𝜽) = 𝑛�̄�𝑛 (𝜽) = −𝐹 ′
1𝐺

−1
1 𝐹1. Together with (18), (20) is the same as (19).

3.2. The normal linear models with unknown sampling precision

Suppose the model is 
𝐲 ∼ 𝑁

(

𝐹1𝜽1, 𝜏−1𝐺1
)

. (21)

Assume the conjugate prior for 𝜽1 is 

𝜽1 ∼ 𝑁
(

𝐹2𝝓, 𝜏−1𝐺2
)

, (22)

and the conjugate prior for 𝜏 is 
𝜏 ∼ 𝛤 (𝑎, 𝑏) . (23)

Assume 𝐺1, 𝐹2, 𝝓, and 𝐺2 are all known. Let 𝜽 =
(

𝜽′1, 𝜏
)′, where the dimension of 𝜽 and 𝜽1 is 𝑃 ×1 and 𝑃1 ×1, respectively. Clearly, 

𝑃 = 𝑃1 + 1. The dimension of 𝐹1, 𝐺1, 𝐹2 and 𝐺2 is 𝑛 × 𝑃1, 𝑃1 × 𝑃1, 𝑃1 × 𝑃1, 𝑃1 × 𝑃1, respectively. It is well-known that the posterior 
of 𝜽 is

𝜽1|𝜏, 𝐲 ∼ 𝑁
(

𝑉1𝑏1, 𝑉1
)  and 𝜏|𝐲 ∼ 𝛤

(

𝑎 + 𝑛
2
, 𝑏 + 𝑆

2

)

,

where

𝑉 −1
1 = 𝜏𝑉 −1, 𝑏1 = 𝜏𝑏, 𝑆 =

(

𝐲−𝐹1𝐹2𝝓
)′ (𝐺1 + 𝐹 ′

1𝐺2𝐹1
)−1 (𝐲−𝐹1𝐹2𝝓

)

.

According to Lemma  2.3, we have

𝑃𝐷 = 𝑃 + 1
𝑛
𝐶1 −

1
𝑛
𝐶2 + 𝑂𝑝

(

𝑛−2
)

= 𝑃 + 1
𝑛

( 1
4
𝐭𝐫[𝐴2] −

1
6
𝐴3

)

− 1
𝑛
𝐶2 + 𝑂𝑝

(

𝑛−2
)

= 𝑃 +
(

− 5
3𝑛

+
𝑃1
𝑛

)

− 1
𝑛
𝐶2 + 𝑂𝑝

(

𝑛−2
)

, (24)

since 𝐭𝐫[𝐴2] = −12, and 𝐴3 = −6𝑃1 − 8. The effect of prior on 𝑃𝐷 is 

−1
𝑛
𝐶2 = −𝐭𝐫

[

𝐿(−2)
(

�̂�𝑛
)

∇2𝜋
(

�̂�𝑛
)]

= −
(

𝐭𝐫
[

(

𝐹 ′
1𝐺

−1
1 𝐹1

)−1 𝐺−1
2

]

+
𝑃1
𝑛

+
2 (𝑎 − 1)

𝑛

)

. (25)

From (24), and (25), we can rewrite 𝑃𝐷 as 

𝑃𝐷 = 𝑃 − 2𝑎
𝑛

+ 1
3𝑛

+ 1
𝑛
𝐭𝐫

[

�̄�𝑛,11

(

�̂�𝑛
)−1

𝜏𝐺−1
2

]

+ 𝑂𝑝
(

𝑛−2
)

, (26)

where �̄�𝑛,11

(

�̂�𝑛
)−1

= −
(

𝜏𝐹 ′
1𝐺

−1
1 𝐹1

)−1 is the submatrix of �̄�𝑛

(

�̂�𝑛
)−1

 corresponding to 𝜽1. In (26), one can see the effect of prior on 
𝑃𝐷 via 𝑎 and 𝐺2. The effect of prior on DIC is

1𝐷 = 1𝐶 − 2𝐶 − 1𝐶 ,
10

𝑛 2 𝑛 21 𝑛 2 𝑛 23
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where
1
𝑛
𝐶21 = −

2𝜏𝑃1
𝑛

𝐶∗
21,

1
𝑛
𝐶23 = −𝐶∗′

22
(

𝐹 ′
1𝐺

−1
1 𝐹1

)−1 𝐶∗
22 −

2
𝑛
𝜏2𝑛𝐶

∗2
21 ,

with

𝐶∗
21 =

𝑃1
2𝜏𝑛

− 1
2
𝐶∗′
22𝐺2𝐶

∗
22 +

(𝑎 − 1)
𝜏𝑛

− 1
𝑏
, 𝐶∗

22 = 𝐺−1
2

(

�̂�1,𝑛 − 𝐹2𝝓
)

.

Thus,

DIC = AIC + 1
𝑛
𝐷1 +

1
𝑛
𝐷2 + 𝑂𝑝

(

1
𝑛2

)

,

where

𝐷1 =
1
2
𝑃 2
1 + 2𝑃1 −

4
3
, 𝐴1 = −

(

2𝑃 2
1 + 8

)

.

Spiegelhalter et al. (2002) express 𝑃𝐷 as 

𝑃𝐷 = 𝐭𝐫
[

𝐹 ′
1𝐺

−1
1 𝐹1𝑉

]

− 𝑛 {𝜓 (𝑎 + 𝑛∕2) − log (𝑎 + 𝑛∕2)} , (27)

where 𝜓 (𝑧) is the digamma function that has the asymptotic expansion 

𝜓 (𝑧) = ln 𝑧 − 1
2𝑧

−
∞
∑

𝑗=1

𝐵2𝑗

2𝑗𝑧2𝑗
= ln 𝑧 − 1

2𝑧
− 1

12𝑧2
+ 𝑂

(

1
𝑧4

)

, (28)

where 𝐵𝑘 is the 𝑘th Bernoulli number. Thus, the second term of the right-hand side of (27) can be written as 

𝑛 {𝜓 (𝑎 + 𝑛∕2) − log (𝑎 + 𝑛∕2)} = 𝑛
{

− 1
(2𝑎 + 𝑛)

− 1
3 (2𝑎 + 𝑛)2

+ 𝑂
(

1
𝑛4

)}

. (29)

The first term of (27) is 

𝐭𝐫
[

𝐹 ′
1𝐺

−1
1 𝐹1𝑉

]

= 𝑃1 +
1
𝑛
𝐭𝐫

[

�̄�𝑛,11

(

�̂�𝑛
)−1

𝜏𝐺−1
2

]

+ 𝑂𝑝

(

1
𝑛2

)

. (30)

Hence, from (27), (29), and (30), we have 

𝑃𝐷 = 𝑃1 +
1
𝑛
𝐭𝐫

[

�̄�𝑛,11

(

�̂�𝑛
)−1

𝜏𝐺−1
2

]

+ 1 −
2𝑎 − 1

3
2𝑎 + 𝑛

+ 𝑂
(

1
𝑛2

)

. (31)

Applying the Taylor expansion to 2𝑎−
1
3

2𝑎+𝑛  at 𝑎 = 0, we have

2𝑎 − 1
3

2𝑎 + 𝑛
= − 1

3𝑛
+ 2𝑎
𝑛

+ 𝑂
(

1
𝑛2

)

.

Substituting this to (31), we can get (26).
From this example, we can see that Lemma  2.3 provides a general and convenient way to measure the effect of prior on 𝑃𝐷. 

Spiegelhalter et al. (2002) use some specific techniques to derive (26). However, these techniques are problem specific and difficult 
to use in general.

4. Empirical applications

In this section, we conduct three empirical applications to illustrate the implementation of DIC. The first application compares 
two alternative discrete choice models to investigate the marginal effects of parents’ education level on children’s completion of 
high school. The second application compares two stochastic frontier models under different distributions using electricity utility 
data. In the third application we compared four copula models using S&P index returns. All three classes of models have been 
widely applied in economics. Our goal is to demonstrate the extensive applicability of DIC across diverse economic models. For 
simpler models such as linear regression, DIC and related higher-order expansion terms can be derived in closed form. However, 
a closed-form expression for DIC becomes infeasible for more complex models such as discrete-choice models, stochastic frontier 
models, and copula models. Therefore, we provide empirical examples to illustrate how DIC can be practically applied in these more 
sophisticated models.

In all three applications, the competing models are non-nested, making the hypothesis-testing-based approach to model 
comparison infeasible. In all three empirical studies, we employ vague priors. Regarding predictive performance, the results indicate 
that the logit model demonstrates superior effectiveness compared to the probit model in examining the marginal effects of 
parental education levels on children’s likelihood of completing high school. Furthermore, the stochastic frontier model utilizing an 
exponential distribution exhibits better predictive performance for electricity utility data relative to the one based on the normal 
distribution. Lastly, among copula models applied to S&P index returns, the t-copula with t marginals model outperforms alternative 
models in predictive accuracy.
11
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Table 1
Model selection results for the probit model and the logit model.
 Model 𝐷

(

𝜽
)

𝑃𝐷 DIC 𝐶2∕𝑛  
 Probit 905.3953 8.0040 921.4032 0.0008 
 Logit 905.2918 8.0253 921.3424 0.0023 

4.1. Discrete choice models

In this section, we compare a binary probit model and a binary logit model. Let 𝐲 =
(

𝑦1,𝑦2,… 𝑦𝑛
)′ be a vector of dependent 

variables, where 𝑦𝑖 takes a value 0 or 1 for 𝑖 = 1, 2,… , 𝑛; 𝑋 = [𝐱′1, 𝐱
′
2,… , 𝐱′𝑁 ]′ be a matrix of independent variables, where 𝐱𝑖 is a 

1 × 𝑃  vector. The probability of 𝑦𝑖 = 1 conditional on 𝑋 is 

𝑃
(

𝑦𝑖 = 1|𝑋𝑖, 𝜷
)

= 𝐹
(

𝑋𝑖𝜷
)

, (32)

where 𝜷 is a 𝑃 × 1 vector. Assume (𝑦𝑖, 𝐱𝑖
)𝑛
𝑖=1 are identical and independently distributed. If 𝐹

(

𝑋𝑖𝜷
)

= 𝛷
(

𝑋𝑖𝜷
) with 𝛷 (⋅) being the 

CDF of 𝑁(0, 1), (32) is the probit model. And if choosing 𝐹 (

𝑋𝑖𝜷
) be the CDF of the logistic distribution, that is, 𝐹 (

𝑋𝑖𝜷
)

= exp
(

𝑋𝑖𝜷
)

1+exp
(

𝑋𝑖𝜷
) , 

(32) becomes the logit model.
The latent variable representation of (32) is 

𝑧𝑖 = 𝑋𝑖𝜷+𝜀𝑖, 𝑦𝑖 = 𝐈
(

𝑧𝑖 > 0
)

, (33)

where 𝑧𝑖 is the latent variable, 𝐈 (⋅) is the indicator function. In this representation, 𝜀𝑖 is a standard normal variate in the probit 
model and a logistic variate in the logit model.

Albert and Chib (1993) propose a Gibbs sampling algorithm for (33) based on the data augmentation technique of Tanner and 
Wong (1987). Zens et al. (2022a) apply the marginal data argumentation technique of Liu and Wu (1999) to boost the convergence 
of the Gibbs sampling algorithm for the probit model. In the logit model, the latent variable follows a linear model with a logistic 
error term. To approximate the error  distribution, Held and Holmes (2006) use the scale mixture normal representation while 
Polson et al. (2013) use a Pólya-Gamma (UPG) mixture representation. Zens et al. (2022a) combine the UPG representation and 
the marginal data augmentation technique to improve the efficiency of Gibbs sampler for the logit model. In this paper, we use the 
algorithm proposed by Zens et al. (2022a) to draw MCMC samplers for the logit model.

We fit the two models to a dataset obtained from the US Panel Study of Income. The dependent variable is a binary variable that 
takes the value of 1 if a woman participates in the labor force and zero otherwise. The independent variables include the number 
of children under the age of 5, the number of children between 6 and 18 years, a standardized age index, two binary indicators 
capturing whether a college degree was obtained by the wife and the husband, the expected log wage of the woman, the logarithm of 
family income exclusive of the income of the woman. There are 753 observations in the data set.6 In total, there are eight parameters 
in both models, including the intercept.

We specify a vague prior distribution for parameters as

𝜷 ∼ 𝑁
(

0𝑘×1, 𝜆 × 𝐈𝑘
)

,

where 𝜆 = 100 in both models. Here, we draw 5,100,000 random draws from the joint posterior distributions of parameters and 
latent variables in each model. The first 100,000 draws are used as the burn-in sample. Hence, there are 5,000,000 effective draws. 
To compute 𝑃𝐷, we need to evaluate 𝐸𝜽|𝐲

[

ln 𝑝(𝐲|𝜽)
] where 𝜽 = 𝜷, which does not have a closed-form expression. We approximate 

it based on the MCMC output as,

𝐸𝜽|𝐲
[

ln 𝑝(𝐲|𝜽)
]

≈ 1
5000000

𝑀
∑

𝑚=1
ln 𝑝

(

𝐲|𝜽(𝑚)
)

.

Table  1 reports 𝐷
(

𝜽
)

, 𝑃𝐷, DIC, and 𝐶2∕𝑛 for both models. DIC suggests that the logit model is slightly better than the probit 
model. The difference between the two DIC values is mainly due to the difference between the two 𝐷

(

𝜽
)

 values. This is not 

surprising as the priors are vague. To examine the effect of the priors on 𝑃𝐷, we can compare the two 𝐶2∕𝑛 = 𝑛−1𝐭𝐫
[

�̄�𝑛

(

�̂�𝑛
)−1

∇2𝜋
]

values. It is 0.0008 for the probit model and 0.0023 for the logit model, both being negligible. Not surprisingly, 𝑃𝐷 is 8.0040 in the 
probit model and 8.0253 in the logit model, both values very close to the actual number of parameters.

6 For more details about the dataset, see Zens et al. (2022b).
12



Journal of Econometrics xxx (xxxx) xxxY. Li et al.
4.2. Stochastic frontier models

Since Aigner et al. (1977) the stochastic frontier models have proven useful in analyzing the production efficiency of firms. As 
there is a latent variable in the model (the inefficiency variable), MCMC was proposed to provide Bayesian analysis of the stochastic 
frontier models in Koop et al. (1995). See also Kurkalova and Carriquiry (2002), Tsionas (2002), Kumbhakar and Tsionas (2005) 
and Tsionas and Mallick (2019). With a Cobb–Douglas cost frontier function, the stochastic frontier model can be expressed as, 

𝑦𝑖 = 𝛼 + 𝒙′𝒊𝜷 + 𝑢𝑖 + 𝑣𝑖, 𝑖 = 1,… , 𝑛, (34)

where 𝑦𝑖 is the logarithm of the production cost and 𝒙𝒊 = {ln𝑄, ln 𝑃𝑙
𝑃𝑓
, ln 𝑃𝑘

𝑃𝑓
, (ln𝑄)2}′ contains cost-related variables for firm 𝑖, with 𝑄

being the output and 𝑃𝑙 , 𝑃𝑘 and 𝑃𝑓  being the three factors (labor, capital and fuel). While the error term 𝑢𝑖 captures the production 
inefficiency that is assumed to be nonnegative, 𝑣𝑖 is the error of the production function. We assume 𝑣𝑖 and 𝑢𝑖 are independent of each 
other and both are independent of 𝒙𝒊. Moreover, we assume 𝑣𝑖 ∼ 𝑖𝑖𝑑𝑁(0, 𝜎2𝑣 ). For 𝑢𝑖, two well known distributional assumptions have 
been adopted in the literature: the half normal distribution and the exponential distribution, i.e., 𝑢𝑖 ∼ 𝑖𝑖𝑑𝑁+(0, 𝜎2𝑢 ) or 𝑢𝑖 ∼ 𝑖𝑖𝑑𝐸𝑥𝑝(𝜂)
such that 𝐸[𝑢𝑖] = 𝜂, 𝑉 𝑎𝑟(𝑢𝑖) = 𝜂2. We now use DIC to compare these two alternative specifications. Let the composite error 𝜀𝑖 = 𝑢𝑖+𝑣𝑖.

Under the half normal distribution, according to Kumbhakar and Lovell (2000), the density of 𝜀𝑖 is 

𝑓 (𝜀𝑖) =
2
𝜎
𝜙(
𝜀𝑖
𝜎
)𝛷(

𝜀𝑖𝜆
𝜎

), (35)

where 𝜎 =
√

𝜎2𝑢 + 𝜎2𝑣 , 𝜆 = 𝜎𝑢
𝜎𝑣
, 𝛷(⋅) and 𝜙(⋅) are the CDF and the density of 𝑁(0, 1). Then, the log likelihood function for the model 

is 

ln𝐿 = 𝑛 ln 2 − 𝑛
2
ln 2𝜋 − 𝑛 ln 𝜎 +

𝑛
∑

𝑖=1
ln𝛷(

(𝑦𝑖 − 𝛼 − 𝒙′𝒊𝜷)𝜆
𝜎

) − 1
2𝜎2

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝛼 − 𝒙′𝒊𝜷)

2. (36)

Under the exponential distribution, the density of 𝜀𝑖 is 

𝑓 (𝜀𝑖) = 𝜂 exp(
𝜂2𝜎2𝑣
2

− 𝜂𝜀𝑖)𝛷(
𝜀𝑖
𝜎𝑣

− 𝜂𝜎𝑣). (37)

Then, the log likelihood function for the model is 

ln𝐿 =
𝑛𝜂2𝜎2𝑣
2

+ 𝑛 ln 𝜂 − 𝜂
𝑛
∑

𝑖=1
(𝑦𝑖 − 𝛼 − 𝒙′𝒊𝜷) +

𝑛
∑

𝑖=1
ln𝛷(

𝑦𝑖 − 𝛼 − 𝒙′𝒊𝜷
𝜎𝑣

− 𝜂𝜎𝑣). (38)

The data we use covers 123 U.S. electric utility firms in 1970 (i.e. 𝑛 = 123 ), which can be found in Greene (1990). For posterior 
sampling, following Griffin and Steel (2007), we use the following prior distributions. 

𝛼 ∼ 𝑁(0, 103), 𝛽 ∼ 𝑁(0, 103), 1
𝜎2𝑣

∼ 𝛤 (0.001, 0.001), (39)

and
⎧

⎪

⎨

⎪

⎩

1
𝜎2𝑢

∼ 𝛤 (1, 1∕37.5),  if 𝑢𝑖 is the half normal distribution,
𝜂 ∼ 𝐸𝑥𝑝(− ln 0.875), if 𝑢𝑖 is the exponential distribution.

The MCMC output is obtained from WinBUGS (Spiegelhalter et al., 2002). The total number of iterations is 200,000. The burn-
in period is the first 20,000 iterations. One effective sample is taken for every five samples in the remaining iterations, resulting 
in 36,000 samples for each parameter from their posterior distributions. These effective draws are used for Bayesian parameter 
estimation and DIC computation.

The parameter estimation results for the two models are reported in Table  2. Table  3 reports 𝐷
(

𝜽
)

, 𝑃𝐷, DIC, and 𝐶2∕𝑛 for both 
models. The stochastic frontier model with the exponential distribution has a smaller DIC value than that with the half normal 
distribution (−120.8937 versus −120.0211). This indicates that, for the data, DIC selects the exponential distribution. To see the 
effect of priors, we report the value of 𝐶2∕𝑁 . With the vague priors, the values of 𝐶2∕𝑁 are negligible in both models.

4.3. Copula models

In this section, we compare several copula models based on estimated DIC. Copula models are popular tools in finance to model 
the joint distribution of multiple asset returns. It consists of the marginal distribution of each random variable and a copula function. 
Consider a simple case where there are two assets. Let 𝑟1𝑡 and 𝑟2𝑡 be daily log returns for asset 1 and asset 2 at time 𝑡. Assume

𝑟1𝑡 = 𝜇1 + 𝜎1𝑧1𝑡,

𝑟 = 𝜇 + 𝜎 𝑧 ,
13
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Table 2
Parameter estimation results for the stochastic frontier models with the half normal distribution and the exponential
distribution.
 SFA model with the half normal distribution
 𝛼 𝛽1 𝛽2 𝛽3 𝛽4 1∕𝜎2𝑢 1∕𝜎2𝑣  
 Posterior mean −7.3834 0.4056 0.2427 0.0616 0.0307 54.9977 83.0852 
 Posterior SD 0.3342 0.0393 0.0665 0.0624 0.0027 32.9261 29.0756 
 SFA model with the exponential distribution
 𝛼 𝛽1 𝛽2 𝛽3 𝛽4 𝜂 1∕𝜎2𝑣  
 Posterior mean −7.4656 0.4248 0.2495 0.0480 0.0296 12.4287 81.2437 
 Posterior SD 0.3403 0.0434 0.0647 0.0616 0.0029 5.4946 24.6652 

Table 3
Model selection results for the stochastic frontier models with the half normal distribution and the exponential
distribution.

 Model 𝐷
(

𝜽
)

𝑃𝐷 DIC 𝐶2∕𝑁  
 Half normal −131.2210 5.6000 −120.0211 0.0042 
 Exponential −133.1431 6.1247 −120.8937 0.0942 

Table 4
Four Copula models to be compared.
 Gaussian copula normal marginals model (gnc)
 Distributional assumption: 𝑧𝑖𝑡 ∼ 𝑁(0, 1), Gaussian copula function
 Log likelihood −𝑛 ln 2𝜋 − 𝑛

2
ln
(

1−𝛿2

ℎ1ℎ2

)

−
∑𝑛
𝑡=1

𝑧21𝑡+𝑧
2
2𝑡−2𝛿𝑧1𝑡𝑧2𝑡
2(1−𝛿2 )

 
 Parameters 𝜽 = (𝜇1 ℎ1 𝜇2 ℎ2 𝛿)𝑇 , ℎ𝑖 ∈ (0,+∞), 𝛿 ∈ [−1, 1]  
 Priors 𝜇𝑖 ∼ Normal(0, 25), ℎ𝑖 ∼ Gamma(0.1, 1), 𝛿 ∼ Uniform[−1, 1]  
 Gaussian copula t marginals model (gtc)
 Distributional assumption: 𝑧𝑖𝑡 ∼ 𝑡(0, 1, 𝑣), Gaussian copula function
 Log likelihood − 𝑛

2
ln 1−𝛿2

ℎ1ℎ2
−
∑𝑛
𝑡=1

[

𝑞2𝜙,1𝑡+𝑞
2
𝜙,2𝑡−2𝛿𝑞𝜙,1𝑡𝑞𝜙,2𝑡
2(1−𝛿2 )

+ 1
2
(𝑞2𝜙,1𝑡 + 𝑞

2
𝜙,2𝑡) + ln 𝑓 (𝑧1𝑡; 𝑣) + ln 𝑓 (𝑧2𝑡; 𝑣)

]

 
 Parameters 𝜽 = (𝜇1 ℎ1 𝜇2 ℎ2 𝛿 𝑣)𝑇 , ℎ𝑖 ∈ (0,+∞), 𝛿 ∈ [−1, 1], 𝑣 ∈ (2,+∞)  
 Priors 𝜇𝑖 ∼ Normal(0, 25), ℎ𝑖 ∼ Gamma(0.1, 1), 𝛿 ∼ Uniform[−1, 1], 𝑣 − 2 ∼ Exponential(1)  
 t copula t marginals model (ttc)
 Distributional assumption: 𝑧𝑖𝑡 ∼ 𝑡(0, 1, 𝑣), t copula function
 Log likelihood −𝑛 ln 2𝜋 − 𝑛

2
ln 1−𝛿2

ℎ1ℎ2
− 𝜂+2

2

∑𝑛
𝑡=1 ln

(

1 +
𝑞2𝑓,1𝑡+𝑞

2
𝑓,2𝑡−2𝛿𝑞𝑓,1𝑡𝑞𝑓,2𝑡
𝜂(1−𝛿2 )

)

−
∑𝑛
𝑡=1

[

ln 𝑓 (𝑞𝑓,1𝑡; 𝜂) + ln 𝑓 (𝑞𝑓,2𝑡; 𝜂) − ln 𝑓 (𝑧1𝑡; 𝑣) − ln 𝑓 (𝑧2𝑡; 𝑣)
]

 

 Parameters 𝜽 = (𝜇1 ℎ1 𝜇2 ℎ2 𝛿 𝑣 𝜂)𝑇 , ℎ𝑖 ∈ (0,+∞), 𝛿 ∈ [−1, 1], 𝑣, 𝜂 ∈ (2,+∞)  
 Priors 𝜇𝑖 ∼ Normal(0, 25), ℎ𝑖 ∼ Gamma(0.1, 1), 𝛿 ∼ Uniform[−1, 1],

𝑣 − 2 ∼ Exponential(1), 𝜂 − 2 ∼ Exponential(1)
 

 Clayton copula t marginals model (ctc)
 Distributional assumption: 𝑧𝑖𝑡 ∼ 𝑡(0, 1, 𝑣), Clayton copula function
 Log likelihood 𝑛

2
ln((1 + 𝛿)2ℎ1ℎ2) − (1 + 𝛿)

∑𝑛
𝑡=1(ln𝐹 (𝑧1𝑡; 𝑣) + ln𝐹 (𝑧2𝑡; 𝑣))

−
∑𝑛
𝑡=1

[

(2 + 1
𝛿
) ln

(

𝐹 (𝑧1𝑡; 𝑣)−𝛿 + 𝐹 (𝑧2𝑡; 𝑣)−𝛿 − 1
)

− ln 𝑓 (𝑧1𝑡; 𝑣) − ln 𝑓 (𝑧2𝑡; 𝑣)
]

 

 Parameters 𝜽 = (𝜇1 ℎ1 𝜇2 ℎ2 𝛿 𝑣)𝑇 , ℎ𝑖 ∈ (0,+∞), 𝛿 ∈ (0,+∞), 𝑣 ∈ (2,+∞)  
 Priors 𝜇𝑖 ∼ Normal(0, 25), ℎ𝑖 ∼ Gamma(0.1, 1), 𝛿 ∼ Gamma(1, 1), 𝑣 − 2 ∼ Exponential(1)  

where 𝜇𝑖 is mean of return, 𝜎𝑖 is standard deviation, and 𝑧𝑖𝑡 = (𝑟𝑖𝑡−𝜇𝑖)∕𝜎𝑖 is normalized returns for 𝑖 = 1, 2. With different assumptions 
for marginal distribution of 𝑧𝑖𝑡 and the Copula function, we obtain different Copula models. Particularly, we consider four Copula 
models in Hurn et al. (2020).

Let ℎ𝑖 = 1∕𝜎2𝑖 > 0 be the precision parameter, 𝐹 (𝑧𝑖𝑡; 𝑣), 𝑓 (𝑧𝑖𝑡; 𝑣) be the cumulative distribution function (CDF) and probability 
density function (PDF) of the t distribution with 𝑣 degrees of freedom (𝑣 > 2) respectively, 𝛷−1(⋅) be the quantile function of 
the standard normal distribution, 𝐹−1(⋅; 𝜂) be the quantile function of the t distribution with 𝜂 degrees of freedom (𝜂 > 2), 
𝑞𝜙,𝑖𝑡 = 𝛷−1(𝐹 (𝑧𝑖𝑡; 𝑣)), 𝑞𝑓,𝑖𝑡 = 𝐹−1(𝐹 (𝑧𝑖𝑡; 𝑣); 𝜂). Given the above notations, the log likelihood function, parameters, prior distribution 
of parameters for considered Copula models are summarized in Table  4. For more model details and model property analysis, one 
can refer to Hurn et al. (2020).
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Table 5
Model selection results for four copula models.
 Model 𝐷

(

𝜽
)

𝑃𝐷 DIC 𝐶2∕𝑛  
 gnc 31378 5.20 31389 −0.0006 
 gtc 29 689 5.69 29700 −0.0014 
 ttc 29 305 5.60 29316 −0.0016 
 ctc 30 490 5.67 30502 −0.0016 

The data we use are daily log returns on the S&P 100 and S&P 600 Indices from 17 August 1995 to 28 December 2018 and the 
sample size is 𝑛 = 5893. The MCMC output is obtained using ‘‘mcmc’’ package in R, where total iteration is 100,000 times, burn-in 
iteration is the first 50,000 times and one effective sample is taken for every five samples in the remaining iterations, resulting in 
10,000 samples for each parameter from their posterior distributions.

To compute 𝑃𝐷, we need to evaluate 𝐸𝜽|𝐲
[

ln 𝑝(𝐲|𝜽)
]

. Since it does not has closed form, similar to the discrete choice model 
example, we approximate it by MCMC output,

𝐸𝜽|𝐲
[

ln 𝑝(𝐲|𝜽)
]

≈ 1
𝑀

𝑀
∑

𝑚=1
ln 𝑝

(

𝐲|𝜽(𝑚)
)

where 𝑀 is the number of effective draws.
To compare these four Copula models, we calculate 𝐷

(

𝜽
)

, 𝑃𝐷 and DIC for all candidate models based on the 10,000 effective 
draws. The results are summarized in Table  5.

Based on the DIC estimates reported in Table  5, the t copula t marginals model (ttc) outperforms the other models by a large 
margin. Its DIC is estimated to be around 29316, being the smallest among the candidate models. Then follows the second best 
model, i.e., the Gaussian copula t marginals model (gtc), with DIC being around 29700. The performance of the remaining Clayton 
copula t marginals model (ctc) and Gaussian copula normal marginals model (gnc) are not satisfactory. These results are consistent 
with existing empirical facts that asset returns exhibit heavy tails, and that the two asset returns we choose are expected to have 
strong tail dependence.

The estimated values of 𝑃𝐷 are close to the number of model parameters. This is because we employ vague prior distributions 
for parameters. In the last column in Table  5, we give the estimated prior effects on 𝑃𝐷, i.e., 𝐶2∕𝑛 = 𝑛−1𝐭𝐫

[

�̄�𝑛

(

�̂�𝑛
)−1

∇2𝜋
]

. The 
prior effects are small.7

5. Conclusion

This paper provides a rigorous decision-theoretic justification of DIC based on a set of regularity conditions. To do so, we first 
specify the underlying loss function to be the KL divergence between the true DGP and plug-in predictive distribution 𝑝

(

𝐲𝑟𝑒𝑝|𝜽𝑛(𝐲)
)

. 
This loss function is slightly different from that in AIC by using the posterior mean 𝜽𝑛(𝐲) as the estimator of 𝜽 rather than QML. As 
a result, DIC is easy to calculate when the MCMC output is available.

Under a set of regularity conditions, we then show that DIC is an asymptotically unbiased estimator of the expected loss function 
as 𝑛 → ∞. Moreover, we develop expansions to DIC and the penalty term based on the high-order Laplace approximations. These 
expansions allow us to easily see the effect of prior on DIC and the penalty term. We illustrate how to use DIC to compare some 
non-nested models widely used in economics.

Although DIC is expected to select the ‘‘best’’ model among a set of candidate models to predict replicate data, as far as out-of-
sample forecasting is concerned, model combination has been found to be a fruitful alternative approach to model selection. Useful 
Bayesian model combination techniques include Bayesian model averaging, Bayesian predictive synthesis, and Bayesian predictive 
decision synthesis, see Hoeting et al. (1999), McAlinn and West (2019) and Tallman and West (2024) for more details. The topic of 
Bayesian model combination is beyond the scope of the present paper.
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7 To obtain a positive prior effect, the ∇2𝜋 need to be negative definite. However, this is not necessarily satisfied in practice. Here the estimated 𝐶2∕𝑛 is 
negative because ∇2𝜋 is not negative definite.
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Appendix A

A.1. A proof of Theorem  2.1

We write 𝐇𝑛
(

𝜽𝑝𝑛
) as 𝐇𝑛, 𝐁𝑛

(

𝜽𝑝𝑛
) as 𝐁𝑛, and let 𝐂𝑛 = 𝐇−1

𝑛 𝐁𝑛𝐇−1
𝑛 . Under Assumptions  1–10, we can show that 

𝜽𝑛(𝐲) = �̂�𝑛(𝐲) + 𝑂𝑝
(

𝑛−1
)

(40)

by the stochastic expansion, for more details, see the proof of Lemma  2.3 in the online supplement. Then, we have
𝜽𝑛(𝐲) = 𝜽𝑝𝑛 + 𝑂𝑝

(

𝑛−1∕2
)

,

1
√

𝑛
𝐁−1∕2
𝑛

𝜕 ln 𝑝(𝐲𝑟𝑒𝑝|𝜽𝑝𝑛)
𝜕𝜽

𝑑
→ 𝑁

(

0, 𝐈𝑃
)

, (41)

and 

𝐂−1∕2
𝑛

√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
) 𝑑
→ 𝑁

(

0, 𝐈𝑃
)

. (42)

Note that
𝐸𝐲𝐸𝐲𝑟𝑒𝑝

(

−2 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛(𝐲)
))

=
[

𝐸𝐲𝐸𝐲𝑟𝑒𝑝

(

−2 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

))]

(𝑇1)

+
[

𝐸𝐲𝐸𝐲𝑟𝑒𝑝
(

−2 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑝𝑛
))

− 𝐸𝐲𝐸𝐲𝑟𝑒𝑝

(

−2 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

))]

(𝑇2)

+
[

𝐸𝐲𝐸𝐲𝑟𝑒𝑝

(

−2 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛(𝐲)
))

− 𝐸𝐲𝐸𝐲𝑟𝑒𝑝
(

−2 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑝𝑛
))

]

(𝑇3)

.

Now let us analyze 𝑇2 and 𝑇3. First, expanding ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑝𝑛
) at 𝜽𝑛

(

𝐲𝑟𝑒𝑝
)

, we have

ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑝𝑛
)

(43)

= ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

+
𝜕 ln 𝑝

(

𝐲𝑟𝑒𝑝|𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽′
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

+ 1
2

(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)′ 𝜕2 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽𝜕𝜽′
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

+ 1
6

[(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

⊗
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)]′ 𝜕3 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽
∗
𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽𝜕𝜽′𝜕𝜽

(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

where 𝜽∗𝑛
(

𝐲𝑟𝑒𝑝
) lies between 𝜽𝑝𝑛 and 𝜽𝑛

(

𝐲𝑟𝑒𝑝
)

. Note that the last term can be written as 

𝑅𝑇1,𝑛 =
1
6

1
√

𝑛

[

√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

⊗
√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)]′ 1
𝑛

𝑛
∑

𝑡=1
∇3𝑙𝑡

(

𝜽
∗
𝑛
(

𝐲𝑟𝑒𝑝
)

)

√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

(44)

where √𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

= 𝑂𝑝 (1) by Assumptions  1–10 and
‖

‖

‖

‖

‖

1
𝑛

𝑛
∑

𝑡=1
∇3𝑙𝑡

(

𝜽
∗
𝑛
(

𝐲𝑟𝑒𝑝
)

)‖

‖

‖

‖

‖

≤ 1
𝑛

𝑛
∑

𝑡=1

‖

‖

‖

‖

∇3𝑙𝑡
(

𝜽
∗
𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

‖

≤ 1
𝑛

𝑛
∑

𝑡=1
sup
𝜽∈𝜣

‖

‖

▽𝑗 𝑙𝑡 (𝜽)‖‖

⩽ 1
𝑛

𝑛
∑

𝑡=1
𝑀𝑡(𝐲𝑡)

by Assumption  5. It can be shown that

𝑃

(

1
𝑛

𝑛
∑

𝑡=1
𝑀𝑡(𝐲𝑡) > 𝐶

)

≤
1
𝑛
∑𝑛
𝑡=1 𝐸

(

𝑀𝑡(𝐲𝑡)
)

𝐶
≤

sup𝑡 𝐸
(

𝑀𝑡(𝐲𝑡)
)

𝐶
≤ 𝑀
𝐶

by the Markov inequality. Let 𝜀 =𝑀∕𝐶, for any 𝜀, there exists a constant 𝐶 =𝑀∕𝜀 such that

𝑃

(

1
𝑛
∑

𝑀𝑡(𝐲𝑡) > 𝐶
)

≤ 𝜀.
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Thus, 1𝑛
∑𝑛
𝑡=1𝑀𝑡(𝐲𝑡) = 𝑂𝑝 (1) and 

‖

‖

‖

‖

1
𝑛
∑𝑛
𝑡=1 ∇

3𝑙𝑡
(

𝜽
∗
𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

‖

= 𝑂𝑝 (1). Hence, we have 𝑅𝑇1,𝑛 = 𝑂𝑝
(

𝑛−1∕2
)

.
We can rewrite (43) as

ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑝𝑛
)

= ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

+
𝜕 ln 𝑝

(

𝐲𝑟𝑒𝑝|𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽′
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

+ 1
2

(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)′ 𝜕2 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽𝜕𝜽′
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

+ 𝑅𝑇1,𝑛

= ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

+
𝜕 ln 𝑝

(

𝐲𝑟𝑒𝑝|�̂�𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽′
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

+ 1
2

(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)′ 𝜕2 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽𝜕𝜽′
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

+

⎛

⎜

⎜

⎜

⎝

𝜕 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽′
−
𝜕 ln 𝑝

(

𝐲𝑟𝑒𝑝|�̂�𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽′

⎞

⎟

⎟

⎟

⎠

(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

+ 𝑅𝑇1,𝑛

= ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

+
𝜕 ln 𝑝

(

𝐲𝑟𝑒𝑝|�̂�𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽′
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

+ 1
2

(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)′ 𝜕2 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽𝜕𝜽′
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

+ 𝑅𝑇𝑛

= ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

+ 1
2

(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)′ 𝜕2 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽𝜕𝜽′
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

+ 𝑅𝑇𝑛

from (40), where 𝑅𝑇𝑛 = 𝑅𝑇1,𝑛 + 𝑅𝑇2,𝑛 with 

𝑅𝑇2,𝑛 =

⎛

⎜

⎜

⎜

⎝

𝜕 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽′
−
𝜕 ln 𝑝

(

𝐲𝑟𝑒𝑝|�̂�𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽′

⎞

⎟

⎟

⎟

⎠

(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

. (45)

We can rewrite the first term on the right-hand side of (45) as
⎛

⎜

⎜

⎜

⎝

𝜕 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽′
−
𝜕 ln 𝑝

(

𝐲𝑟𝑒𝑝|�̂�𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽′

⎞

⎟

⎟

⎟

⎠

= 1
𝑛

𝜕2 ln 𝑝
(

𝐲𝑟𝑒𝑝|�̂�
#
𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽𝜕𝜽′
𝑛
(

𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

− �̂�𝑛
(

𝐲𝑟𝑒𝑝
)

)

= 𝑂𝑝 (1) ,

where ̂𝜽#𝑛
(

𝐲𝑟𝑒𝑝
) lies between 𝜽𝑛

(

𝐲𝑟𝑒𝑝
) and ̂𝜽𝑛

(

𝐲𝑟𝑒𝑝
)

. Thus,

𝑅𝑇2,𝑛 = 𝑂𝑝 (1)𝑂𝑝
(

𝑛−1∕2
)

= 𝑂𝑝
(

𝑛−1∕2
)

.

Hence, we have 

𝑅𝑇𝑛 = 𝑅𝑇1,𝑛 + 𝑅𝑇2,𝑛 = 𝑂𝑝
(

𝑛−1∕2
)

. (46)

Now we will consider the expectation of the norm of 𝑅𝑇1,𝑛 and 𝑅𝑇2,𝑛. For 𝑅𝑇1,𝑛, we first consider the term 
[

√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

⊗
√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)]′ 1
𝑛

𝑛
∑

𝑡=1
∇3𝑙𝑡

(

𝜽
∗
𝑛
(

𝐲𝑟𝑒𝑝
)

)

√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

, (47)

and try to prove that the expectation of (47) is bounded. It can be shown that

𝐸

[

‖

‖

‖

‖

‖

[

√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

⊗
√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)]′ 1
𝑛

𝑛
∑

𝑡=1
∇3𝑙𝑡

(

𝜽
∗
𝑛
(

𝐲𝑟𝑒𝑝
)

)

√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)‖

‖

‖

‖

‖

]

≤
(

𝐸
[

‖

‖

‖

‖

[

√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

⊗
√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)]′
‖

‖

‖

‖

2])1∕2

×

(

𝐸

[

‖

‖

‖

‖

1
𝑛
∑

∇3𝑙𝑡
(

𝜽
∗
𝑛
(

𝐲𝑟𝑒𝑝
)

)

√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)‖

‖

‖

‖

2])1∕2

(48)
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=
(

𝐸
[

‖

‖

‖

‖

√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

‖

4])1∕2 (

𝐸

[

‖

‖

‖

‖

‖

1
𝑛

𝑛
∑

𝑡=1
∇3𝑙𝑡

(

𝜽
∗
𝑛
(

𝐲𝑟𝑒𝑝
)

)

√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)‖

‖

‖

‖

‖

2])1∕2

by the Cauchy–Schwarz Inequality and the fact that
‖

‖

‖

‖

[

√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

⊗
√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)]′
‖

‖

‖

‖

=
‖

‖

‖

‖

√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

‖

2
.

To prove that (48) is bounded, we need to prove that 

𝐸
[

‖

‖

‖

‖

√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

‖

4]

(49)

and 

𝐸

[

‖

‖

‖

‖

‖

1
𝑛

𝑛
∑

𝑡=1
∇3𝑙𝑡

(

𝜽
∗
𝑛
(

𝐲𝑟𝑒𝑝
)

)

√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)‖

‖

‖

‖

‖

2]

(50)

are both bounded.
For (49), we have

(

𝐸
[

‖

‖

‖

‖

√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

‖

4])1∕4

=
(

𝐸
[

‖

‖

‖

‖

√

𝑛
(

𝜽𝑝𝑛 − �̂�𝑛
(

𝐲𝑟𝑒𝑝
)

+ �̂�𝑛
(

𝐲𝑟𝑒𝑝
)

− 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

‖

4])1∕4

≤

(

𝐸

[

(

‖

‖

‖

‖

√

𝑛
(

𝜽𝑝𝑛 − �̂�𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

‖

+
‖

‖

‖

‖

√

𝑛
(

�̂�𝑛
(

𝐲𝑟𝑒𝑝
)

− 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

‖

)4
])1∕4

≤
(

𝐸
[

‖

‖

‖

‖

√

𝑛
(

𝜽𝑝𝑛 − �̂�𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

‖

4])1∕4

+
(

𝐸
[

‖

‖

‖

‖

√

𝑛
(

�̂�𝑛
(

𝐲𝑟𝑒𝑝
)

− 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

‖

4])1∕4

by the triangular inequality and the Minkowski inequality. To prove that (49) is bounded, it is suffice to show 

𝐸
[

‖

‖

‖

‖

√

𝑛
(

𝜽𝑝𝑛 − �̂�𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

‖

4]

(51)

and 

𝐸
[

‖

‖

‖

‖

√

𝑛
(

�̂�𝑛
(

𝐲𝑟𝑒𝑝
)

− 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

‖

4]

(52)

are both bounded. Li et al. (2024) have proved that 

𝐸
[

‖

‖

‖

‖

√

𝑛
(

𝜽𝑝𝑛 − �̂�𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

‖

4]

<∞ (53)

under Assumptions  1–10.
For (52), following Proposition 6.1 of Huggins et al. (2018), and Lemma  A.1 if we use �̂�𝑛

(

𝐲𝑟𝑒𝑝
) to approximate the posterior 

mean 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

, the bound of the approximate error is 
‖

‖

‖

‖

√

𝑛
(

�̂�𝑛
(

𝐲𝑟𝑒𝑝
)

− 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

‖

≤ 1
√

𝑛
𝐶∗, (54)

where

𝐶∗ = 𝛼 (𝐲𝑛)
⎡

⎢

⎢

⎢

⎣

(

1
𝑛
∑𝑛
𝑡=1𝑀𝑡(𝐲𝑡)

)2
(

(

∑𝑃
𝑗=1

|

|

|

𝜆�̄�∗
𝑛 ,𝑗
|

|

|

)2
+
∑𝑃
𝑗=1 𝜆

2
�̄�∗
𝑛 ,𝑗

)

+2
(

1
𝑛
∑𝑛
𝑡=1𝑀𝑡(𝐲𝑡)

)(

∑𝑃
𝑗=1

|

|

|

𝜆�̄�∗
𝑛 ,𝑗
|

|

|

)

+𝑀2
0

⎤

⎥

⎥

⎥

⎦

1∕2

,

𝜆�̄�∗
𝑛 ,𝑗 are the eigenvalues of �̄�∗

𝑛 ∶= �̄�𝑛

(

�̂�𝑛
(

𝐲𝑟𝑒𝑝
)

)

, 𝑀0 is a finite constant. It can be shown that

𝐶∗ = 𝛼 (𝐲𝑛)
⎡

⎢

⎢

⎢

⎣

(

1
𝑛
∑𝑛
𝑡=1𝑀𝑡(𝐲𝑡)

)2
(

(

∑𝑃
𝑗=1

|

|

|

𝜆�̄�∗
𝑛 ,𝑗
|

|

|

)2
+
∑𝑃
𝑗=1 𝜆

2
�̄�∗
𝑛 ,𝑗

)

+2
(

1
𝑛
∑𝑛
𝑡=1𝑀𝑡(𝐲𝑡)

)(

∑𝑃
𝑗=1

|

|

|

𝜆�̄�∗
𝑛 ,𝑗
|

|

|

)

+𝑀2
0

⎤

⎥

⎥

⎥

⎦

1∕2

≤ 𝛼 (𝐲𝑛)
⎡

⎢

⎢

⎣

(

1
𝑛
∑𝑛
𝑡=1𝑀𝑡(𝐲𝑡)

)2 (
𝑃 2 × 𝜌

(

�̄�∗
𝑛
)2 + 𝑃 × 𝜌

(

�̄�∗
𝑛
)2
)

+2
(

1
𝑛
∑𝑛
𝑡=1𝑀𝑡(𝐲𝑡)

)

(

𝑃 × 𝜌
(

�̄�∗
𝑛
))

+𝑀2
0

⎤

⎥

⎥

⎦

1∕2

= 𝛼 (𝐲𝑛)
⎡

⎢

⎢

(

1
𝑛

𝑛
∑

𝑀𝑡(𝐲𝑡)
)2

(

𝑃 2 + 𝑃
)

× 𝜌
(

�̄�∗
𝑛
)2 + 2

(

1
𝑛

𝑛
∑

𝑀𝑡(𝐲𝑡)
)

(

𝑃 × 𝜌
(

�̄�∗
𝑛
))

+𝑀2
0

⎤

⎥

⎥

1∕2
18

⎣

𝑡=1 𝑡=1
⎦
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≤ 𝛼 (𝐲𝑛)
⎡

⎢

⎢

⎣

(

1
𝑛

𝑛
∑

𝑡=1
𝑀𝑡(𝐲𝑡)

)2
(

𝑃 2 + 𝑃
)

× ‖

‖

�̄�∗
𝑛
‖

‖

2 + 2

(

1
𝑛

𝑛
∑

𝑡=1
𝑀𝑡(𝐲𝑡)

)

× 𝑃 × ‖

‖

�̄�∗
𝑛
‖

‖

+𝑀2
0

⎤

⎥

⎥

⎦

1∕2

,

where 𝜌 (�̄�∗
𝑛
)

= max𝑗
|

|

|

𝜆�̄�∗
𝑛 ,𝑗
|

|

|

 is the spectral radius of �̄�∗
𝑛 that is smaller than ‖‖�̄�∗

𝑛
‖

‖

. Therefore, (52) is bounded by 

𝐸
[

‖

‖

‖

‖

√

𝑛
(

�̂�𝑛
(

𝐲𝑟𝑒𝑝
)

− 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

‖

4]

≤ 1
𝑛2
𝐸
(

𝐶∗4) = 𝑂
(

𝑛−2
)

<∞ (55)

by Assumption  5 since

𝐸
(

𝐶∗4) = 𝐸

⎡

⎢

⎢

⎢

⎣

𝛼 (𝐲𝑛)4
⎡

⎢

⎢

⎣

(

1
𝑛
∑𝑛
𝑡=1𝑀𝑡(𝐲𝑡)

)2
(

𝑃 2 + 𝑃
)

× ‖

‖

�̄�∗
𝑛
‖

‖

2

+2
(

1
𝑛
∑𝑛
𝑡=1𝑀𝑡(𝐲𝑡)

)

× 𝑃 × ‖

‖

�̄�∗
𝑛
‖

‖

+𝑀2
0

⎤

⎥

⎥

⎦

2
⎤

⎥

⎥

⎥

⎦

≤
(

𝐸
[

𝛼 (𝐲𝑛)8
])1∕2

⎛

⎜

⎜

⎜

⎝

𝐸

⎡

⎢

⎢

⎢

⎣

⎡

⎢

⎢

⎣

(

1
𝑛
∑𝑛
𝑡=1𝑀𝑡(𝐲𝑡)

)2
(

𝑃 2 + 𝑃
)

× ‖

‖

�̄�∗
𝑛
‖

‖

2

+2
(

1
𝑛
∑𝑛
𝑡=1𝑀𝑡(𝐲𝑡)

)

× 𝑃 × ‖

‖

�̄�∗
𝑛
‖

‖

+𝑀2
0

⎤

⎥

⎥

⎦

4
⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

1∕2

.

Thus, from (53) and (55), we have
(

𝐸
[

‖

‖

‖

‖

√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

‖

4])1∕4

(56)

≤
(

𝐸
[

‖

‖

‖

‖

√

𝑛
(

𝜽𝑝𝑛 − �̂�𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

‖

4])1∕4

+
(

𝐸
[

‖

‖

‖

‖

√

𝑛
(

�̂�𝑛
(

𝐲𝑟𝑒𝑝
)

− 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

‖

4])1∕4

< ∞.

For (50), we have

𝐸

[

‖

‖

‖

‖

‖

1
𝑛

𝑛
∑

𝑡=1
∇3𝑙𝑡

(

𝜽
∗
𝑛
(

𝐲𝑟𝑒𝑝
)

)

√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)‖

‖

‖

‖

‖

2]

(57)

≤ 𝐸

[

‖

‖

‖

‖

‖

1
𝑛

𝑛
∑

𝑡=1
∇3𝑙𝑡

(

𝜽
∗
𝑛
(

𝐲𝑟𝑒𝑝
)

)‖

‖

‖

‖

‖

2
‖

‖

‖

‖

√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

‖

2
]

≤

(

𝐸

[

‖

‖

‖

‖

‖

1
𝑛

𝑛
∑

𝑡=1
∇3𝑙𝑡

(

𝜽
∗
𝑛
(

𝐲𝑟𝑒𝑝
)

)‖

‖

‖

‖

‖

4])1∕2
(

𝐸
[

‖

‖

‖

‖

√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

‖

4])1∕2

< ∞.

by Assumption  5 and (56). Thus, from (47), (48), (56) and (57), we have
𝐸 ‖

‖

𝑅𝑇1,𝑛‖‖ (58)

≤ 1
6

1
√

𝑛

(

𝐸
[

‖

‖

‖

‖

√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

‖

4])1∕4

×

(

𝐸

[

‖

‖

‖

‖

‖

1
𝑛

𝑛
∑

𝑡=1
∇3𝑙𝑡

(

𝜽
∗
𝑛
(

𝐲𝑟𝑒𝑝
)

)

√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)‖

‖

‖

‖

‖

2])1∕4

= 𝑜 (1) .

For 𝑅𝑇2,𝑛, we have

𝐸 ‖

‖

𝑅𝑇2,𝑛‖‖ (59)

≤ 𝐸

⎡

⎢

⎢

⎢

⎣

‖

‖

‖

‖

‖

‖

‖

‖

1
√

𝑛

⎛

⎜

⎜

⎜

⎝

𝜕 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽′
−
𝜕 ln 𝑝

(

𝐲𝑟𝑒𝑝|�̂�𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽′

⎞

⎟

⎟

⎟

⎠

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

‖

⎤

⎥

⎥

⎥

⎦

≤
⎛

⎜

⎜

⎜

⎝

𝐸

⎡

⎢

⎢

⎢

⎣

‖

‖

‖

‖

‖

‖

‖

‖

1
√

𝑛

⎛

⎜

⎜

⎜

⎝

𝜕 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽′
−
𝜕 ln 𝑝

(

𝐲𝑟𝑒𝑝|�̂�𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽′

⎞

⎟

⎟

⎟

⎠

‖

‖

‖

‖

‖

‖

‖

‖

2
⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

1∕2

×
(

𝐸
[

‖

‖

‖

‖

√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

‖

2])1∕2

,

where

𝐸
[

‖

‖

‖

√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

2]

<∞
19

‖ ‖
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by (56). For the first term in the right-hand side of (59)

1
√

𝑛

⎛

⎜

⎜

⎜

⎝

𝜕 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽′
−
𝜕 ln 𝑝

(

𝐲𝑟𝑒𝑝|�̂�𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽′

⎞

⎟

⎟

⎟

⎠

= 1
√

𝑛

𝜕2 ln 𝑝
(

𝐲𝑟𝑒𝑝|�̂�
#
𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽𝜕𝜽′
(

𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

− �̂�𝑛
(

𝐲𝑟𝑒𝑝
)

)

= 1
𝑛

𝜕2 ln 𝑝
(

𝐲𝑟𝑒𝑝|�̂�
#
𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽𝜕𝜽′
√

𝑛
(

𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

− �̂�𝑛
(

𝐲𝑟𝑒𝑝
)

)

,

where ̂𝜽#𝑛
(

𝐲𝑟𝑒𝑝
) lies between 𝜽𝑛

(

𝐲𝑟𝑒𝑝
) and ̂𝜽𝑛

(

𝐲𝑟𝑒𝑝
)

. Thus, we have

𝐸

⎡

⎢

⎢

⎢

⎣

‖

‖

‖

‖

‖

‖

‖

‖

1
√

𝑛

⎛

⎜

⎜

⎜

⎝

𝜕 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽′
−
𝜕 ln 𝑝

(

𝐲𝑟𝑒𝑝|�̂�𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽′

⎞

⎟

⎟

⎟

⎠

‖

‖

‖

‖

‖

‖

‖

‖

2
⎤

⎥

⎥

⎥

⎦

= 𝐸

⎡

⎢

⎢

⎢

⎣

‖

‖

‖

‖

‖

‖

‖

1
𝑛

𝜕2 ln 𝑝
(

𝐲𝑟𝑒𝑝|�̂�
#
𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽𝜕𝜽′
√

𝑛
(

𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

− �̂�𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

‖

‖

‖

‖

2
⎤

⎥

⎥

⎥

⎦

≤ 𝐸

⎡

⎢

⎢

⎢

⎣

‖

‖

‖

‖

‖

‖

‖

1
𝑛

𝜕2 ln 𝑝
(

𝐲𝑟𝑒𝑝|�̂�
#
𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽𝜕𝜽′

‖

‖

‖

‖

‖

‖

‖

2

‖

‖

‖

‖

√

𝑛
(

𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

− �̂�𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

‖

2
⎤

⎥

⎥

⎥

⎦

≤
⎛

⎜

⎜

⎜

⎝

𝐸

⎡

⎢

⎢

⎢

⎣

‖

‖

‖

‖

‖

‖

‖

1
𝑛

𝜕2 ln 𝑝
(

𝐲𝑟𝑒𝑝|�̂�
#
𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽𝜕𝜽′

‖

‖

‖

‖

‖

‖

‖

4
⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

1∕2
(

𝐸
[

‖

‖

‖

‖

√

𝑛
(

𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

− �̂�𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

‖

4])1∕2

.

By Assumption  5 and (55), we have

𝐸

⎡

⎢

⎢

⎢

⎣

‖

‖

‖

‖

‖

‖

‖

1
𝑛

𝜕2 ln 𝑝
(

𝐲𝑟𝑒𝑝|�̂�
#
𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽𝜕𝜽′

‖

‖

‖

‖

‖

‖

‖

4
⎤

⎥

⎥

⎥

⎦

<∞,

and

𝐸
[

‖

‖

‖

‖

√

𝑛
(

𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

− �̂�𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

‖

4]

= 𝑂
(

𝑛−2
)

.

Hence,

𝐸

⎡

⎢

⎢

⎢

⎣

‖

‖

‖

‖

‖

‖

‖

‖

1
√

𝑛

⎛

⎜

⎜

⎜

⎝

𝜕 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽′
−
𝜕 ln 𝑝

(

𝐲𝑟𝑒𝑝|�̂�𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽′

⎞

⎟

⎟

⎟

⎠

‖

‖

‖

‖

‖

‖

‖

‖

2
⎤

⎥

⎥

⎥

⎦

= 𝑜 (1) .

So we have

𝐸 ‖

‖

𝑅𝑇2,𝑛‖‖ (60)

≤
⎛

⎜

⎜

⎜

⎝

𝐸

⎡

⎢

⎢

⎢

⎣

‖

‖

‖

‖

‖

‖

‖

‖

1
√

𝑛

⎛

⎜

⎜

⎜

⎝

𝜕 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽′
−
𝜕 ln 𝑝

(

𝐲𝑟𝑒𝑝|�̂�𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽′

⎞

⎟

⎟

⎟

⎠

‖

‖

‖

‖

‖

‖

‖

‖

2
⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

1∕2

×
(

𝐸
[

‖

‖

‖

‖

√

𝑛
(

𝜽𝑝𝑛 − 𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

‖

‖

‖

‖

2])1∕2

= 𝑜 (1) .

From (58) and (60), it can be shown that

𝐸 ‖

‖

𝑅𝑇𝑛‖‖ ≤ 𝐸 ‖

‖

𝑅𝑇1,𝑛‖‖ + 𝐸 ‖

‖

𝑅𝑇2,𝑛‖‖ = 𝑜 (1) .

We can further get

𝑇 = 𝐸 𝐸
[

−2 ln 𝑝
(

𝐲 |𝜽𝑝
)

+ 2 ln 𝑝
(

𝐲 |𝜽
(

𝐲
)

)]
20
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⎡

⎢

⎢

⎢

⎣

−
(

𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

− 𝜽𝑝𝑛
)′ 𝜕 ln 𝑝

(

𝐲𝑟𝑒𝑝|𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽𝜕𝜽′
(

𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

− 𝜽𝑝𝑛
)

+ 𝑅𝑇𝑛

⎤

⎥

⎥

⎥

⎦

= 𝐸𝐲𝑟𝑒𝑝

⎡

⎢

⎢

⎢

⎣

−
(

𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

− 𝜽𝑝𝑛
)′ 𝜕2 ln 𝑝

(

𝐲𝑟𝑒𝑝|𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

)

𝜕𝜽𝜕𝜽′
(

𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

− 𝜽𝑝𝑛
)

⎤

⎥

⎥

⎥

⎦

+ 𝑜 (1)

= 𝐸𝐲

⎡

⎢

⎢

⎢

⎣

−
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)′ 𝜕2 ln 𝑝

(

𝐲|𝜽𝑛(𝐲)
)

𝜕𝜽𝜕𝜽′
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

⎤

⎥

⎥

⎥

⎦

+ 𝑜 (1) .

Next, we expand ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛(𝐲)
)

 at 𝜽𝑝𝑛,

ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛(𝐲)
)

= ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑝𝑛
)

+
𝜕 ln 𝑝

(

𝐲𝑟𝑒𝑝|𝜽𝑝𝑛
)

𝜕𝜽′
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

+ 1
2

(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)′ 𝜕2 ln 𝑝

(

𝐲𝑟𝑒𝑝|𝜽𝑝𝑛
)

𝜕𝜽𝜕𝜽′
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

+ 𝑜𝑝 (1) .

Substituting the above expansion into 𝑇3, we have

𝑇3 = 𝐸𝐲𝐸𝐲𝑟𝑒𝑝

[

−2 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛(𝐲)
)]

− 𝐸𝐲𝐸𝐲𝑟𝑒𝑝
[

−2 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑝𝑛
)]

= 𝐸𝐲𝐸𝐲𝑟𝑒𝑝

⎡

⎢

⎢

⎣

−2 𝜕 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽
𝑝
𝑛
)

𝜕𝜽′

(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

−
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)′ 𝜕2 ln 𝑝

(

𝐲𝑟𝑒𝑝|𝜽
𝑝
𝑛
)

𝜕𝜽𝜕𝜽′

(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

+ 𝑜𝑝 (1)

⎤

⎥

⎥

⎦

= 𝐸𝐲𝐸𝐲𝑟𝑒𝑝

[

−2
𝜕 ln 𝑝

(

𝐲𝑟𝑒𝑝|𝜽𝑝𝑛
)

𝜕𝜽′
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

]

+𝐸𝐲𝐸𝐲𝑟𝑒𝑝

[

−
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)′ 𝜕2 ln 𝑝

(

𝐲𝑟𝑒𝑝|𝜽𝑝𝑛
)

𝜕𝜽𝜕𝜽′
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

]

+ 𝑜 (1)

= −2𝐸𝐲𝑟𝑒𝑝

(

𝜕 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑝𝑛
)

𝜕𝜽′

)

𝐸𝐲

[(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)]

+𝐸𝐲

[

−
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)′
𝐸𝐲𝑟𝑒𝑝

(

𝜕2 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑝𝑛
)

𝜕𝜽𝜕𝜽′

)

(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

]

+ 𝑜 (1)

= 𝐸𝐲

[

−
√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)′
𝐸𝐲

(

1
𝑛
𝜕2 ln 𝑝(𝐲|𝜽𝑝𝑛)
𝜕𝜽𝜕𝜽′

)

√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

]

+ 𝑜(1),

since

𝐸𝐲𝐸𝐲𝑟𝑒𝑝

[

−2
𝜕 ln 𝑝

(

𝐲𝑟𝑒𝑝|𝜽𝑝𝑛
)

𝜕𝜽′
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

]

= 𝐸𝐲𝑟𝑒𝑝

[

−2
𝜕 ln 𝑝

(

𝐲𝑟𝑒𝑝|𝜽𝑝𝑛
)

𝜕𝜽′

]

𝐸𝐲

[(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)]

= 0

by (41), (42), and the dominated convergence theorem.
We can rewrite 𝑇2 as

𝑇2 = 𝐸𝐲

⎡

⎢

⎢

⎢

⎣

−
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)′ 𝜕2 ln 𝑝

(

𝐲|𝜽𝑛(𝐲)
)

𝜕𝜽𝜕𝜽′
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

⎤

⎥

⎥

⎥

⎦

+ 𝑜 (1)

= 𝐸𝐲

[

−
√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)′ 1
𝑛
𝐸𝐲

(

𝜕2 ln 𝑝
(

𝐲|𝜽𝑝𝑛
)

𝜕𝜽𝜕𝜽′

)

√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

]

+𝐸𝐲

⎡

⎢

⎢

⎢

⎣

−
√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)′

(

1
𝑛

𝜕2 ln 𝑝
(

𝐲|𝜽𝑛(𝐲)
)

𝜕𝜽𝜕𝜽′ − 𝐸𝐲

(

1
𝑛
𝜕2 ln 𝑝

(

𝐲|𝜽𝑝𝑛
)

𝜕𝜽𝜕𝜽′

)

)

×
√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

⎤

⎥

⎥

⎥

⎦

+ 𝑜 (1)

where

𝐸𝐲

⎡

⎢

⎢

⎢

−
√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)′

(

1
𝑛

𝜕2 ln 𝑝
(

𝐲|𝜽𝑛(𝐲)
)

𝜕𝜽𝜕𝜽′ − 𝐸𝐲

(

1
𝑛
𝜕2 ln 𝑝

(

𝐲|𝜽𝑝𝑛
)

𝜕𝜽𝜕𝜽′

)

)

×
√

𝑛
(

𝜽 (𝐲) − 𝜽𝑝
)

⎤

⎥

⎥

⎥

(61)
21
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⎡

⎢

⎢

⎢

⎣

|

|

|

|

|

|

|

|

√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

|

|

|

|

|

|

|

|

2
|

|

|

|

|

|

|

|

|

|

|

|

|

|

1
𝑛

𝜕2 ln 𝑝
(

𝐲|𝜽𝑛(𝐲)
)

𝜕𝜽𝜕𝜽′
− 𝐸𝐲

(

1
𝑛
𝜕2 ln 𝑝

(

𝐲|𝜽𝑝𝑛
)

𝜕𝜽𝜕𝜽′

)
|

|

|

|

|

|

|

|

|

|

|

|

|

|

⎤

⎥

⎥

⎥

⎦

≤
(

𝐸𝐲

[

|

|

|

|

|

|

|

|

√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

|

|

|

|

|

|

|

|

4])1∕2

×

⎛

⎜

⎜

⎜

⎝

𝐸𝐲

⎡

⎢

⎢

⎢

⎣

|

|

|

|

|

|

|

|

|

|

|

|

|

|

1
𝑛

𝜕2 ln 𝑝
(

𝐲|𝜽𝑛(𝐲)
)

𝜕𝜽𝜕𝜽′
− 𝐸𝐲

(

1
𝑛
𝜕2 ln 𝑝

(

𝐲|𝜽𝑝𝑛
)

𝜕𝜽𝜕𝜽′

)
|

|

|

|

|

|

|

|

|

|

|

|

|

|

2
⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

1∕2

.

In (61), we have

𝐸𝐲

⎡

⎢

⎢

⎢

⎣

|

|

|

|

|

|

|

|

|

|

|

|

|

|

1
𝑛

𝜕2 ln 𝑝
(

𝐲|𝜽𝑛(𝐲)
)

𝜕𝜽𝜕𝜽′
− 𝐸𝐲

(

1
𝑛
𝜕2 ln 𝑝

(

𝐲|𝜽𝑝𝑛
)

𝜕𝜽𝜕𝜽′

)
|

|

|

|

|

|

|

|

|

|

|

|

|

|

2
⎤

⎥

⎥

⎥

⎦

(62)

= 𝐸𝐲

⎡

⎢

⎢

⎢

⎣

|

|

|

|

|

|

|

|

|

|

|

|

|

|

1
𝑛

𝜕2 ln 𝑝
(

𝐲|𝜽𝑛(𝐲)
)

𝜕𝜽𝜕𝜽′
− �̄�𝑛

(

𝜽𝑝𝑛
)

+ �̄�𝑛
(

𝜽𝑝𝑛
)

−𝐇𝑛

|

|

|

|

|

|

|

|

|

|

|

|

|

|

2
⎤

⎥

⎥

⎥

⎦

≤
⎡

⎢

⎢

⎢

⎣

𝐸𝐲

⎡

⎢

⎢

⎢

⎣

|

|

|

|

|

|

|

|

|

|

|

|

|

|

1
𝑛

𝜕2 ln 𝑝
(

𝐲|𝜽𝑛(𝐲)
)

𝜕𝜽𝜕𝜽′
− �̄�𝑛

(

𝜽𝑝𝑛
)

|

|

|

|

|

|

|

|

|

|

|

|

|

|

2
⎤

⎥

⎥

⎥

⎦

1∕2

+
[

𝐸𝐲

[

|

|

|

|

|

|

�̄�𝑛
(

𝜽𝑝𝑛
)

−𝐇𝑛
|

|

|

|

|

|

2
]]1∕2⎤

⎥

⎥

⎥

⎦

2

.

The first term of (62) can be written as

𝑣𝑒𝑐

⎛

⎜

⎜

⎜

⎝

1
𝑛

𝜕2 ln 𝑝
(

𝐲|𝜽𝑛(𝐲)
)

𝜕𝜽𝜕𝜽′
− �̄�𝑛

(

𝜽𝑝𝑛
)

⎞

⎟

⎟

⎟

⎠

= 𝑣𝑒𝑐
(

�̄�𝑛

(

𝜽𝑛(𝐲)
))

− 𝑣𝑒𝑐
(

�̄�𝑛
(

𝜽𝑝𝑛
))

= 1
𝑛

𝑛
∑

𝑡=1
∇3𝑙𝑡

(

�̃�
∗∗
𝑛 (𝐲)

)(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

= 1
√

𝑛
1
𝑛

𝑛
∑

𝑡=1
∇3𝑙𝑡

(

�̃�
∗∗
𝑛 (𝐲)

)

√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

by vectorization and the Taylor expansion, where ̃𝜽∗∗𝑛 (𝐲) lies between 𝜽𝑛(𝐲) and 𝜽𝑝𝑛. Thus,

𝐸𝐲

⎡

⎢

⎢

⎢

⎣

|

|

|

|

|

|

|

|

|

|

|

|

|

|

1
𝑛

𝜕2 ln 𝑝
(

𝐲|𝜽𝑛(𝐲)
)

𝜕𝜽𝜕𝜽′
− �̄�𝑛

(

𝜽𝑝𝑛
)

|

|

|

|

|

|

|

|

|

|

|

|

|

|

2
⎤

⎥

⎥

⎥

⎦

(63)

≤ 1
𝑛
𝐸𝐲

[

|

|

|

|

|

|

|

|

|

|

1
𝑛

𝑛
∑

𝑡=1
∇3𝑙𝑡

(

�̃�
∗∗
𝑛 (𝐲)

)|

|

|

|

|

|

|

|

|

|

2
|

|

|

|

|

|

|

|

√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

|

|

|

|

|

|

|

|

2
]

≤ 1
𝑛

(

𝐸𝐲

[

|

|

|

|

|

|

|

|

|

|

1
𝑛

𝑛
∑

𝑡=1
∇3𝑙𝑡

(

�̃�
∗∗
𝑛 (𝐲)

)|

|

|

|

|

|

|

|

|

|

4])1∕2
(

𝐸𝐲

[

|

|

|

|

|

|

|

|

√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

|

|

|

|

|

|

|

|

4])1∕2

= 𝑂
( 1
𝑛

)

by Assumption  5 and (56). The second term of (62) can be written as 

𝐸𝐲

[

|

|

|

|

|

|

�̄�𝑛
(

𝜽𝑝𝑛
)

−𝐇𝑛
|

|

|

|

|

|

2
]

≤ 1
𝑛
𝐸𝐲

[

|

|

|

|

|

|

√

𝑛
(

�̄�𝑛
(

𝜽𝑝𝑛
)

−𝐇𝑛
)

|

|

|

|

|

|

2
]

= 𝑂
( 1
𝑛

)

(64)

by Assumptions  1–9. From (63) and (62), it can be shown that

𝐸𝐲

⎡

⎢

⎢

⎢

⎣

|

|

|

|

|

|

|

|

|

|

|

|

|

|

1
𝑛

𝜕2 ln 𝑝
(

𝐲|𝜽𝑛(𝐲)
)

𝜕𝜽𝜕𝜽′
− 𝐸𝐲

(

1
𝑛
𝜕2 ln 𝑝

(

𝐲|𝜽𝑝𝑛
)

𝜕𝜽𝜕𝜽′

)
|

|

|

|

|

|

|

|

|

|

|

|

|

|

2
⎤

⎥

⎥

⎥

⎦

= 𝑜 (1) .

Thus, we have 

𝐸𝐲

⎡

⎢

⎢

⎢

−
√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)′

(

1
𝑛

𝜕2 ln 𝑝
(

𝐲|𝜽𝑛(𝐲)
)

𝜕𝜽𝜕𝜽′ − 𝐸𝐲

(

1
𝑛
𝜕2 ln 𝑝

(

𝐲|𝜽𝑝𝑛
)

𝜕𝜽𝜕𝜽′

)

)

×
√

𝑛
(

𝜽 (𝐲) − 𝜽𝑝
)

⎤

⎥

⎥

⎥

= 𝑜 (1) . (65)
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We can further rewrite 𝑇2 as

𝑇2 = 𝐸𝐲

⎡

⎢

⎢

⎢

⎣

−
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)′ 𝜕2 ln 𝑝

(

𝐲|𝜽𝑛(𝐲)
)

𝜕𝜽𝜕𝜽′
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

⎤

⎥

⎥

⎥

⎦

+ 𝑜 (1)

= 𝐸𝐲

[

−
√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)′ 1
𝑛
𝐸𝐲

(

𝜕2 ln 𝑝
(

𝐲|𝜽𝑝𝑛
)

𝜕𝜽𝜕𝜽′

)

√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

]

+ 𝑜 (1)

= 𝑇3 + 𝑜(1).

Hence, we only need to analyze 𝑇3. Note that

𝑇3 = 𝐸𝐲

[

−
√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)′
𝐸𝐲

(

−1
𝑛
𝜕2 ln 𝑝(𝐲|𝜽𝑝𝑛)
𝜕𝜽𝜕𝜽′

)

√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

]

+ 𝑜 (1) (66)

= 𝐸𝐲

[

√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)′

(

−𝐇𝑛
)
√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

]

+ 𝑜 (1)

= 𝐸𝐲

[

(

𝐂−1∕2
𝑛

√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
))′

𝐂1∕2
𝑛

(

−𝐇𝑛
)

𝐂1∕2
𝑛 𝐂−1∕2

𝑛
√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

]

+ 𝑜 (1)

= 𝐸𝐲

{

𝐭𝐫
[

𝐇𝑛𝐂
1∕2
𝑛 𝐂−1∕2

𝑛
√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)′

𝐂−1∕2
𝑛 𝐂1∕2

𝑛

]}

+ 𝑜 (1)

= 𝐭𝐫
{

(

−𝐇𝑛
)

𝐂1∕2
𝑛 𝐸𝐲

[

𝐂−1∕2
𝑛

√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)′

𝐂−1∕2
𝑛

]

𝐂1∕2
𝑛

}

+ 𝑜 (1) .

In (66), we have

𝐸𝐲

[

𝐂−1∕2
𝑛

√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)′

𝐂−1∕2
𝑛

]

= 𝐂−1∕2
𝑛 𝐸𝐲

[

√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)′
]

𝐂−1∕2
𝑛

= 𝐂−1∕2
𝑛 𝐸𝐲

[

√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)′
]

𝐂−1∕2
𝑛 ,

where

𝐸𝐲

[

√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)′
]

(67)

= 𝐸𝐲

[

√

𝑛
(

𝜽𝑛(𝐲) − �̂�𝑛 (𝐲) + �̂�𝑛 (𝐲) − 𝜽𝑝𝑛
)

√

𝑛
(

𝜽𝑛(𝐲) − �̂�𝑛 (𝐲) + �̂�𝑛 (𝐲) − 𝜽𝑝𝑛
)′
]

= 𝐸𝐲

[

√

𝑛
(

�̂�𝑛 (𝐲) − 𝜽𝑝𝑛
)

√

𝑛
(

�̂�𝑛 (𝐲) − 𝜽𝑝𝑛
)′
]

+ 𝐸𝐲

[

√

𝑛
(

𝜽𝑛(𝐲) − �̂�𝑛 (𝐲)
)

√

𝑛
(

�̂�𝑛 (𝐲) − 𝜽𝑝𝑛
)′
]

+𝐸𝐲

[

√

𝑛
(

�̂�𝑛 (𝐲) − 𝜽𝑝𝑛
)

√

𝑛
(

𝜽𝑛(𝐲) − �̂�𝑛 (𝐲)
)′
]

+𝐸𝐲

[

√

𝑛
(

𝜽𝑛(𝐲) − �̂�𝑛 (𝐲)
)

√

𝑛
(

𝜽𝑛(𝐲) − �̂�𝑛 (𝐲)
)′
]

.

In (67), it can be shown that the last three terms are all 𝑜 (1) because of (53) and (55). For the first term, we know that

𝐸𝐲

[

√

𝑛
(

�̂�𝑛 (𝐲) − 𝜽𝑝𝑛
)

√

𝑛
(

�̂�𝑛 (𝐲) − 𝜽𝑝𝑛
)′
]

= 𝐇−1
𝑛 𝐁𝑛𝐇−1

𝑛 + 𝑜 (1) = 𝐶𝑛 + 𝑜 (1)

by Li et al. (2024). Hence,

𝐸𝐲

[

√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)′
]

= 𝐇−1
𝑛 𝐁𝑛𝐇−1

𝑛 + 𝑜 (1) = 𝐶𝑛 + 𝑜 (1) .

It can be shown that
𝑇3 = 𝐭𝐫

{

(

−𝐇𝑛
)

𝐂1∕2
𝑛 𝐂−1∕2

𝑛 𝐸𝐲

[

√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)

√

𝑛
(

𝜽𝑛(𝐲) − 𝜽𝑝𝑛
)′
]

𝐂−1∕2
𝑛 𝐂1∕2

𝑛

}

+ 𝑜 (1)

= 𝐭𝐫
{

(

−𝐇𝑛
)

𝐂1∕2
𝑛 𝐂−1∕2

𝑛 𝐂𝑛𝐂
−1∕2
𝑛 𝐂1∕2

𝑛

}

+ 𝑜 (1)

= 𝐭𝐫
(

(

−𝐇𝑛
)

𝐂1∕2
𝑛 𝐂1∕2

𝑛

)

+ 𝑜 (1) = 𝐭𝐫
((

−𝐇𝑛
)

𝐂𝑛
)

+ 𝑜 (1)

= 𝐭𝐫
(

(

−𝐇𝑛
) (

−𝐇𝑛
)−1 𝐁𝑛

(

−𝐇𝑛
)−1

)

+ 𝑜 (1)

= 𝐭𝐫
(

𝐁𝑛
(

−𝐇𝑛
)−1

)

+ 𝑜 (1) .

and

𝐸
[

𝐸
(

−2 ln 𝑝
(

𝐲 |𝜽 (𝐲)
))]

(68)
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= 𝐸𝐲

[

𝐸𝐲𝑟𝑒𝑝

(

−2 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛
(

𝐲𝑟𝑒𝑝
)

))]

+ 2𝐭𝐫
(

𝐁𝑛
(

−𝐇𝑛
)−1

)

+ 𝑜 (1)

= 𝐸𝐲

[

𝐸𝐲

(

−2 ln 𝑝
(

𝐲|𝜽𝑛(𝐲)
))]

+ 2𝐭𝐫
(

𝐁𝑛
(

−𝐇𝑛
)−1

)

+ 𝑜 (1)

= 𝐸𝐲

[

−2 ln 𝑝
(

𝐲|𝜽𝑛(𝐲)
)]

+ 2𝐭𝐫
(

𝐁𝑛
(

−𝐇𝑛
)−1

)

+ 𝑜 (1)

= 𝐸𝐲

[

−2 ln 𝑝
(

𝐲|𝜽𝑛(𝐲)
)]

+ 2𝑃 + 𝑜 (1) .

The last step is due to Assumption  9.
Note that

𝑃𝐷 = 𝐷 (𝜽) −𝐷
(

𝜽𝑛(𝐲)
)

= −2∫

[

ln 𝑝 (𝐲|𝜽) − ln 𝑝
(

𝐲|𝜽𝑛(𝐲)
)]

𝑝 (𝜽|𝐲) 𝑑𝜽.

By the Taylor expansion
ln 𝑝 (𝐲|𝜽) − ln 𝑝

(

𝐲|𝜽𝑛(𝐲)
)

=
𝜕 ln 𝑝

(

𝐲𝑟𝑒𝑝|𝜽𝑛 (𝐲)
)

𝜕𝜽′
(

𝜽 − 𝜽𝑛 (𝐲)
)

+ 1
2

(

𝜽 − 𝜽𝑛 (𝐲)
)′ 𝜕2 ln 𝑝

(

𝐲|𝜽
##
𝑛 (𝐲,𝜽)

)

𝜕𝜽𝜕𝜽′
(

𝜽 − 𝜽𝑛 (𝐲)
)

,

where 𝜽##𝑛 (𝐲,𝜽) lies between 𝜽 and 𝜽𝑛 (𝐲). Thus, we have

𝑃𝐷 = −2∫

[

ln 𝑝 (𝐲|𝜽) − ln 𝑝
(

𝐲|𝜽𝑛(𝐲)
)]

𝑝 (𝜽|𝐲) 𝑑𝜽 (69)

= −∫

(

𝜽 − 𝜽𝑛 (𝐲)
)′ 𝜕2 ln 𝑝

(

𝐲|𝜽
##
𝑛 (𝐲,𝜽)

)

𝜕𝜽𝜕𝜽′
(

𝜽 − 𝜽𝑛 (𝐲)
)

𝑝 (𝜽|𝐲) 𝑑𝜽

= −∫
√

𝑛
(

𝜽 − 𝜽𝑛 (𝐲)
)′ 1
𝑛

𝜕2 ln 𝑝
(

𝐲|𝜽
##
𝑛 (𝐲,𝜽)

)

𝜕𝜽𝜕𝜽′
√

𝑛
(

𝜽 − 𝜽𝑛 (𝐲)
)

𝑝 (𝜽|𝐲) 𝑑𝜽.

From (69), we have

‖

‖

𝑃𝐷‖‖ =
‖

‖

‖

‖

‖

‖

‖

∫
√

𝑛
(

𝜽 − 𝜽𝑛 (𝐲)
)′ 1
𝑛

𝜕2 ln 𝑝
(

𝐲|𝜽
##
𝑛 (𝐲,𝜽)

)

𝜕𝜽𝜕𝜽′
√

𝑛
(

𝜽 − 𝜽𝑛 (𝐲)
)

𝑝 (𝜽|𝐲) 𝑑𝜽
‖

‖

‖

‖

‖

‖

‖

≤
‖

‖

‖

‖

‖

‖

1
𝑛

𝑡
∑

𝑡=1
𝑀𝑡

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

∫
√

𝑛
(

𝜽 − 𝜽𝑛 (𝐲)
)

√

𝑛
(

𝜽 − 𝜽𝑛 (𝐲)
)′
𝑝 (𝜽|𝐲) 𝑑𝜽

‖

‖

‖

‖

≤
‖

‖

‖

‖

‖

‖

1
𝑛

𝑡
∑

𝑡=1
𝑀𝑡

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

𝑛𝑉
(

𝜽𝑛 (𝐲)
)

‖

‖

‖

‖

,

and

𝐸

(

‖

‖

‖

‖

‖

‖

1
𝑛

𝑡
∑

𝑡=1
𝑀𝑡

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

𝑛𝑉
(

𝜽𝑛 (𝐲)
)

‖

‖

‖

‖

)

(70)

≤
⎛

⎜

⎜

⎝

𝐸
⎛

⎜

⎜

⎝

‖

‖

‖

‖

‖

‖

1
𝑛

𝑡
∑

𝑡=1
𝑀𝑡

‖

‖

‖

‖

‖

‖

2
⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

1∕2
(

𝐸
(

‖

‖

‖

‖

𝑛𝑉
(

𝜽𝑛 (𝐲)
)

‖

‖

‖

‖

2))1∕2

by Assumption  5, where

𝑉
(

𝜽𝑛 (𝐲)
)

= ∫

(

𝜽 − 𝜽𝑛 (𝐲)
)′ (

𝜽 − 𝜽𝑛 (𝐲)
)

𝑝 (𝜽|𝐲) 𝑑𝜽.

It can be shown that
‖

‖

‖

‖

‖

𝑉
(

𝜽𝑛 (𝐲)
)

−
(

−1
𝑛
�̄�𝑛

(

�̂�𝑛
)−1

)

‖

‖

‖

‖

‖

≤ 3
‖

‖

‖

‖

1
𝑛
�̄�𝑛

(

�̂�𝑛
)−1

‖

‖

‖

‖

1∕2
𝐶∗∗ + 5.25𝐶∗∗

where

𝐶∗∗ ≤
𝛼 (𝐲𝑛)
𝑛

⎡

⎢

⎢

⎢

⎣

(

1
𝑛
∑𝑛
𝑡=1𝑀𝑡(𝐲𝑡)

)2
(

(

∑𝑃
𝑗=1

|

|

|

𝜆�̄�∗∗
𝑛 ,𝑗

|

|

|

)2
+
∑𝑃
𝑗=1 𝜆

2
�̄�∗∗
𝑛 ,𝑗

)

+2
(

1
𝑛
∑𝑛
𝑡=1𝑀𝑡(𝐲𝑡)

)(

∑𝑃
𝑗=1

|

|

|

𝜆�̄�∗∗
𝑛 ,𝑗

|

|

|

)

+𝑀2
0

⎤

⎥

⎥

⎥

⎦

1∕2

≤
𝛼 (𝐲𝑛)
𝑛

⎡

⎢

⎢

(

1
𝑛
∑𝑛
𝑡=1𝑀𝑡(𝐲𝑡)

)2 (
𝑃 2 × 𝜌

(

�̄�∗∗
𝑛
)2 + 𝑃 × 𝜌

(

�̄�∗∗
𝑛
)2
)

+2
(

1 ∑𝑛 𝑀 (𝐲𝑡)
)

(

𝑃 × 𝜌
(

�̄�∗∗)) +𝑀2

⎤

⎥

⎥

1∕2
24
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=
𝛼 (𝐲𝑛)
𝑛

⎡

⎢

⎢

⎣

(

1
𝑛
∑𝑛
𝑡=1𝑀𝑡(𝐲𝑡)

)2
(

𝑃 2 + 𝑃
)

× 𝜌
(

�̄�∗∗
𝑛
)2 + 2

(

1
𝑛
∑𝑛
𝑡=1𝑀𝑡(𝐲𝑡)

)

(

𝑃 × 𝜌
(

�̄�∗∗
𝑛
))

+𝑀2
0

⎤

⎥

⎥

⎦

1∕2

≤
𝛼 (𝐲𝑛)
𝑛

⎡

⎢

⎢

⎣

(

1
𝑛
∑𝑛
𝑡=1𝑀𝑡(𝐲𝑡)

)2
(

𝑃 2 + 𝑃
)

× ‖

‖

�̄�∗∗
𝑛
‖

‖

2 + 2
(

1
𝑛
∑𝑛
𝑡=1𝑀𝑡(𝐲𝑡)

)

× 𝑃 × ‖

‖

�̄�∗∗
𝑛
‖

‖

+𝑀2
0

⎤

⎥

⎥

⎦

1∕2

by Theorem 4.1, Proposition 6.2 in Huggins et al. (2018) and Lemma  A.1 with �̄�∗∗
𝑛 = �̄�𝑛

(

�̂�𝑛
)

. By Assumptions  5 and 6, we have

𝐸
(

𝐶∗∗2) = 𝑂
(

𝑛−2
)

< ∞, 𝐸
(

𝐶∗∗4) = 𝑂
(

𝑛−4
)

<∞.

Thus,

𝐸

(

‖

‖

‖

‖

‖

𝑛𝑉
(

𝜽𝑛 (𝐲)
)

−
(

−�̄�𝑛

(

�̂�𝑛
)−1

)

‖

‖

‖

‖

‖

2)

≤ 𝑛2𝐸
⎛

⎜

⎜

⎝

[

3
‖

‖

‖

‖

�̄�𝑛

(

�̂�𝑛
)−1

‖

‖

‖

‖

1∕2
𝐶∗∗ + 5.25𝐶∗∗

]2
⎞

⎟

⎟

⎠

≤ 𝑛2
[

𝐸
([

9
‖

‖

‖

‖

�̄�𝑛

(

�̂�𝑛
)−1

‖

‖

‖

‖

𝐶∗∗2
])1∕2

+
(

𝐸
[

5.252 ‖
‖

𝐶∗∗
‖

‖

2
])1∕2

]2

< ∞.

Hence, we can further get

𝐸
(

‖

‖

‖

‖

𝑛𝑉
(

𝜽𝑛 (𝐲)
)

‖

‖

‖

‖

2)

(71)

= 𝐸

(

‖

‖

‖

‖

‖

𝑛𝑉
(

𝜽𝑛 (𝐲)
)

−
(

−�̄�𝑛

(

�̂�𝑛
)−1

)

+
(

−�̄�𝑛

(

�̂�𝑛
)−1

)

‖

‖

‖

‖

‖

2)

≤ 𝐸
⎛

⎜

⎜

⎝

[

‖

‖

‖

‖

‖

𝑛𝑉
(

𝜽𝑛 (𝐲)
)

−
(

−�̄�𝑛

(

�̂�𝑛
)−1

)

‖

‖

‖

‖

‖

+
‖

‖

‖

‖

‖

(

−�̄�𝑛

(

�̂�𝑛
)−1

)

‖

‖

‖

‖

‖

]2
⎞

⎟

⎟

⎠

≤
⎡

⎢

⎢

⎣

(

𝐸

(

‖

‖

‖

‖

‖

𝑛𝑉
(

𝜽𝑛 (𝐲)
)

−
(

−�̄�𝑛

(

�̂�𝑛
)−1

)

‖

‖

‖

‖

‖

2))1∕2

+

(

𝐸

(

‖

‖

‖

‖

‖

(

−�̄�𝑛

(

�̂�𝑛
)−1

)

‖

‖

‖

‖

‖

2))1∕2
⎤

⎥

⎥

⎦

2

< ∞.

From (70) and (71), we have 
𝐸
(

𝑃𝐷
)

= 𝑃 + 𝑜 (1) (72)

by the dominated convergence theorem and 𝑃𝐷 = 𝑃 + 𝑜𝑝(1) following Lemma  2.3.
Finally, by (68), the fact that 𝑃𝐷 = 𝑃 + 𝑜𝑝(1), and (72), we have

𝐸𝐲𝐸𝐲𝑟𝑒𝑝

[

−2 ln 𝑝
(

𝐲𝑟𝑒𝑝|𝜽𝑛(𝐲)
)]

= 𝐸𝐲

[

−2 ln 𝑝
(

𝐲|𝜽𝑛
)

+ 2𝑃
]

+ 𝑜 (1)

= 𝐸𝐲

[

𝐷
(

𝜽𝑛
)

+ 2𝑃𝐷 + 𝑜𝑝(1)
]

= 𝐸𝐲
[

DIC + 𝑜𝑝(1)
]

= 𝐸𝐲
[

DIC
]

+ 𝑜(1).

Lemma A.1 (Asymptotic Laplace Approximation Error). Let the Laplace approximation of the posterior distribution be

�̂�Laplace = (2𝜋)−𝑃∕2 det
(

−𝑛�̄�𝑛

(

�̂�𝑛
))1∕2

exp
(

−1
2

(

𝜽 − �̂�𝑛
)′ (

−𝑛�̄�𝑛

(

�̂�𝑛
))(

𝜽 − �̂�𝑛
)

)

.

The, under Assumptions  1–10, the 𝑝-Wasserstein distance (𝑝 = 2) between �̂�Laplace  and the posterior density 𝑝
(

𝜽|𝐲𝑛
) is bounded as

𝑝
(

�̂�Laplace , 𝑝
(

𝜽|𝐲𝑛
))

≤
𝛼(𝐲𝑛)

(

𝑀2𝐿2
2 + 2𝑀0𝑀𝐿1 +𝑀2

0
)

𝑛
,

where 𝐿1 =
∑𝑃
𝑗=1

|

|

|

|

|

𝜆
�̄�𝑛

(

�̂�𝑛
)

,𝑗

|

|

|

|

|

 and 𝐿2 =

(

2
∑𝑃
𝑗=1 𝜆

2
�̄�𝑛

(

�̂�𝑛
)

,𝑗
+ 𝐿2

1

)1∕2

, 
{

𝜆
�̄�𝑛

(

�̂�𝑛
)

,𝑗

}

 are the eigenvalues of �̄�𝑛

(

�̂�𝑛
)

, 𝑀,𝑀0 are two finite 
constants.

Proof.  Let 𝑏(𝜽) = ∇ ln 𝑝
(

𝜽|𝐲𝑛
) and 𝑏Laplace (𝜽) = 𝑛�̄�𝑛

(

�̂�𝑛
)(

𝜽 − �̂�𝑛
)

. By the Taylor expansion, the 𝑖th component of 𝑏(𝜽) can be 
rewritten as

𝑏 (𝜽) = ∇ ln 𝑝
(

𝜽|𝐲
)

+ ∇
(

∇ ln 𝑝
(

�̂� |𝐲
) )′ (

𝜽 − �̂�
)
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+𝑅
(

∇ ln 𝑝
(

𝜽|𝐲𝑛
)

𝑖 ,𝜽
)

= ∇𝜋
(

�̂�𝑛
)

𝑖
+ ∇

(

∇ ln 𝑝
(

�̂�𝑛|𝐲𝑛
)

𝑖

)′ (
𝜽 − �̂�𝑛

)

+𝑅
(

∇ ln 𝑝
(

𝜽|𝐲𝑛
)

𝑖 ,𝜽
)

= ∇𝜋
(

�̂�𝑛
)

𝑖
+ ∇

(

∇𝜋
(

�̂�𝑛
)

𝑖

)(

𝜽 − �̂�𝑛
)

+∇
(

∇ ln 𝑝
(

𝐲𝑛|�̂�𝑛
)

𝑖

)′ (
𝜽 − �̂�𝑛

)

+ 𝑅
(

∇ ln 𝑝
(

𝜽|𝐲𝑛
)

𝑖 ,𝜽
)

,

where

𝑅(𝜙,𝜽) =
(

𝜽 − �̂�𝑛
)′

{

∫

1

0
(1 − 𝑡)∇2𝜙

(

�̂�𝑛 + 𝑡
(

𝜽 − �̂�𝑛
))

d𝑡

}

(

𝜽 − �̂�𝑛
)

.

Note that ∇𝜋𝑖 and ∇
(

∇𝜋𝑖
) are both continuous functions on a compact set by Assumptions  1 and 10. Thus, there exits a finite upper 

bound 𝑀0 for ∇𝜋
(

�̂�𝑛
)

𝑖
+ ∇

(

∇𝜋
(

�̂�𝑛
)

𝑖

)(

𝜽 − �̂�𝑛
)

. Hence,

‖

‖

‖

𝑏(𝜽) − 𝑏Laplace (𝜽)‖‖
‖

2

=
𝑃
∑

𝑖=1

(

𝑅
(

∇ ln 𝑝
(

𝜽|𝐲𝑛
)

𝑖 ,𝜽
)

+ ∇𝜋
(

�̂�𝑛
)

𝑖
+ ∇

(

∇𝜋
(

�̂�𝑛
)

𝑖

)(

𝜽 − �̂�𝑛
))2

≤
𝑃
∑

𝑖=1

(

𝑅
(

∇ ln 𝑝
(

𝜽|𝐲𝑛
)

𝑖 ,𝜽
)

+𝑀0
)2

=
𝑃
∑

𝑖=1
𝑅
(

∇ ln 𝑝
(

𝜽|𝐲𝑛
)

𝑖 ,𝜽
)2 + 2𝑀0

𝑃
∑

𝑖=1
𝑅
(

∇ ln 𝑝
(

𝜽|𝐲𝑛
)

𝑖 ,𝜽
)

+𝑀2
0

≤ sup
𝑡∈[0,1]

𝑃
∑

𝑖=1

‖

‖

‖

𝜽 − �̂�𝑛
‖

‖

‖

4 ‖
‖

‖

‖

∇2
(

∇ ln 𝑝
(

�̂�𝑛 + 𝑡
(

𝜽 − �̂�𝑛
)

|𝐲𝑛
)

𝑖

)

‖

‖

‖

‖

2

+𝑀0 sup
𝑡∈[0,1]

𝑃
∑

𝑖=1

‖

‖

‖

𝜽 − �̂�𝑛
‖

‖

‖

2 ‖
‖

‖

‖

∇2
(

∇ ln 𝑝
(

�̂�𝑛 + 𝑡
(

𝜽 − �̂�𝑛
)

|𝐲𝑛
)

𝑖

)

‖

‖

‖

‖

+𝑀2
0

≤ 𝑛2𝑀2 ‖
‖

‖

𝜽 − �̂�𝑛
‖

‖

‖

4
+ 2𝑛𝑀0𝑀

‖

‖

‖

𝜽 − �̂�𝑛
‖

‖

‖

2
+𝑀2

0

by Assumptions  5 and 6. Following Huggins et al. (2018), the condition
{

∫
‖

‖

‖

𝜽 − �̂�𝑛
‖

‖

‖

2𝑝
𝑝
(

𝜽|𝐲𝑛
)

𝑑𝜽
}1∕𝑝

≤
𝐿𝑝
𝑛

(𝑝 = 1, 2)

is satisfied under Assumptions  1–10. Thus, we have

2
(

�̂�Laplace , 𝑝
(

𝜃|𝐲𝑛
))

≤
𝛼(𝐲𝑛)

(

∫ ‖

‖

‖

𝑏(𝜽) − 𝑏Laplace (𝜽)‖‖
‖

2
𝑝
(

𝜃|𝐲𝑛
)

𝑑𝜃
)1∕2

𝑛

≤
𝛼(𝐲𝑛)

(

𝑀2𝐿2
2 + 2𝑀0𝑀𝐿1 +𝑀2

0
)1∕2

𝑛
by Theorem 4.1, Theorem 5.2 and Proposition 6.2 in Huggins et al. (2018).  ■

A.2. Expressions for 𝐵𝑡,1, 𝐵1
𝑡,21, 𝐵

2
𝑡,21, 𝐵𝑡,22, 𝐵4

For 𝐵𝑡,1, we have

𝐵𝑡,1 = −1
2
𝐭𝐫

[

�̄�𝑛

(

�̂�𝑛
)−1

▽2𝑙𝑡
(

�̂�𝑛
)

]

−▽𝑙𝑡
(

�̂�𝑛
)′

�̄�𝑛

(

�̂�𝑛
)−1 ∇𝑝

𝑝

+ 1
2
𝑣𝑒𝑐

(

�̄�𝑛

(

�̂�𝑛
)−1

)′
�̄�(3)
𝑛

(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1

▽𝑙𝑡
(

�̂�𝑛
)

. (73)

For 𝐵1
𝑡,21, we have

𝐵1
𝑡,21 (74)

= −1
8

(

∇𝑙𝑡
(

�̂�𝑛
))′

�̄�𝑛

(

�̂�𝑛
)−1 (

�̄�(5)
𝑛

(

�̂�𝑛
))′

𝑣𝑒𝑐
[

�̄�𝑛

(

�̂�𝑛
)−1

⊗ 𝑣𝑒𝑐
(

�̄�𝑛

(

�̂�𝑛
)−1

)]

+ 1𝑣𝑒𝑐
(

�̄�𝑛

(

�̂�𝑛
)−1

)′
�̄�(3)
𝑛

(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1

�̄�(4)
𝑛

(

�̂�𝑛
)′
26

4
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×
(

𝑣𝑒𝑐
(

�̄�𝑛

(

�̂�𝑛
)−1

)

⊗
(

�̄�𝑛

(

�̂�𝑛
)−1

∇𝑙𝑡
(

�̂�𝑛
)

))

+ 1
6
𝑣𝑒𝑐

(

�̄�(3)
𝑛

(

�̂�𝑛
))′

[

�̄�𝑛

(

�̂�𝑛
)−1

⊗ �̄�𝑛

(

�̂�𝑛
)−1

⊗ �̄�𝑛

(

�̂�𝑛
)−1

]

�̄�(4)
𝑛

(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1

∇𝑙𝑡
(

�̂�𝑛
)

+ 1
16
𝑣𝑒𝑐

(

�̄�𝑛

(

�̂�𝑛
)−1

)′
�̄�(3)
𝑛

(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1

∇𝑙𝑡
(

�̂�𝑛
)

× 𝐭𝐫
[(

�̄�𝑛

(

�̂�𝑛
)−1

⊗ 𝑣𝑒𝑐
(

�̄�𝑛

(

�̂�𝑛
)−1

))′
�̄�(4)
𝑛

(

�̂�𝑛
)

]

+ 1
4
𝐭𝐫

⎡

⎢

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎝

((

�̄�𝑛

(

�̂�𝑛
)−1

⊗
(

∇𝑙𝑡
(

�̂�𝑛
)′

�̄�𝑛

(

�̂�𝑛
)−1

))

�̄�(3)
𝑛

(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1

)

⊗𝑣𝑒𝑐
(

�̄�𝑛

(

�̂�𝑛
)−1

)

⎞

⎟

⎟

⎟

⎠

′

�̄�(4)
𝑛

(

�̂�𝑛
)

⎤

⎥

⎥

⎥

⎥

⎦

− 3
8
𝑣𝑒𝑐

(

(

�̄�𝑛

(

�̂�𝑛
)−1

)−1
)′

�̄�(3)
𝑛

(

�̂�𝑛
)

(

�̄�𝑛

(

�̂�𝑛
)−1

)−1
�̄�(3)
𝑛

(

�̂�𝑛
)′

× 𝑣𝑒𝑐

⎡

⎢

⎢

⎢

⎢

⎣

(

�̄�𝑛

(

�̂�𝑛
)−1

)−1
�̄�(3)
𝑛

(

�̂�𝑛
)′

×

(

𝑣𝑒𝑐

(

(

�̄�𝑛

(

�̂�𝑛
)−1

)−1
)

⊗

(

(

�̄�𝑛

(

�̂�𝑛
)−1

)−1
∇𝑙𝑡

(

�̂�𝑛
)

))

⎤

⎥

⎥

⎥

⎥

⎦

− 1
4
𝑣𝑒𝑐

(

�̄�(3)
𝑛

(

�̂�𝑛
))′

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�̄�𝑛

(

�̂�𝑛
)−1

⊗ �̄�𝑛

(

�̂�𝑛
)−1

⊗
⎛

⎜

⎜

⎜

⎜

⎝

�̄�𝑛

(

�̂�𝑛
)−1

�̄�(3)
𝑛

(

�̂�𝑛
)′

×

(

𝑣𝑒𝑐
(

�̄�𝑛

(

�̂�𝑛
)−1

)

⊗

(

(

�̄�𝑛

(

�̂�𝑛
)−1

)−1
∇𝑙𝑡

(

�̂�𝑛
)

))

⎞

⎟

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

× 𝑣𝑒𝑐
(

�̄�(3)
𝑛

(

�̂�𝑛
))

− 1
16
𝑣𝑒𝑐

(

�̄�𝑛

(

�̂�𝑛
)−1

)′
�̄�(3)
𝑛

(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1

�̄�(3)
𝑛

(

�̂�𝑛
)′
𝑣𝑒𝑐

(

�̄�𝑛

(

�̂�𝑛
)−1

)

× 𝑣𝑒𝑐
(

�̄�𝑛

(

�̂�𝑛
)−1

)′
�̄�(3)
𝑛

(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1

�̄�𝑛

(

�̂�𝑛
)−1

∇𝑙𝑡
(

�̂�𝑛
)

− 1
24
𝑣𝑒𝑐

(

�̄�(3)
𝑛

(

�̂�𝑛
))′

[

�̄�𝑛

(

�̂�𝑛
)−1

⊗ �̄�𝑛

(

�̂�𝑛
)−1

⊗ �̄�𝑛

(

�̂�𝑛
)−1

]

𝑣𝑒𝑐
(

�̄�(3)
𝑛

(

�̂�𝑛
))

× 𝑣𝑒𝑐
(

�̄�𝑛

(

�̂�𝑛
)−1

)′
�̄�(3)
𝑛

(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1

�̄�𝑛

(

�̂�𝑛
)−1

∇𝑙𝑡
(

�̂�𝑛
)

− 5
8

(

∇𝑙𝑡
(

�̂�𝑛
))′

�̄�𝑛

(

�̂�𝑛
)−1 ∇𝑝

𝑝
𝐭𝐫

[[

�̄�𝑛

(

�̂�𝑛
)−1

⊗ 𝑣𝑒𝑐
(

�̄�𝑛

(

�̂�𝑛
)−1

)]

(

�̄�(4)
𝑛

(

�̂�𝑛
))′

]

− 1
8
𝐭𝐫

[[

�̄�𝑛

(

�̂�𝑛
)−1

⊗ 𝑣𝑒𝑐
(

�̄�𝑛

(

�̂�𝑛
)−1

)]

(

�̄�(4)
𝑛

(

�̂�𝑛
))′

]

𝐭𝐫
[

�̄�𝑛

(

�̂�𝑛
)−1

∇𝑙𝑡
(

�̂�𝑛
) ∇𝑝
𝑝

′]

− 1
2
𝐭𝐫

[[(

�̄�𝑛

(

�̂�𝑛
)−1

∇𝑙𝑡
(

�̂�𝑛
) ∇𝑝
𝑝

′
�̄�𝑛

(

�̂�𝑛
)−1

)

⊗ 𝑣𝑒𝑐
(

�̄�𝑛

(

�̂�𝑛
)−1

)]

(

�̄�(4)
𝑛

(

�̂�𝑛
))′

]

+ 1
8
𝑣𝑒𝑐

(

�̄�𝑛

(

�̂�𝑛
)−1

)′
�̄�(3)
𝑛

(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1 (

�̄�(3)
𝑛

(

�̂�𝑛
))′

𝑣𝑒𝑐
(

�̄�𝑛

(

�̂�𝑛
)−1

)

× 𝐭𝐫
[

�̄�𝑛

(

�̂�𝑛
)−1 ∇𝑝

𝑝
∇𝑙𝑡

(

�̂�𝑛
)

]

+ 1
12
𝑣𝑒𝑐

(

�̄�(3)
𝑛

(

�̂�𝑛
))′

[

�̄�𝑛

(

�̂�𝑛
)−1

⊗ �̄�𝑛

(

�̂�𝑛
)−1

⊗ �̄�𝑛

(

�̂�𝑛
)−1

]

𝑣𝑒𝑐
(

�̄�(3)
𝑛

(

�̂�𝑛
))

× 𝐭𝐫
[

�̄�𝑛

(

�̂�𝑛
)−1 ∇𝑝

𝑝
∇𝑙𝑡

(

�̂�𝑛
)

]

+ 1
2
𝑣𝑒𝑐

(

�̄�𝑛

(

�̂�𝑛
)−1

)′
�̄�(3)
𝑛

(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1

�̄�(3)
𝑛

(

�̂�𝑛
)′

× 𝑣𝑒𝑐
(

�̄�𝑛

(

�̂�𝑛
)−1 ∇𝑝

𝑝
∇𝑙𝑡

(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1

)

,

For 𝐵2
𝑡,21, we have

𝐵2 = 1𝑣𝑒𝑐
(

�̄�𝑛

(

�̂�𝑛
)−1

)′
�̄�(3)
𝑛

(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1 ∇𝑝

∇𝑙𝑡
(

�̂�𝑛
)

(75)
27

𝑡,21 4 𝑝
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×�̄�𝑛

(

�̂�𝑛
)−1

�̄�(3)
𝑛

(

�̂�𝑛
)′
𝑣𝑒𝑐

(

�̄�𝑛

(

�̂�𝑛
)−1

)

+ 1
2
𝑣𝑒𝑐

(

�̄�(3)
𝑛

(

�̂�𝑛
))′

[(

�̄�𝑛

(

�̂�𝑛
)−1 ∇𝑝

𝑝
∇𝑙𝑡

(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1

)

⊗ �̄�𝑛

(

�̂�𝑛
)−1

⊗ �̄�𝑛

(

�̂�𝑛
)−1

]

× 𝑣𝑒𝑐
(

�̄�(3)
𝑛

(

�̂�𝑛
))

− 1
2
𝑣𝑒𝑐

(

�̄�𝑛

(

�̂�𝑛
)−1

)′
�̄�(3)
𝑛

(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1 ∇2𝑝

𝑝
�̄�𝑛

(

�̂�𝑛
)−1

∇𝑙𝑡
(

�̂�𝑛
)

− 1
4
𝐭𝐫

[

∇2𝑝
𝑝

�̄�𝑛

(

�̂�𝑛
)−1

]

𝑣𝑒𝑐
(

�̄�𝑛

(

�̂�𝑛
)−1

)′
�̄�(3)
𝑛

(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1

∇𝑙𝑡
(

�̂�𝑛
)

− 1
2
𝑣𝑒𝑐

(

(

∇2𝑝
𝑝

)−1

⊗ ∇𝑙𝑡
(

�̂�𝑛
)

)′
[

�̄�𝑛

(

�̂�𝑛
)−1

⊗ �̄�𝑛

(

�̂�𝑛
)−1

⊗ �̄�𝑛

(

�̂�𝑛
)−1

]

𝑣𝑒𝑐
(

�̄�(3)
𝑛

(

�̂�𝑛
))

+ 1
2

(

∇𝑙𝑡
(

�̂�𝑛
))′

�̄�𝑛

(

�̂�𝑛
)−1

(

∇3𝑝
)′

𝑝

[

𝑣𝑒𝑐
(

�̄�𝑛

(

�̂�𝑛
)−1

)]

,

For 𝐵𝑡,22, we have

𝐵𝑡,22 = − 1
16

𝐭𝐫
[

𝐴2
]

𝐭𝐫
[

�̄�𝑛

(

�̂�𝑛
)−1

∇2𝑙𝑡
(

�̂�𝑛
)

]

(76)

−1
4
𝐭𝐫

[[(

�̄�𝑛

(

�̂�𝑛
)−1

∇2𝑙𝑡
(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1

)

⊗ 𝑣𝑒𝑐
(

�̄�𝑛

(

�̂�𝑛
)−1

)]

�̄�(4)
𝑛

(

�̂�𝑛
)′
]

+ 1
16
𝐴1 × 𝐭𝐫

[

�̄�𝑛

(

�̂�𝑛
)−1

∇2𝑙𝑡
(

�̂�𝑛
)

]

+ 1
24
𝐴3 × 𝐭𝐫

[

�̄�𝑛

(

�̂�𝑛
)−1

∇2𝑙𝑡
(

�̂�𝑛
)

]

+ 1
4
𝑣𝑒𝑐

(

�̄�𝑛

(

�̂�𝑛
)−1

)′
�̄�(3)
𝑛

(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1

�̄�(3)
𝑛

(

�̂�𝑛
)′

× 𝑣𝑒𝑐
(

�̄�𝑛

(

�̂�𝑛
)−1

∇2𝑙𝑡
(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1

)

+ 1
8
𝑣𝑒𝑐

(

�̄�𝑛

(

�̂�𝑛
)−1

)′
�̄�(3)
𝑛

(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1

∇2𝑙𝑡
(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1

× �̄�(3)
𝑛

(

�̂�𝑛
)′
𝑣𝑒𝑐

(

�̄�𝑛

(

�̂�𝑛
)−1

)

+ 1
4
𝑣𝑒𝑐

(

�̄�(3)
𝑛

(

�̂�𝑛
))′

⎡

⎢

⎢

⎢

⎣

(

�̄�𝑛

(

�̂�𝑛
)−1

∇2𝑙𝑡
(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1

)

⊗�̄�𝑛

(

�̂�𝑛
)−1

⊗ �̄�𝑛

(

�̂�𝑛
)−1

⎤

⎥

⎥

⎥

⎦

× 𝑣𝑒𝑐
(

�̄�(3)
𝑛

(

�̂�𝑛
))

− 1
4
𝑣𝑒𝑐

(

�̄�𝑛

(

�̂�𝑛
)−1

)′
�̄�(3)
𝑛

(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1

∇3𝑙𝑡
(

�̂�𝑛
)′
𝑣𝑒𝑐

(

�̄�𝑛

(

�̂�𝑛
)−1

)

− 1
6
𝑣𝑒𝑐

(

∇2𝑙𝑡
(

�̂�𝑛
))

[

�̄�𝑛

(

�̂�𝑛
)−1

⊗ �̄�𝑛

(

�̂�𝑛
)−1

⊗ �̄�𝑛

(

�̂�𝑛
)−1

]

× 𝑣𝑒𝑐
(

�̄�(3)
𝑛

(

�̂�𝑛
))

+ 1
8
𝐭𝐫

[[

�̄�𝑛

(

�̂�𝑛
)−1

⊗ 𝑣𝑒𝑐
(

�̄�𝑛

(

�̂�𝑛
)−1

)]

∇4𝑙𝑡
(

�̂�𝑛
)′
]

− 1
2
𝑣𝑒𝑐

(

�̄�𝑛

(

�̂�𝑛
)−1

)′
�̄�(3)
𝑛

(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1

∇2𝑙𝑡
(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1 ∇𝑝

𝑝

− 1
4
𝐭𝐫

[

∇2𝑙𝑡
(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1

]

𝑣𝑒𝑐
(

�̄�𝑛

(

�̂�𝑛
)−1

)′
�̄�(3)
𝑛

(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1 ▽𝑝

𝑝

− 1
2
𝑣𝑒𝑐

(

�̄�𝑛

(

�̂�𝑛
)−1

∇2𝑙𝑡
(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1

)′
�̄�(3)
𝑛

(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1 ▽𝑝

𝑝

+ 1
2
𝑣𝑒𝑐

(

�̄�𝑛

(

�̂�𝑛
)−1

)′
∇3𝑙𝑡

(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1 ▽𝑝

𝑝

+ 1
4
𝐭𝐫

[

�̄�𝑛

(

�̂�𝑛
)−1

∇2𝑙𝑡
(

�̂�𝑛
)

]

𝐭𝐫
[

�̄�𝑛

(

�̂�𝑛
)−1 ▽2𝑝

𝑝

]

+ 1
2
𝐭𝐫

[

�̄�𝑛

(

�̂�𝑛
)−1

∇2𝑙𝑡
(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1 ▽2𝑝

𝑝

]

28
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For 𝐵4, we have

𝐵4 = −1
2
𝐭𝐫

[

�̄�𝑛

(

�̂�𝑛
)−1 ∇2𝑝

𝑝

]

+ 1
2
𝑣𝑒𝑐

(

�̄�𝑛

(

�̂�𝑛
)−1

)′
�̄�(3)
𝑛

(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1 ∇𝑝

𝑝

− 1
8
𝐴1 −

1
12
𝐴3 +

1
8
𝐭𝐫

[

𝐴2
]

, (77)

where

𝐴1 = 𝑣𝑒𝑐
(

�̄�𝑛

(

�̂�𝑛
)−1

)′
�̄�(3)
𝑛

(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1

�̄�(3)
𝑛

(

�̂�𝑛
)′
𝑣𝑒𝑐

(

�̄�𝑛

(

�̂�𝑛
)−1

)

= 𝐭𝐫
[

𝑣𝑒𝑐
(

�̄�𝑛

(

�̂�𝑛
)−1

)′
𝑣𝑒𝑐

(

�̄�𝑛

(

�̂�𝑛
)−1

)′
𝐴4

]

,

𝐴2 =
[

�̄�𝑛

(

�̂�𝑛
)−1

⊗ 𝑣𝑒𝑐
(

�̄�𝑛

(

�̂�𝑛
)−1

)]′
�̄�(4)
𝑛

(

�̂�𝑛
)

,

𝐴4 = �̄�(3)
𝑛

(

�̂�𝑛
)

�̄�𝑛

(

�̂�𝑛
)−1

�̄�(3)
𝑛

(

�̂�𝑛
)′
.

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2025.105978.
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