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Abstract

This note gives a rigorous justification to Akaike information criterion (AIC)

and Takeuchi information criterion (TIC). The existing literature has shown that,

when the candidate model is a good approximation of the true data generat-

ing process (DGP), AIC is an asymptotic unbiased estimator of the expected

Kullback-Leibler divergence between the DGP and the plug-in predictive distri-

bution. When the candidate model is misspecified, TIC can be regraded as a

robust version of AIC with its justification following a similar line of argument.

However, the justifications in current literature are predominantly confined to

the iid scenario. In this note, we establish the asymptotic unbiasedness of AIC

and TIC under certain regular conditions. These conditions are applicable in

various scenarios, encompassing weakly dependent data.

Keywords: AIC; TIC; Expected loss function; Kullback-Leibler divergence; Model

selection; Plug-in predictive distribution; weakly dependent data.
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1 Introduction

Arguably Akaike information criterion (AIC) of Akaike (1973) is the most well-known

information criteria for model selection. AIC gives an answer of the following question:

Given a set of candidate models, which model gives the best predictions of future

observations generated by the same mechanism that gives the observed data?

This query can be viewed as a statistical decision problem following the selection of

an appropriate loss and risk function. In 1973, Akaike opted for the Kullback-Leibler

(KL) divergence between the data generating process (DGP) and the plug-in predictive

distribution as the loss function. Consequently, the model showcasing the lowest AIC

value is deemed the optimal choice.

The existing body of literature has established that AIC serves as an asymptoti-

cally unbiased estimator of predictive risk under the KL loss function. Akaike (1973)

showed this property. Cavanaugh (1997) gave a unified justification of AIC and its

invariant. Shi and Tsai (1998) showed the similar results for generalized AIC based

on the M-estimator. Several prominent textbooks in model selection, such as Linhart

and Zucchini (1986), Burnham and Anderson (2002), and Claeskens and Hjort (2008),

also corroborate this outcome. The proofs in these works take the same approach.

Initially, the KL divergence is decomposed into three components, with the first term

representing the log-likelihood. Subsequently, the last two terms are approximated us-

ing the second-order Taylor expansion of the log-likelihood, disregarding the residual

term when computing the expectation of a quadratic function of the maximum likeli-

hood estimator (MLE). Finally, leveraging the asymptotic normality of the MLE, these

expectations converge to the parameter’s dimension.

To justify AIC, we need to assume all candidate models are good approximations
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of the true DGP. This assumption is often violated due to potential misspecification.

In response to this challenge, Takeuchi Information Criterion (TIC), introduced by

Takeuchi (1976), was formulated as a model-robust version of AIC, accommodating

scenarios where candidate models are misspecified. The primary distinction between

TIC and AIC lies in their respective penalties. Whereas AIC penalizes based on the

model’s dimension, TIC replaces this with the trace of the inverse Hessian matrix

multiplied by the Jacobian matrix. This form of penalty in TIC was also noted by

Stone (1977). When models are correctly specified, the information identity simplifies

TIC back to AIC; see Claeskens and Hjort (2008), Cavanaugh and Neath (2019).

However, these justifications are only approximate for two main reasons. Firstly,

although the remainder tends to zero in probability, it is a well-established fact that

convergence in probability does not ensure the convergence of the expectation. This

issue is elaborated on in Example 12.7 in Davidson (2021). Secondly, the asymptotic

normality of MLE in general is insufficient to demonstrate the convergence of the ex-

pectation of the quadratic function of MLE. Additional regular conditions are needed

for this purpose.

In this paper, we introduce slightly more robust regular conditions to guarantee the

validity of these convergence results. We demonstrate that both AIC and TIC serve

as asymptotically unbiased estimators of the KL divergence between the true Data

Generating Process (DGP) and the plug-in predictive distribution. Finally, we discuss

these regular conditions in various scenarios, encompassing iid data, stationary ergodic

data, and weakly dependent data.

2 Model Selection as a Statistical Decision Problem

Before giving our justification of AIC and TIC, let us fix some notations. Let y =

(y1, y2, · · · , yn)′ ∈ Y be observed data. Let a set of probabilistic models be {Mk}Kk=1 =

3



{p (y|θk,Mk)}Kk=1 where n is the sample size, θk (we simply write it as θ when there is

no confusion) is the set of parameters in candidate model Mk, and p(·) is its probability

density function (pdf). Formally, the model selection problem is taken as a decision

problem to select a model among {Mk}Kk=1 where the action space has K elements,

namely, {dk}Kk=1, where dk means Mk is selected.

For the decision problem, a loss function, ℓ(y, dk), which measures the loss of decision

dk as a function of y, must be specified. Given the loss function, the expected loss (or

risk) can be defined as (Berger, 1985)

Risk(dk) = Ey [ℓ(y, dk)] =

∫
ℓ(y, dk)g(y)dy, (1)

where g(y) is the pdf of y. Hence, the model selection problem is equivalent to opti-

mizing the statistical decision,

k∗ = argmin
k

Risk(dk).

Based on the set of candidate models {Mk}Kk=1, model Mk∗ with decision dk∗ is selected.

Let yrep = (y1,rep, · · · , yn,rep)′ be hypothetically replicate data, independently gen-

erated by the exact mechanism that gives y. Assume the sample size in yrep is also n.

Consider the predictive density of this hypothetically replicate experiment for a candi-

date model Mk. The plug-in predictive density can be expressed as p
(
yrep|θ̃n(y),Mk

)
for Mk where θ̃n(y) is an estimate of θ based on y (we simply write θ̃n(y) as θ̃n when

there is no confusion).

The quantity that has been used to measure the quality of the candidate model

in terms of its ability to make predictions is the KL divergence between g (yrep) and

p
(
yrep|θ̃n(y),Mk

)
multiplied by 2, Naturally, the loss function associated with decision
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dk is

ℓ(y, dk) = 2×KL
[
g (yrep) , p

(
yrep|θ̃n(y),Mk

)]
= 2

∫
log

g (yrep)

p
(
yrep|θ̃n(y),Mk

)g (yrep) dyrep.

(2)

As a result, the model selection problem is,

k∗ = argmin
k

Risk(dk) = argmin
k

Ey [ℓ(y, dk)]

= argmin
k

{
EyEyrep [2 log g (yrep)] + EyEyrep

[
−2 log p

(
yrep|θ̃n(y),Mk

)]}
.

Since g (yrep) is the DGP, Eyrep [2 log g (yrep)] is the same across all candidate models,

and hence, is dropped from the above equation. Consequently,

k∗ = argmin
k

Risk(dk) = argmin
k

EyEyrep

[
−2 log p

(
yrep|θ̃n(y),Mk

)]
. (3)

The smaller Risk(dk) is, the better the candidate model performs when using p
(
yrep|θ̃n(y),Mk

)
to predict g (yrep). The optimal decision makes it necessary to evaluate the risk.

When there is no confusion, we simply write a generic candidate model p (y|θ,Mk)

as p (y|θ) where θ ∈ Θ ⊆ RP (i.e. the dimension of θ is P ). When the candidate

model is different, the value of P may be different. Note that we allow for model

misspecification. We denote θ̂n(y) as the quasi-maximum likelihood estimator (see

White (1982) and White (1996)) based on y, which is the global maximum interior to

Θ defined by

θ̂n(y,Mk) = arg max
θ∈Θ

log p (y|θ,Mk) . (4)

Let θp
n = argmaxθ∈ΘE log p (y|θ,Mk) denote the pseudo-true value of candidate

model Mk. The expected Hessian matrix and the expected Jacobian matrix are defined
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as

Hn = E

[
1

n

∂2

∂θ∂θ′ log p (y|θ
p
n,Mk)

]
, Bn = V ar

[
1√
n

∂

∂θ
log p (y|θp

n,Mk)

]
.

AIC and TIC can be defined as

AIC = −2 log p
(
y|θ̂n(y),Mk

)
+ 2P, (5)

TIC = −2 log p
(
y|θ̂n(y),Mk

)
+ 2tr(−BnH

−1
n ). (6)

If the candidate models are good approximation of the true DGP, under a set

of regularity conditions, it is well known (e.g. Burnham and Anderson (2002) and

Claeskens and Hjort (2008)) that AIC is an asymptotically unbiased estimator of

EyEyrep

[
−2 log p

(
yrep|θ̂n(y),Mk

)]
, that is, as n → ∞,

Ey(AIC)− EyEyrep

(
−2 log p

(
yrep|θ̂n(y)

))
→ 0.

If we allow for model misspecification, TIC should be used instead and

Ey(TIC)− EyEyrep

(
−2 log p

(
yrep|θ̂n(y)

))
→ 0.

The decision-theoretic justification of AIC and TIC rests on a frequentist frame-

work. Specifically, it requires a careful choice of the KL divergence, the use of QMLE,

and a set of regularity conditions that ensure
√
n-consistency and the asymptotic nor-

mality of QMLE. In Burnham and Anderson (2002) and other standard references,
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EyEyrep

[
−2 log p

(
yrep|θ̂n(y),Mk

)]
is decomposed into three terms:

EyEyrep

(
−2 log p

(
yrep|θ̂n(y)

))
=
[
EyEyrep

(
−2 log p

(
yrep|θ̂n(yrep)

))]
(T1)

+
[
EyEyrep (−2 log p (yrep|θp

n))− EyEyrep

(
−2 log p

(
yrep|θ̂n(yrep)

))]
(T2)

+
[
EyEyrep

(
−2 log p

(
yrep|θ̂n(y)

))
− EyEyrep (−2 log p (yrep|θp

n))
]

(T3)

.

(7)

Clearly, T1 = Ey

(
−2 log p

(
y|θ̂n(y)

))
. To justify AIC, it is suffice to show that T2 =

T3 + o(1) = P + o(1), where P is the dimension of parameter θ. TIC can be justified

in the same manner.

The existing literature, exemplified by Burnham and Anderson (2002), employs

the Taylor expansion to derive a quadratic term of the centered MLE. Relying on the

asymptotic normality of QMLE, they establish that the expectation of this quadratic

term converges to P . Nevertheless, in general, additional conditions are essential to

guarantee the validity of this convergence, as elaborated upon below.

3 Rigorous Justification of AIC and TIC

In this section, we provide some high level conditions, which can be satisfied in many

cases. Then under these high level conditions, we rigorously justify that AIC and TIC

are asymptotically unbiased estimators of EyEyrep

[
−2 log p

(
yrep|θ̂n(y),Mk

)]
. For

simplification, we omit Mk in this section.

First we fix some notations. Let yt = (y0, y1, . . . , yt) for any 0 ≤ t ≤ n and

lt (y
t,θ) = log p (yt|θ) − log p (yt−1|θ) be the conditional log-likelihood for the tth ob-

servation for any 1 ≤ t ≤ n. When there is no confusion, we suppress lt (y
t,θ) as lt (θ)
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so that the log-likelihood function log p (y|θ) is
∑n

t=1 lt (θ).1 Let ∇jlt (θ) denote the

jth derivative of lt (θ) and ∇jlt (θ) = lt (θ) when j = 0. Furthermore, define

s
(
yt,θ

)
=

∂ log p (yt|θ)
∂θ

=
t∑

i=1

∇li (θ) , h
(
yt,θ

)
=

∂2 log p (yt|θ)
∂θ∂θ′ =

t∑
i=1

∇2li (θ) ,

st (θ) = ∇lt (θ) = s
(
yt,θ

)
− s

(
yt−1,θ

)
, ht (θ) = ∇2lt (θ) = h

(
yt,θ

)
− h

(
yt−1,θ

)
,

Bn (θ) = V ar

[
1√
n

n∑
t=1

▽lt (θ)

]
, H̄n (θ) =

1

n

n∑
t=1

ht (θ) ,

Hn (θ) =

∫
H̄n (θ) g (y) dy, Jn (θ) =

∫
J̄n (θ) g (y) dy.

For simplification, we write Hn (θ
p
n) as Hn, Bn (θ

p
n) as Bn, and let Cn = H−1

n BnH
−1
n .

We impose the following high level conditions.

Assumption 1 (Differentiable): The log-likelihood log p (yt|θ) is second-order

differentiable for every t so that the second-order Taylor’s expansion is allowed.

Assumption 2 (Lipschitz): For any θ,θ′ ∈ Θ, ∥ht (θ)− ht (θ
′)∥ ≤ ct (y

t) ∥θ − θ′∥,

where ct (y
t) is a positive random variable with supt E ∥ct (yt)∥ < ∞ and

E

∣∣∣∣∣ 1n
n∑

t=1

ct
(
yt
)∣∣∣∣∣

4

⩽ C < ∞. (8)

Assumption 3 (Moment Conditions): The following moment conditions are

satisfied:

E∥
√
ns̄n (θ

p
n) ∥2 ⩽ C < ∞, (9)

E∥
√
n[H̄n (θ

p
n)−Hn (θ

p
n)]∥2 ⩽ C < ∞. (10)

1In the definition of log-likelihood, we ignore the initial condition log p(y0). For weakly dependent
data, the impact of ignoring the initial condition is asymptotically negligible.
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Assumption 4 (Quasi-Maximum Likelihood Estimator): θ̂n(y) satisfies:

E∥
√
n(θ̂n(y)− θp

n)∥4 ⩽ C < ∞, (11)
√
n(θ̂n(y)− θp

n) = H̄−1
n

(
θ̃n(y)

)√
ns̄n (θ

p
n) = H−1

n (θp
n)

√
ns̄n (θ

p
n) + RTn(y), (12)

where θ̃n(y) lies between θ̂n(y) and θp
n, E∥RTn(y)∥2 = o(1).

These conditions are slightly stronger than the standard regular conditions of quasi-

maximum likelihood estimator and are satisfied under quite general situations, including

iid data, stationary ergodic data, and weakly dependent data. We will discuss these

cases in the next section.

The following lemma states that these high level conditions ensure the expectation

of remainders in the second order Taylor expansion converges to zero.

Lemma 3.1 Under Assumptions 1-4, we have the following expansions for the log

likelihood

log p (y|θp
n) = log p

(
y|θ̂n (y)

)
+

1

2

(
θp
n − θ̂n(y)

)′ ∂2 log p
(
y|θ̂n(y)

)
∂θ∂θ′

(
θp
n − θ̂n(y)

)
+RT 1

n(y),

(13)

where Ey|RT 1
n(y)| is o(1). And

log p
(
yrep|θ̂n (y)

)
= log p (yrep|θp

n) +
∂ log p (yrep|θp

n)

∂θ′

(
θ̂n (y)− θp

n

)
+
1

2

(
θ̂n (y)− θp

n

)′ ∂2 log p (yrep|θp
n)

∂θ∂θ′

(
θ̂n (y)− θp

n

)
+RT 2

n(y,yrep),

(14)

where EyEyrep |RT 2
n(y,yrep)| is o(1).

Remark 3.1 It is obvious that the remainders are op(1). It seems reasonable to ignore

them when taking the expectation if we can apply the dominant convergence theorem
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(DCT). However, it is unreasonable to directly assume the remainder can be dominated

by an integrable random variable because of its complex structure. The existing literature

does not discuss this problem in detail. For example, in Lemma 1 of Cavanaugh (1997),

Theorem 1 of Shi and Tsai (1998), Chapter 2.1-2.3 of Claeskens and Hjort (2008),

Appendix A.1 and A.2 of Linhart and Zucchini (1986), Chapter 7.2 of Burnham and

Anderson (2002), Theorem 28.4 of Hansen (2022) all directly assume uniformly inte-

grability. Here, we try to directly bound the expectation of remainders to give a rigorous

justification to it.

Lemma 3.2 Under Assumptions 1-4, we have

Ey

[√
n
(
θ̂n (y)− θp

n

)′
(H̄n

(
θ̂n (y)

)
−Hn)

√
n
(
θ̂n (y)− θp

n

)]
= o(1), (15)

Ey

[√
n
(
θ̂n (y)− θp

n

)√
n
(
θ̂n (y)− θp

n

)′]
= H−1

n BnH
−1
n + o (1) = Cn + o (1) . (16)

Remark 3.2 The left-hand side of (15) is the expectation of an op(1) term. To get the

convergence of the expectation in the first equation, a careful treatment is needed. For

the left-hand side of (16), intuitively it should converge to the asymptotic covariance

matrix of MLE. However, the convergence in distribution in general does ensure not

this convergence. The existing literature does not address this issue, neither. Lemma

3.2 gives a rigorous justification to both convergence results.

With the aid of the above two lemmas, we are now in the position to justify AIC as

an asymptotically unbiased estimator of EyEyrep

[
−2 log p

(
yrep|θ̂n(y)

)]
, which is the

expected KL loss (up to a constant, which is only dependent on the true DGP).

Theorem 3.1 Under Assumptions 1-4, we have, as n → ∞,

EyEyrep

[
−2 log p

(
yrep|θ̂n(y)

)]
= Ey (TIC) + o(1), (17)
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where TIC = −2 log p
(
y|θ̂n(y)

)
+ 2tr(−BnH

−1
n ). If we further assume the candidate

model is a good approximation of the true data generating process: Bn + Hn = o(1),

then

EyEyrep

[
−2 log p

(
yrep|θ̂n(y)

)]
= Ey (AIC) + o(1), (18)

where AIC = −2 log p
(
y|θ̂n(y)

)
+ 2P .

Proof. Recall (7), EyEyrep

[
−2 log p

(
yrep|θ̂n(y)

)]
= T1 + T2 + T3.

Note that T1 = Ey

[
−2 log p

(
y|θ̂n(y)

)]
. Lemma 3.1 and Lemma 3.2 imply

T2 = T3 + o(1) = tr(−BnH
−1
n ) + o(1),

then we have (17). Furthermore, when candidate model is a good approximation of the

true data generating process, T2 = T3 + o(1) = P + o(1), then we have (18).

4 Discussion

In this section, we discuss our Assumptions 1-4 under different type data, including

independent and identical distributed, stationary ergodic and weakly dependent cases.

For Assumption 1, the differentiability of log-likelihood is standard in the quasi-

maximum likelihood estimator.

For Assumption 2, the Lipschitz condition for the Hessian and the score are widely

used in literature. For example, Theorem 3.7 in Gallant and White (1988) used the

Lipschitz condition to derive the uniform LLN, which is important for ensuing consis-

tency of extreme estimators. The Lipschitz condition was also used in Li et al. (2020)

to develop Deviance information criterion for latent variable models and misspecified

models. Our Assumption 2 follows the literature but slightly strengthens the moment

condition to ensure the remainder is negligible.
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For Assumption 3, we have corresponding central limit theory for
√
ns̄n (θ

p
n) and

√
n(H̄n (θ

p
n)−Hn (θ

p
n)) under independent and identical distributed, stationary ergodic

and weakly dependent data, see Davidson (2021) for details. Then
√
ns̄n (θ

p
n) and

√
n(H̄n (θ

p
n)−Hn (θ

p
n)) are both Op(1). The moment conditions are reasonable because

of the appropriate order.

Assumption 4 is slightly stronger than that in the classical quasi-maximum likeli-

hood theory, which provides

√
n(θ̂n(y)− θp

n) = H−1
n (θp

n)
√
ns̄n (θ

p
n) + op(1) = Op(1). (19)

Assumption 4 in fact requires more moment conditions for
√
n(θ̂n(y) − θp

n) and

the remainder term RTn(y). Some moment inequality for the sum of a sequence of

random variables will be useful to show the moment conditions hold. With some basic

moment conditions, Assumption 4 can be verified under different data type, including

independent and identical distributed, stationary ergodic and weakly dependent cases.

When y = (y1, ..., yn) is independent and identical distributed or stationary ergodic,

the Burkholder inequality for martingale will be useful to bound high order moment

of
√
ns̄n (θ

p
n), see Theorem 16.24 in Davidson (2021). For weakly dependent date, the

concept of mixing and strong near epoch dependence can be assumed, see Lin (2004).

The following lemma may be useful to verify the moment conditions in Assumption

4.

Lemma 4.1 Suppose Assumptions 1-3 hold, supt≥1 E∥st (θp
n) ∥8 ≤ C < ∞, and one of

the following conditions hold:

(i) {y1, y2, ...} is independent and identical distributed or stationary ergodic, or

(ii) {y1, y2, ...} is a ϕ-mixing sequence with ϕ(m) = O
(
(logm)−4(1+δ)

)
, {st (θp

n) , t ≥

1} is strong L8-near epoch dependent sequence on {y1, y2, ...} with {dt} and {v (m)}
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satisfying

lim sup
n∗→∞

sup
k≥0

n∗∑
j=1

d2k+j/n
∗ = B < ∞,

and v (m) = O
(
(logm)−(1+δ/2)

)
for some δ > 0,

then Ey ∥
√
ns̄n (θ

p
n)∥

8=O(1). Further, if we have

(iii) Ey

∥∥∥Hn − H̄n

(
θ̃n(y)

)∥∥∥4 = o(1),

then the moment condition in Assumption 4 holds.

This lemma can be applied to weakly dependent data, which is quite general in

application. ϕ-mixing assumption is standard for weakly dependent data, and strong

near epoch dependence property is proposed by Lin (2004), which is a strengthen of

near epoch dependence property in Gallant and White (1988). The condition (iii) in

Lemma 4.1 can also be verified by the same argument as the first part of this lemma

under suitable moment condition and strong near epoch dependence order of the Hessian

matrix sequence {ht (θ
p
n) , t ≥ 1}.

Appendix

The appendix contains the proof details of Theorem 1 and Lemmas.

Proof of Theorem 3.1. We decompose EyEyrep

[
−2 log p

(
yrep|θ̂n(y)

)]
into three

terms:

EyEyrep

(
−2 log p

(
yrep|θ̂n(y)

))
=

[
EyEyrep

(
−2 log p

(
yrep|θ̂n(yrep)

))]
(T1)

+
[
EyEyrep (−2 log p (yrep|θp

n))− EyEyrep

(
−2 log p

(
yrep|θ̂n(yrep)

))]
(T2)

+
[
EyEyrep

(
−2 log p

(
yrep|θ̂n(y)

))
− EyEyrep (−2 log p (yrep|θp

n))
]

(T3)

.
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Note that T1 = Ey

(
−2 log p

(
y|θ̂n(y)

))
. Now let us analyze T2 and T3.

T2 =
[
EyEyrep (−2 log p (yrep|θp

n))− EyEyrep

(
−2 log p

(
yrep|θ̂n(yrep)

))]
= −2Ey

[
log p (y|θp

n)− log p
(
y|θ̂n(y)

)]
= −2Ey

1
2

(
θp
n − θ̂n(y)

)′ ∂2 log p
(
y|θ̂n(y)

)
∂θ∂θ′

(
θp
n − θ̂n(y)

)
+RT 1

n(y)


= Ey

[
−
√
n
(
θ̂n(y)− θp

n

)′
H̄n

(
θ̂n (y)

)√
n
(
θ̂n(y)− θp

n

)]
+ o(1)

= Ey

[
−
√
n
(
θ̂n(y)− θp

n

)′
Hn

√
n
(
θ̂n(y)− θp

n

)]
+ o(1).

(20)

The third equality and the fourth equality hold from (13) in Lemma 3.1. The last step

comes from (15) in Lemma 3.2. Now we turn to T3.

T3 =
[
EyEyrep

(
−2 log p

(
yrep|θ̂n(y)

))
− EyEyrep (−2 log p (yrep|θp

n))
]

= −2EyEyrep

[
log p

(
yrep|θ̂n(y)

)
− log p (yrep|θp

n)
]

= −2Ey

[
1

2

(
θ̂n(y)− θp

n

)′
Eyrep

∂2 log p (yrep|θp
n)

∂θ∂θ′

(
θ̂n(y)− θp

n

)
+RT 2

n(y,yrep)

]
= Ey

[
−
√
n
(
θ̂n(y)− θp

n

)′
Hn

√
n
(
θ̂n(y)− θp

n

)]
+ o(1)

(21)

The third equality and the fourth equality hold from (14) in Lemma 1.1 and the defi-

nition of Hn. Then we can use (16) in Lemma 1.2

Ey

[
−
√
n
(
θ̂n(y)− θp

n

)′
Hn

√
n
(
θ̂n(y)− θp

n

)]
=− tr

[
HnEy

[√
n
(
θ̂n(y)− θp

n

)′ √
n
(
θ̂n(y)− θp

n

)]]
=− tr

[
Hn

(
H−1

n BnH
−1
n + o(1)

)]
=− tr

[
BnH

−1
n

]
+ o(1).

14



This means T2 = T3 + o(1) = −tr [BnH
−1
n ] + o(1). For TIC, we have

EyEyrep

[
−2 log p

(
yrep|θ̂n(y)

)]
= T1 + T2 + T3

= Ey

(
−2 log p

(
y|θ̂n(y)

))
+ 2tr

[
−BnH

−1
n

]
+ o(1)

= Ey

(
−2 log p

(
y|θ̂n(y)

)
+ 2tr

[
−BnH

−1
n

])
+ o(1)

= Ey (TIC) + o(1).

If the model is a good approximation of the true DGP, i.e., Hn +Bn = o(1), then

T2 = T3 + o(1) = −tr
[
−HnH

−1
n

]
+ o(1) = P + o(1). (22)

Then we finally justify AIC by

EyEyrep

[
−2 log p

(
yrep|θ̂n(y)

)]
= T1 + T2 + T3

= Ey

(
−2 log p

(
y|θ̂n(y)

))
+ 2P + o(1)

= Ey

(
−2 log p

(
y|θ̂n(y)

)
+ 2P

)
+ o(1)

= Ey (AIC) + o(1).

Proof of Lemma 3.1. For the first result of Lemma 3.1, consider the following

Taylor expansion

log p (y|θp
n) = log p

(
y|θ̂n (y)

)
+

∂ log p
(
y|θ̂n(y)

)
∂θ′

(
θp
n − θ̂n (y)

)
+

1

2

(
θp
n − θ̂n(y)

)′ ∂2 log p
(
y|θ̃∗

n(y)
)

∂θ∂θ′

(
θp
n − θ̂n(y)

)
,

(23)
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where θ̃
∗
n(y) lies between θ̂n(y) and θp

n. Note that ∂ log p
(
y|θ̂n(y)

)
/∂θ = 0, we have

RT 1
n(y) =

1

2

(
θp
n − θ̂n(y)

)′ ∂2 log p
(
y|θ̃∗

n(y)
)

∂θ∂θ′ − ∂2 log p (y|θp
n)

∂θ∂θ′

(θp
n − θ̂n(y)

)
=

1

2

√
n
(
θp
n − θ̂n(y)

)′ [
H̄n

(
θ̃
∗
n(y)

)
− H̄n

(
θ̂n(y)

)]√
n
(
θp
n − θ̂n(y)

)
.

(24)

By the Cauchy-Schwarz inequality, we have

Ey|RT 1
n(y)| ⩽ Ey

(∥∥∥H̄n

(
θ̃
∗
n(y)

)
− H̄n

(
θ̂n(y)

)∥∥∥∥∥∥√n
(
θp
n − θ̂n(y)

)∥∥∥2)
⩽
(
Ey

∥∥∥H̄n

(
θ̃
∗
n(y)

)
− H̄n

(
θ̂n(y)

)∥∥∥2)1/2(
Ey

∥∥∥√n
(
θp
n − θ̂n(y)

)∥∥∥4)1/2

.

(25)

By the Lipschitz condition in Assumption 2, we have

∥∥∥H̄n

(
θ̃
∗
n(y)

)
− H̄n

(
θ̂n(y)

)∥∥∥2 ⩽ ∣∣∣∣∣ 1n
n∑

t=1

ct
(
yt
)∣∣∣∣∣

2 ∥∥∥θ̃∗
n(y)− θ̂n(y)

∥∥∥2
⩽ 1

n

∣∣∣∣∣ 1n
n∑

t=1

ct
(
yt
)∣∣∣∣∣

2 ∥∥∥√n
(
θ̂n(y)− θp

n

)∥∥∥2 .
(26)

Use the Cauchy-Schwarz inequality and moment conditions (8) and (11), we have

Ey

∥∥∥H̄n

(
θ̃
∗
n(y)

)
− H̄n

(
θ̂n(y)

)∥∥∥2 ⩽ 1

n

Ey

∣∣∣∣∣ 1n
n∑

t=1

ct
(
yt
)∣∣∣∣∣

4
1/2(

Ey

∥∥∥√n
(
θ̂n(y)− θp

n

)∥∥∥4)1/2

⩽ C
1/2
0 C1/2/n → 0.

(27)
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Combining (11), (25) and (27), we have

Ey|RT 1
n(y)| ⩽ C1/2

(
Ey

∥∥∥H̄n

(
θ̃
∗
n(y)

)
− H̄n

(
θ̂n(y)

)∥∥∥2)1/2

→ 0.

Thus, we get (13), which is the first result of Lemma 3.1.

For the second result of Lemma 3.1 (equation (14)), note that

RT 2
n(y,yrep) =

1

2

√
n
(
θ̂n(yrep)− θp

n

)′ [
H̄n

(
θ̃
∗
n(y)

)
− H̄n (θ

p
n)
]√

n
(
θ̂n(yrep)− θp

n

)
,

(28)

where θ̃
∗
n(y) lies between θ̂n(y) and θp

n. Use the same argument, we have

EyEyrep |RT 2
n(y,yrep)|

⩽
(
EyEyrep

∥∥∥H̄n

(
θ̃
∗
n(y)

)
− H̄n (θ

p
n)
∥∥∥2)1/2(

EyEyrep

∥∥∥√n
(
θ̂n(y)− θp

n

)∥∥∥4)1/2

⩽(C
1/2
0 C1/2/n)1/2C1/2 → 0.

(29)

This is the second result in Lemma 3.1.

Proof of Lemma 3.2. For the left-hand side of (15), use the Cauchy-Schwarz

inequality and the moment condition (11), we have

Ey

∣∣∣∣√n
(
θ̂n (y)− θp

n

)′
(H̄n

(
θ̂n (y)

)
−Hn)

√
n
(
θ̂n (y)− θp

n

)∣∣∣∣
⩽Ey

[∥∥∥H̄n

(
θ̂n (y)

)
−Hn

∥∥∥ ∥∥∥√n
(
θ̂n (y)− θp

n

)∥∥∥2]
⩽
(
Ey

∥∥∥H̄n

(
θ̂n (y)

)
−Hn

∥∥∥2)1/2(
Ey

∥∥∥√n
(
θ̂n (y)− θp

n

)∥∥∥4)1/2

⩽C1/2

(
Ey

∥∥∥H̄n

(
θ̂n (y)

)
−Hn

∥∥∥2)1/2

.

(30)
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Note that (x+ y)2 ⩽ 2(x2 + y2), we have

Ey

∥∥∥H̄n

(
θ̂n (y)

)
−Hn

∥∥∥2 ⩽ 2

(
Ey

∥∥∥H̄n

(
θ̂n (y)

)
− H̄n (θ

p
n)
∥∥∥2 + Ey

∥∥H̄n (θ
p
n)−Hn

∥∥2) .

(31)

By the Lipschitz condition and moment condition (8) in Assumption 2, we have

Ey

∥∥∥H̄n

(
θ̂n(y)

)
− H̄n (θ

p
n)
∥∥∥2 ⩽ Ey

∣∣∣∣∣ 1n
n∑

t=1

ct
(
yt
)∣∣∣∣∣

2 ∥∥∥θ̂n(y)− θp
n

∥∥∥2

⩽ 1

n

Ey

∣∣∣∣∣ 1n
n∑

t=1

ct
(
yt
)∣∣∣∣∣

4
1/2(

Ey

∥∥∥√n
(
θ̂n(y)− θp

n

)∥∥∥4)1/2

⩽ C
1/2
0 C1/2/n → 0.

(32)

By the moment conditions in Assumption 4, we have

Ey

∥∥H̄n (θ
p
n)−Hn

∥∥2 ⩽ C/n → 0. (33)

Thus, limn→∞ Ey

∥∥∥H̄n

(
θ̂n (y)

)
−Hn

∥∥∥2 = 0 by (31), (32) and (33). Then we get the

bound of (30):

Ey

∣∣∣∣√n
(
θ̂n (y)− θp

n

)′
(H̄n

(
θ̂n (y)

)
−Hn)

√
n
(
θ̂n (y)− θp

n

)∣∣∣∣
⩽C1/2

(
Ey

∥∥∥H̄n

(
θ̂n (y)

)
−Hn

∥∥∥2)1/2

→ 0.
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For the left-hand side of (16), use the MLE expression (12) in Assumption 3, we have

Ey

[√
n
(
θ̂n (y)− θp

n

)√
n
(
θ̂n (y)− θp

n

)′]
=Ey

[(
H−1

n

√
ns̄n (θ

p
n) + RTn(y)

) (
H−1

n

√
ns̄n (θ

p
n) + RTn(y)

)′]
=H−1

n Ey

[√
ns̄n (θ

p
n)

√
ns̄n (θ

p
n)

′]H−1
n + Ey [RTn(y)RTn(y)

′]

+H−1
n Ey

[√
ns̄n (θ

p
n)RTn(y)

′]+ Ey

[
RTn(y)

√
ns̄n (θ

p
n)

′]H−1
n .

(34)

For the first term of (34), by the definition of Bn, we have

H−1
n Ey

[√
ns̄n (θ

p
n)

√
ns̄n (θ

p
n)

′]H−1
n = H−1

n BnH
−1
n .

For the second term of (34), by the moment condition of RTn(y) in Assumption 3,

we have

Ey ∥RTn(y)RTn(y)
′∥ ⩽ Ey ∥RTn(y)∥2 → 0.

For the third term and the fourth term of (34), using the Cauchy-Schwarz inequality

and the moment conditions (9) in Assumption 4, we have

Ey

∥∥√ns̄n (θ
p
n)RTn(y)

′∥∥ ⩽
(
Ey

∥∥√ns̄n (θ
p
n)
∥∥2)1/2 (Ey ∥RTn(y)∥2

)1/2
⩽ C1/2

(
Ey ∥RTn(y)∥2

)1/2 → 0.

Thus, we have Ey

[
√
n
(
θ̂n (y)− θp

n

)√
n
(
θ̂n (y)− θp

n

)′]
= H−1

n BnH
−1
n + o(1).

Proof of Lemma 4.1. Let sni (θ
p
n) denote the ith element of sn (θ

p
n). When (i)

holds, it can be shown that sni (θp
n) is an mds under the correctly specified model. The

following Burkholder Inequality is useful; see Theorem 16.24 in Davidson (2021).

Lemma 4.2 (Burkholder Inequality) For a martingale Sn with S0 = 0, and increments
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Xt = St − St−1, define the square function as

Q (Sn) =

(
n∑

t=1

X2
t

)1/2

.

If {Sn, Fn}∞1 is an Lr bounded martingale for r > 1, then

cr ∥Q (Sn)∥r ≤ ∥Sn∥r ≤ Cr ∥Q (Sn)∥r ,

where ∥Q (Sn)∥r = (E [|Q (Sn)|r])1/r, cr =
(
18r3/2/ (r − 1)

)−1 and Cr = 18r3/2/ (r − 1)1/2.

Remark 4.1 Note that

∥Q (Sn)∥r = (E [|Q (Sn)|r])1/r =

E

∣∣∣∣∣∣
(

n∑
t=1

X2
t

)1/2
∣∣∣∣∣∣
r1/r

=

E

( n∑
t=1

X2
t

)r/2
1/r

=


E

( n∑
t=1

|Xt|2
)r/2

2/r

1/2

=

∥∥∥∥∥
n∑

t=1

|Xt|2
∥∥∥∥∥
1/2

Lr/2

≤

(
n∑

t=1

∥∥X2
t

∥∥
Lr/2

)1/2

=

[
n∑

t=1

(E |Xt|r)2/r
]1/2

= O
(
n1/2

)
.

If E |Xt|r is bounded for all t, we have

∥Sn∥r = (E [|Sn|r])1/r ≤ Cr ∥Q (Sn)∥r = O
(
n1/2

)
. (35)

Thus, if we assume E|sni (θp
n) |8 is bounded for all t, by Lemma 4.2 and (35), we have

E

[∣∣∣∣ 1√
n

∂ log p (y|θp
n)

∂θi

∣∣∣∣8
]
=

1

n4
E

∣∣∣∣∣
n∑

t=1

sni (θ
p
n)

∣∣∣∣∣
8
 ≤ 1

n4
O
(
n4
)
= O(1).

Now we have Ey ∥
√
ns̄n (θ

p
n)∥

8
= O(1).

When (ii) holds, let us first introduce the concept of strong near epoch dependence;
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see Lin (2004).

Definition 4.1 Let p > 0, {Xt, t ≥ 1} is called a strong Lp−near epoch dependent

sequence if there exist sequences {dt} and {v (m)} of nonnegative constants, v (m) → 0

as m → ∞, such that for all k ≥ 0, n∗ ≥ 1 and m ≥ 0,

[
E
(∥∥Sk (n

∗)− Ek+n∗+m
k+1−m Sk (n

∗)
∥∥p)]1/p ≤ v (m)

(
n∗∑
j=1

d2k+j

)1/2

,

where Sk (n
∗) =

∑k+n∗

j=k+1 Xj.

Lemma 4.3 Let {Vt, t ≥ 1} be a ϕ-mixing sequence with φ (m) = O
(
(logm)−p(1+δ/2)

)
and let {Xt, t ≥ 1} be a mean zero Lp bounded and strong Lp−near epoch dependent

sequence on {Vt, t ≥ 1}, p > 2, with {dt} and {v (m)} satisfying

lim sup
n∗→∞

sup
k≥0

n∗∑
j=1

d2k+j/n
∗ = B < ∞,

and v (m) = O
(
(logm)−(1+δ/2)

)
for some δ > 0. Then there exists a finite constant C,

depending only on {φ (·)} and {v (·)}, such that for all positive integers k and n,

E

(
max
1≤i≤n

|Sk (i)|p
)

≤ C (Dn)p/2 ,

where D = max
{
B, supn [E (|Xn|p)]1/p

}
.

This lemma is proposed by Lin (2004). Use Lemma 4.3, we can show that

E

[∣∣∣∣ 1√
n

∂ log p (yrep|θp
n)

∂θi

∣∣∣∣8
]

=
1

n4
E

max
1≤i≤n

∣∣∣∣∣
n∑

t=1

sni (θ
p
n)

∣∣∣∣∣
8
 ≤ 1

n4
E

∣∣∣∣∣
n∑

t=1

sni (θ
p
n)

∣∣∣∣∣
8
(36)

≤ 1

n4
C (Dn)4 = CD4 < ∞,

for some finite constant C, D. Then we have Ey ∥
√
ns̄n (θ

p
n)∥

8 is O(1).
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Now we have proved that under (i) or (ii), we have Ey ∥
√
ns̄n (θ

p
n)∥

8
= O(1).

To obtain the moment conditions in Assumption 4, recall that the first order con-

dition of quasi-maximum likelihood estimator is

0 = s̄n

(
θ̂n(y)

)
= s̄n (θ

p
n) + H̄n

(
θ̃n(y)

)
(θ̂n(y)− θp

n). (37)

Then we have the following expansion for quasi-maximum likelihood estimator

√
n(θ̂n(y)− θp

n) = H̄−1
n

(
θ̃n(y)

)√
ns̄n (θ

p
n) = H−1

n

√
ns̄n (θ

p
n) + RTn(y).

To verify the moment conditions in Assumption 4, we need to show Ey

∥∥∥√n(θ̂n(y)− θp
n)
∥∥∥4 =

O(1) and Ey∥RTn(y)∥2 = o(1).

Given the first part result and Cauchy-Schwartz inequality, we have

Ey

∥∥∥√n(θ̂n(y)− θp
n)
∥∥∥4 ⩽ (Ey

∥∥∥H̄−1
n

(
θ̃n(y)

)∥∥∥8)1/2 (
Ey

∥∥√ns̄n (θ
p
n)
∥∥8)1/2 = O(1).

Now we turn to the remainder term. The remainder term can be expressed as

RTn(y) = H̄−1
n

(
θ̃n(y)

)√
ns̄n (θ

p
n)−H−1

n

√
ns̄n (θ

p
n)

= H−1
n

[
Hn − H̄n

(
θ̃n(y)

)]
H̄−1

n

(
θ̃n(y)

)
s̄n (θ

p
n)

= H−1
n

[
Hn − H̄n

(
θ̃n(y)

)]√
n(θ̂n(y)− θp

n).

then we have

Ey∥RTn(y)∥2 ⩽
∥∥H−1

n

∥∥2 Ey

∥∥∥Hn − H̄n

(
θ̃n(y)

)∥∥∥2 ∥∥∥√n(θ̂n(y)− θp
n)
∥∥∥2

⩽
∥∥H−1

n

∥∥2(Ey

∥∥∥Hn − H̄n

(
θ̃n(y)

)∥∥∥4)1/2(
Ey

∥∥∥√n(θ̂n(y)− θp
n)
∥∥∥4)1/2

.

Combined with Ey

∥∥∥√n(θ̂n(y)− θp
n)
∥∥∥4 = O(1), it is suffice to show Ey

∥∥∥Hn − H̄n

(
θ̃n(y)

)∥∥∥4 =
22



o(1), which is given as a condition.

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood

principle. Second International Symposium on Information Theory, 1:267–281.

Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis. Springer Series

in Statistics. Springer New York, New York, NY.

Burnham, K. P. and Anderson, D. R., editors (2002). Model Selection and Multimodel

Inference. Springer New York, New York, NY.

Cavanaugh, J. E. (1997). Unifying the derivations for the akaike and corrected akaike

information criteria. Statistics & Probability Letters, 33(2):201–208.

Cavanaugh, J. E. and Neath, A. A. (2019). The akaike information criterion: Back-

ground, derivation, properties, application, interpretation, and refinements. WIREs

Computational Statistics, 11(3):e1460.

Claeskens, G. and Hjort, N. L. (2008). Model Selection and Model Averaging. Cambridge

University Press, 1 edition.

Davidson, J. (2021). Stochastic Limit Theory: An Introduction for Econometricians.

Oxford University PressOxford, 2 edition.

Gallant, A. R. and White, H. (1988). A Unified Theory of Estimation and Inference

for Nonlinear Dynamic Models. Blackwell, Oxford, UK, 1. publ edition.

Hansen, B. E. (2022). Econometrics. Princeton University Press, Princeton.

23



Li, Y., Yu, J., and Zeng, T. (2020). Deviance information criterion for latent variable

models and misspecified models. Journal of Econometrics, 216(2):450–493.

Lin, Z. (2004). Strong near-epoch dependence. Science in China Series A, 47(4):497.

Linhart, H. and Zucchini, W. (1986). Model Selection. Wiley Series in Probability and

Mathematical Statistics Applied Probability and Statistics. Wiley, New York.

Shi, P. and Tsai, C.-L. (1998). A note on the unification of the akaike information

criterion. Journal of the Royal Statistical Society Series B: Statistical Methodology,

60(3):551–558.

Stone, M. (1977). An asymptotic equivalence of choice of model by cross-validation

and akaike’s criterion. Journal of the Royal Statistical Society Series B: Statistical

Methodology, 39(1):44–47.

Takeuchi, K. (1976). Distribution of information statistics and a criterion of model

fitting. Mathematical Science, 153:12–18.

White, H. (1982). Maximum likelihood estimation of misspecified models. Economet-

rica, 50(1):1–25.

White, H. (1996). Estimation, Inference and Specification Analysis. Number 22 in

Econometric Society Monographs. Cambridge Univ. Press, Cambridge, 1. paperback

ed edition.

24


