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Abstract

This paper considers testing predictability in predictive regression models with persistent
errors. We derive limiting distributions of the ordinary least squares estimator and the corre-
sponding Wald statistic under the condition of moderately integrated errors or local-to-unity
errors. The asymptotic result establishes the connection between super-consistent estimation
in correctly specified predictive regression and inconsistent estimation in spurious regression.
To provide a robust test, a modification to the IVX-AR test of Yang et al. (2020) is proposed.
The modified test is uniformly valid across different degrees of persistency in both predic-
tors and errors. Simulation studies show that the new test enjoys satisfactory finite sample
performances. Leveraging on the new test, we reexamine the predictive power of numerous
economic variables in predicting the growth rate of the U.S. housing market, demonstrating
the usefulness of the proposed test, particularly in the context of multivariate regression.
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1 Introduction

Predictive regression has gained widespread popularity in empirical studies. It has been used in
areas such as economics, finance, many fields in social sciences and business studies. The literature

typically focuses on the following linear model:

Y = o+ By + uoy, (1)

where x;_; is a potential predictor for variable y; and u is the error term, which is usually assumed
to be stationary.

Stambaugh (1999) pointed out that the autoregressive property of x;_; causes a finite sample
bias when [ is estimated by ordinary least squares (OLS). Suggestions have been made to reduce
the bias in several studies, including Stambaugh (1999), Amihud and Hurvich (2004) and Lewellen
(2004). Nevertheless, when z; is stationary, the large sample properties of the OLS estimator of
[ are the same as in the conventional regression model and hence, the asymptotic inference is
straightforward. However, since many predictors used in empirical studies have strong persistency,
the assumption of stationarity for z; is questionable.

Unsurprisingly, there has been a recent surge of interest in the literature regarding the method-
ology for conducting inference on predictability in the presence of nonstationary or nearly nonsta-
tionary predictors. See for example Harvey et al. (2021), Yang et al. (2021) and Gungor and Luger
(2020), to name just a few. Among the existing testing procedures, arguably the most popular
method in empirical research is the self-instrumentation approach called IVX, established in Phillips
and Magdalinos (2009) and Kostakis et al. (2015). The essential idea of the IVX methodology is to
restrict the degree of persistency of data-filtered instruments within the class of moderately inte-
grated (MI) processes, whose asymptotic behavior has been well studied in Phillips and Magdalinos

(2007) and Magdalinos and Phillips (2009). The standard instrumental variable estimation based



on the constructed instruments is robust to the general time-series characteristics of regressors in
the sense that the derived estimator always converges in distribution to a (mixed) normal limit.
Hence, in the limit, the associated Wald test statistic follows the chi-square distribution under the
null hypothesis. A great deal of research has now emerged in the literature to study the theoretical
properties of the IVX method. Important contributions include, for instance, Hosseinkouchack and
Demetrescu (2021), Demetrescu et al. (2022) and Demetrescu and Rodrigues (2022).

When testing for predictability based on either the OLS estimator or the IVX estimator, a
commonly employed assumption is that ug, in (1) follows a martingale difference sequence (mds).
Using simulations, Yang et al. (2020) show that when w, is serially correlated, the IVX-Wald test
suffers from a severe size distortion. To avoid this problem, they assume that ug; is generated by
a stationary autoregressive (AR) process with an unknown order p and proposed a novel inference
procedure based on Cochrane-Orcutt-type correction. Using simulated data, they showed that
their test, referred to as IVX-AR, exhibits excellent size control.

However, the dynamic of 4y, may not be well captured by a stationary AR process in practice.
Moreover, when the AR coefficient of a time series is close to (albeit smaller than) unity, it is
difficult to classify it as a stationary, or a local-to-unity (LUR), or an MI process. Furthermore,
it is well-known that the finite sample distributions of many statistics are not well approximated
by their asymptotic distribution derived from the stationary assumption; see, for example, Ahtola
and Tiao (1984); Phillips (1987); Perron (1991). In this case, it could be better to assume wug,
follows an LUR or an MI process. To illustrate the relevance of our concern, consider the empirical
application in Yang et al. (2020), where the predictability of the U.S. housing market growth rate
by a set of economic variables is tested. If we focus on a particular predictor, namely the shares of
the residential fixed investment in GDP, we will show in Section 6 that the residuals from model
(1) is strongly persistent. Its persistency manifests by a large value for the KPSS statistic (0.981),

greater than the 99% critical value (0.739), rejecting the null hypothesis of stationarity.



When wug; follows an LUR or an MI process, another well-known problem, namely spurious
regression, may arise. A leading example is when z;_; and wg, are two independent unit root pro-
cesses. In this case, as shown by Phillips (1986), the OLS estimator for £ in (1) is inconsistent and
the corresponding t-statistic diverges as the sample size increases, which suggests that statistical
evidence of predictability is spurious. Similarly, Lin and Tu (2020) show that, when x;_; and ug;
are two MI processes from the stationary side and x;_; and ¥, are uncorrelated, the OLS estimator
for § in (1) is inconsistent and the corresponding t-statistic diverges. Both sets of results are in
sharp contrast to the case in which z;,_; follows a random walk and wu is stationary, where the
OLS estimator for 8 is super-consistent and its corresponding t-statistic is bounded in probability.

Unfortunately, it is unknown how the limit behavior of the IVX estimator and the associated
test statistic changes when the data generating process (DGP) transits from the model in Yang
et al. (2020) to a spurious regression model. A natural question to ask is whether the IVX-based
inferences are immune to spurious predictiveness in the presence of persistent errors. If it is not,
it will then be desirable to construct a uniform predictability test that is valid regardless of the
persistent level of ;.

In light of the these gaps in the literature, this paper intends to make the following contribu-
tions. Firstly, we propose a multivariate predictive regression model, which allows the error term
to have an LUR or MI structure. This specification bridges between the model considered in Yang
et al. (2020) and spurious predictive regression. Secondly, we investigate the asymptotic behavior
of various popular test statistics for predictability under this general setup. In particular, we ob-
tain the asymptotic properties of both the OLS estimator and the IVX estimator, as well as their
corresponding Wald statistics, when both the covariates and the errors are persistent. Our theo-
retical results provide a complete characterization of transition from super-consistent estimation
in correctly specified predictive regression to inconsistent estimation in spurious regression. Fur-

thermore, it is analytically discussed that the validity of the IVX-Wald tests proposed in Kostakis



et al. (2015) and Yang et al. (2020) are critically dependent on the degree of persistency of the
error term. Our third contribution is to propose a unified test for predictability, which is robust
to combinations of different levels of persistency in the predictors and the errors. Via extensive
simulations, we show our new test enjoys good size control and power. Lastly, we provide an
empirical application of predicting the growth rate of the U.S. housing price. In a univariate re-
gression analysis, our findings in general confirm the conclusions in Yang et al. (2020), indicating
that their results are robust to the persistency in the errors and non-spurious. In a multivariate
regression analysis, however, our results are significantly different from those of Yang et al. (2020).
We find that almost all combinations of predictors considered in Yang et al. (2020) cannot predict
the growth rate.

The paper is organized as follows. Section 2 introduces our baseline model and studies the
asymptotic properties of the OLS estimator, the corresponding Wald test statistic, and the KPSS
statistic when the errors are persistent. Section 3 reviews the IVX method and discusses its
asymptotic behavior when the errors are persistent. Section 4 introduces the modified IVX-AR
test and derives its limiting distribution. Section 5 designs several Monte Carlo experiments to
check the finite sample performance of the test. The empirical study that tries to predict the
growth rate of the U.S. housing market is conducted in Section 6. Section 7 concludes the paper.
Proofs of the main results in the paper are given in the Online Supplement. Throughout the paper,
2 and = denote convergence in probability and weak convergence, respectively. The superscript
p denotes the demeaned time series (e.g. yi' =y, — %ZL Yt). ||-|| is used to denote the spectral

norm of a matrix and I(-) is used to denote an indicator function.



2 Baseline Model and Asymptotics for OLS

Consider the following model:

§
v = a+ X+ uy
Upt = PrUot—1+ €oy ) (2)
Xy = O Xy +eny,

\

where t = 1,2,...,T, y; and ug, are scalar, X, § and €, are k x 1 vector, @ is a k x k diagonal
matrix. To avoid unnecessary complications, we assume both Xy and g are O,(1) so that the
same initial conditions apply to LUR and MI regressors and errors. To cater for the dependence

structure of the errors, we further assume

Et = Z Cth_j, (3)
7=0

where e, = [eoy, €14, 2 = [204, 21 ,) and C; = . Throughout the paper, we impose

the following condition.

Assumption 1. For the linear process (3), we assume that 37, j|[|Cjl| < oo, and {2}, is a
sequence of independent and identically distributed (iid) random vector, which has mean zero and

positive definite variance ¥ with E ||z |* < co.

The following standard notations for the spot variance (3) and the long run variance (2) are

used:
Ee?, Eegue) Yoo o1
Y=F [Eté‘;] = ot b = )
Eeii0s Eergeyy 20 21
[ee] o
o Z E (807t€07t,h) Z E (50,158,1,15—}1) Aoo A01
/ h=1 h=1
A= Z E [5t€t—h} = | "z ~ = ;
h=1 > E(e1sc00-n) > E (1€l ) Ao An
h=1 h=1



QoS A A= Qoo Qo
Qo Qn

Similarly, the variance of up,; and the covariance of [} ,,uo;]" are defined as

oo

Eu == E[Uo,tUB,t], Au = Z E[“O,tuo,tfk]u Qu = Eu + Au + A;:
k=1

Esu - E[gl,tu&t]v Aau - Z E[gl,tuo,t—k]a qu - Zeu + Asu + A;u
k=1

Suppose &7 = I, + %, where C, is a diagonal matrix with non-positive entries. In this case,
X; is an LUR predictor and the large sample theory for various sample moments was studied in
Phillips (1987) and Phillips (1988). The LUR assumption has been widely adopted in the predictive
regression literature (see Cavanagh et al. (1995), Campbell and Yogo (2006), Kostakis et al. (2015)
for further details). This model specification with LUR predictors has interesting interpretations
under different assumptions of pr. For example, if we further assume pr = p and |p| < 1, model
(2) is a predictive regression model with a strictly stationary error. A closely related model was

recently studied in Yang et al. (2020). When pr = 14 %, with ¢, < 0, ug, is an LUR time series.

When pr = 1+ 5%, with ¢, <0 and &, € (0,1), ug is an MI error term. The asymptotic behavior
of MI processes has been well studied in Phillips and Magdalinos (2007, 2009). Model (2) also
extends the spurious regression model studied in Phillips (1986) where ug; and X; are both unit
root processes and 3 = 0. It is noteworthy to mention that when ¢, < 0, u; is a mean reverting
process under both the LUR and the MI settings. Empirically, it is difficult to distinguish between
a strictly stationary process from an LUR or an MI process when the AR parameter is close to
unity.

In the time series literature, it is well-known that when pz is close to unity, the finite sample

distribution of the OLS estimator pr is poorly approximated by the Gaussian limiting distribution.

In this paper, to showcase the potential size distortion induced by the persistent errors, we first



investigate the limiting behavior of the OLS estimator of 5 and the corresponding Wald statistic,
under the assumption that ug, is strictly stationary or LUR or MI.

The OLS estimator of 3 is defined as
A T -1/
f= (Z X#1X#1> (Z Xflyf> :
t=1 t=1
The corresponding Wald statistic Wy for the null hypothesis Hy(RfS = 1) is
A~ / _ A~
Wr = (R3—7) [RQwR| ™" (R3—7),

with
1

T
QW - [Z XéilX#ll Qua
t=1

where R is a ¢ X k matrix with rank ¢ and r is a ¢ x 1 vector and Q, is an estimate of €, using
the OLS residual eg; (i.e., e = y' — B/X" ).}

Denote Vy, = [5° €% Qy1eP%dp and Aze = Y57, ElZ04€ 4], where Z, is defined via the
Beveridge-Nelson decomposition of ugs, such that wg; = Wo(L)zor = Wo(1)z0¢ + AZpy, with
Uo(L)zor = D 2g%os200—5 = (1 — pL) '3 coj200—j, and Zop = Y770 a204—; with a; =
— Z;io ¥o,j+1. Lemma 2.1 reports the asymptotic behavior of B and Wyp. Let C, be a diago-
nal matrix with entries {cx,i}le. We define LUR, MI and ME regressor X; as model (2) with the
following AR coefficients: (LUR) &7 = I, + C,/T, C, < 0; (MI) &y = I, + C,./T"*, C, < 0; (ME)
O = I, + C,/T", C, > 0 with its diagonal elements ¢, ; # ¢, ; for any i # j, k, € (1/3,1).2

We also define the stationary, LUR and MI error wy; as model (2) with the following AR

coefficient: (stationary) pr = p with |p| < 1; (LUR) pr = 1 + ¢,/T with ¢, < 0; (MI) pr =

1+ ¢,/T" with k, € (1/3,1).

IThe formal definition of {2, is based on the Bartlett kernel function with bandwidth My and will be provided
in the Online Supplement. As usual, we assumed that My — oo and My /T — 0 as T — oo.

2The assumption ¢, ; # ¢, ; for any i # j avoids the complication of a common moderately explosive behavior
among predictors; see Magdalinos and Phillips (2009) for further discussion.



Lemma 2.1. Under model (2) and Assumption 1, let ¢, < 0, and Ky, K, € (1/3,1). Suppose that
My = O(T3).3 Table 1 provides the stochastic orders of the centered OLS estimator 3 — 8 and

the OLS-Wald statistic Wy under different level of persistency of X; and ug;.*

Table 1: Summary of results for OLS

Panel 1: Limit order of 3 — 3

Xy
MI LUR ME
Stationary Op(T7 ") O,(T™h) O, (T~ =d7T)
Uoy MI O, (T~ mextrara)) O (T~(r)) O (T Ttuen §7)
LUR 0,(1) 0,(1) 0,(T*5 ®77)
Panel 2: Limit order of OLS-Wald statistic
Xi
MI LUR ME
Stationary O, (T'="=) 0,(1) 0,(1)
Uo 4 MI Op(Tl—\]C;Tfh»u\ ) Op(%) O})(Tmm(m,,mu)—%)
LUR On(;) Op(517) O,(T"~5)

The asymptotic order of 3 — 3 is summarized in the top panel of Table 1. It is clear that the
rate of convergence of B decreases as the degree of persistency of vy, increases. Table 1 shows that,
when both X; and wug; are LUR, B is inconsistent. Whereas, when v, is stationary or MI, B is
consistent with different convergence rates. When X, is MI, B is consistent only when the error
term is stationary or X is more persistent than ug; (i.e. K, < Kz).

The asymptotic order of the OLS-Wald statistic is summarized in the bottom panel of Table
1. The OLS-Wald statistic diverges in probability when wg, is not stationary as 7 S/Myp — oo
for any § > 1/3. The only case where the OLS-Wald statistic has the y? asymptotic distribution

is when X; is ME and wg, is stationary. As the OLS-Wald statistic diverges in most cases, the

3The order O(T'/3) covers popular bandwidth choices such as My = o(T/*) in KPSS and My = T'/? in
Kostakis et al. (2015) and Yang et al. (2020).

4The detailed limiting distributions are not presented in the main body of the paper for brevity. We provide the
limiting distribution of B in Lemma A.4 in the Online Supplement.



standard inference using the Wald statistic based on OLS in general provides a spurious conclusion

of predictability.

Remark 2.1. When g =0, Lemma 2.1 covers the spurious regression results reported in Theorem
1 of Lin and Tu (2020). A notable difference between our study and Lin and Tu (2020) is that
we allow the dependent variable and the regressors to have different deviation rates from unit root
(i.e. Ky # Ky), whereas the rates are assumed to be the same (i.e. K, = Ky) in Lin and Tu
(2020). Moreover, Lin and Tu (2020) only consider univariate regression, while our model allows

for multiple predictors.

In our empirical example of regressing the growth rate of the housing market on a scalar
predictor, we find a large value for the KPSS statistic (denoted by L), indicating persistent
errors. The following proposition shows that when the errors is MI or LUR,? the statistic Ly will

exceed any finite critical value when sample size goes to infinity.

Proposition 2.1. Consider the KPSS statistic Ly
L T S2 t
LT = @,St = Z@QJ. (4)
u t=1
Under the same set of assumptions as in Lemma 3.1, if X @s LUR and uo, is MI or LUR, for any

My = O(TY?) and any critical value cv € R, we have, as T — oo, Pr(Ly > cv) — 1.

Remark 2.2. In addition to the conventional OLS-Wald test, we have also obtained the asymptotic
properties of some other popular tools for predictive regression such as the Bonferroni confidence
interval of Cavanagh et al. (1995) and the Cauchy-estimator-based t-test of Choi et al. (2016). The
results and the proof can be found in the Online Supplement, indicating that both methods continue

to lead to spurious results if uoy LUR or MI.

5We only focus on the LUR case for the regressors in this proposition to keep the analysis parsimonious.

10



3 Limit Behavior of IVX Estimator and I'VX-Wald Test

Phillips and Magdalinos (2009) introduced the IVX method that can produce a standard limiting
distribution for the test statistic under the cointegrated model with LUR or MI regressor. The
method is later used by Phillips and Lee (2013) and Kostakis et al. (2015) to test the predictive
power of predictive regression.

To fix the idea, we define the self-instrumental variable as Z; = 23‘:1 T?j AX; where Z, = 0,
YTr=1+C,/T" and AX; = X; — X;_1. The tuning parameters C, < 0 and n € (0, 1) are specified

by the user. The IVX estimator of 3 is defined as

-1 T

T
Z Zt—le_lll Z Zt—lyf
t=1 t=1

and the corresponding IVX-Wald statistic for Hy(RS = ), is defined as

5IVX =

~ / ~
Wie = (Rﬁlvx - 7”) Qrvx (Rﬁlvx - 7”) ;
T T
3 ZHX;*_q] > XLz,
t=1 t=1
T
Y ZaZ | Sy —TZaZ) Qpu,
t=1

A _y S . O-10 7 _ 15T 7
where QFM = Eu - QOlQll QOl? Zt,1 =T Zt:l thl-

-1

—1
Qivx = R M R,

M

When errors are serially correlated as in (3), the IVX estimator needs to be re-centered to obtain
a proper limiting distribution.® Hence, in addition to original IVX estimator, we also investigate
the performance of the re-centered IVX estimator (37 x) and its corresponding IVX-Wald statistic

(W5, ) for Ho(RB = 1), defined as

BIVX -

T -1 /7
Z Zt—le_lll (Z Zt_lyf - TAOl)
t=1 t=1

6In the simulation and the empirical studies reported later, following the suggestion of Kostakis et al. (2015) and
Phillips and Lee (2016), we set C, = —I} and n = 0.95.

"We define 3, Qo1, and Q47 in (32), (33) and (34) in the Online Supplement.

8See Phillips and Magdalinos (2009) for the details except the case where the predictor is mildly explosive.

11



and
WB,VX = (RBIVX - T)/QI_\}X (RBIVX - 7“)
T -1 T
z%wiMZW@l
t=1 t=1

T
Z Zt—IZfL1 Q00 - TZt—IZ,LlQFM

t=1

-1

Qrvx = R R'

<
I

where Qpar = Qoo — Qo1 Q5,0

In the simulation studies of Yang et al. (2020), it can be observed that, when the AR coefficient
is close to unity (e.g. pr = p = 0.9), the x?(¢) limiting distribution used by IVX-Wald leads to
a severe size distortion. The following theorem reports the asymptotic behaviors of B VX.T BW X,

W5

5y a0d Wa o under model (2), and hence, provides theoretical explanations for their finding.

Theorem 3.1. Under the same set of assumptions as in Lemma 2.1, if Mp = O(T3), 1 > n >

2/3, Ky, Ky € (1/3,1], as T — oo, we have following results:*°

(1). If Xy is LUR or MI and ug, is stationary, then both BIVX and BIVX are consistent. Moreover,
while Wg,  converges in distribution to the x%(q) distribution, Wj,, . dwerges to positive

infinity in probability.

(ii). If X; is LUR or MI and ugt is LUR, then both BIVX and BIVX are inconsistent. Moreover,

both W,

Brvx

and W, .. diverge to positive infinity in probability.

(111). If Xy is LUR or MI and ugy is MI, then BIVX is consistent if min{r,,n} > min{k,,n},
and Bryx is consistent if the min{k,,n} > min{k,, K, }. Otherwise, they are inconsistent.

Moreover, both Wy~ and Wy, diverge to positive infinity in probability.

9.1 is defined in (140) in the Online Supplement.

10The stochastic orders are in general quite complicated and dependent on the value of &, k., C, and ¢,. The
stochastic orders of BIV X, B VX, WBrvx and Wﬁzvx as well as the detailed derivations are hence reported in the
Online Supplement.

12



(w). If X; is ME with k, > 1/2 and ug: is stationary, then both BH/X and BIVX are consis-

tent. Moreover, W

4y COTVETgES to a distribution which is proportional to x2(q) and Wi«

converges to x2(q) distribution.

(v). If Xy is ME with Kk, > 1/2 and ug, is LUR, then both BIVX and Bryx are consistent. More-

over, both Wy and Wy, diverge to positive infinity in probability.

(vi). If Xy is ME with k. > 1/2 and ug, is MI, then both BIVX and Brvx are consistent. Moreover,

the asymptotic behaviours of Wy and Wy, depend on the values of ), Ky, and f,.

Theorem 3.1 shows that the IVX estimators BIVX and BIVX can only provide well-behaved
Wald statistics W5 and Wy, when ug, is stationary (|p| < 1). When ug, is LUR or MI, the
Wald statistics diverge, whether or not they are re-centered. Theorem 3.1 explains the severe size
distortion in Wj  found in Yang et al. (2020) via simulation. It also explains Remark 1 of Yang

et al. (2020) about the severe size distortion in Wj .

Remark 3.1. The condition k., k, € (1/3,1] suggests that X; and ug; cannot be too close to the
stationary region. Phillips and Magdalinos (2009) impose a similar condition, which is sufficient
to ensure that a limiting distribution can be obtained for Sryx — B after removing the endogeneity

bias via re-centering; see Remark 3.9(iv) in Phillips and Magdalinos (2009) for further discussion.

4 A Robust Test for Predictability

Yang et al. (2020) proposed an IVX-AR method when ug; is assumed to follow a stationary AR(p)
process. The method first obtains the OLS residuals from the predictive regression, fits an AR(p)
model to the residuals, and then performs Cochrane-Orcutt correction using the estimated AR

coefficients. The intuition for this method is that the serial correlation in the residuals will be

13



asymptotically removed by the correction when wug; is stationary AR(p) and consequently the
conventional x?(q) limiting distribution can be achieved for the Wald statistic.
In this paper, we adopt a similar AR(p) structure. However, instead of imposing stationary

errors as in Yang et al. (2020), we assume ug, in (2) follows

Ugy = Pr1U0—1 + P2lU 1 F o+ PpAUo i1 + 20y, Uoo = Op(1)

(5)

pr = 1+ e, <0,k € (0,1]
It is assumed that all roots of p(z) = 0 lie outside the unit circle where p(z) = 1—pgz — ... — ppzP~ L.
It is also assumed that 2y, is a martingale difference sequence with respect to the information set
at t — 1 and has a finite second moment. If x, = 1, ug; is LUR. If x, € (0,1), ug+ is MI. Following
Yang et al. (2020), we propose to perform Cochrane-Orcutt-type correction before implementing
IVX.

In many empirical studies that use predictive regression, the key hypothesis is the presence of
predictability of a scalar predictor or a set of predictors. In this case, the null hypothesis is simply

1

B = 0, which implies y}' = up,. Therefore, we propose to conduct the Cochrane-Orcutt-type

correction by performing the following p!" order autoregression,

Yr = prryig + ﬁ2Ay&t—1 +ot ﬁpAyg,t—p-s-l + Oy (6)

This procedure is different from Yang et al. (2020) where py, ..., p, are obtained from regressing
Up: on its lags. Based on regression (6), we get 7 = y: — Y;—1p and X, = X, — X,_1p, where

p= [ﬁl,T,ﬁ27---aﬁp]/a Y1 = [yt_l,Ayt_l, "'7Ayt—p+1]7 X1 = [Xt—lvAXt—ly-'-aAXt—p—l—l]a aoﬂr =

7 N e I 1
gy — Uo—1ps Uomr = [y, Ay, oo, Ay’ ).

14



4.1 A modified IVX-AR test

To allow for persistent errors, we estimate 5 by

T -1 T
Brvx = Z Zt—lthll (Z Zt—lﬂf) )
t=p+1 t=p+1
where
Zi =2 — proZos — paDZog1 — . — ppDZospir-

Our modified IVX-AR Wald test statistic W5 for Ho(8 = 0) is defined as
Wax = B}\/XQR}'XBIVX? (7)

where

-1

T ~ ~
> Xtz

o -1
QI\/X = Z Zt—1)~(f_,1] M

Lt=p+1 t=p+1
r T

~ ~ ~, ~ o o,

M = | N ZeaZi | Yoo — TZer Zi_ Qru,
Li=p+1

QFM = 200—90101_119/01.

Denote e;; = X} — &TXf_l and <:DT as the OLS residual and the OLS estimator from regressing X,
on X; ; with an intercept, respectively, €o; = oy, €1+ = €14 — [€14-1, Ae1 41, ..., Ae1pi1]p. We

define

1 X h -
Qj = —— (1— ) Z €it€t—h, i,j € 10,1},

T'—p h=—Mr 14+ My t=p+h+1
JR—" h d
fo = 7 (1) X e
T-pi 1+ Mr t=p+htl
T T
~ 1 v 1 ~
Yoo = €0,y Ly = = Z Zy.
T=p t=p+1 T t=p+1

Theorem 4.1. Consider the error process (5). Let the same set of assumptions for pr and ®r as

in Theorem 3.1 hold. Then under the null hypothesis 5 =10, as T — oo, W = x2(k).

IVX

15



Theorem 4.1 shows that under all combinations of persistency of X; and up;, our modified
test statistic converges in distribution to x*(k) as T'— oo. Therefore, unlike W, and Wy
the modified statistic does not suffer from size distortion. In Section 5, we show via Monte Carlo
simulations that, while the IVX-AR method suffers from obvious size distortion when w, is highly
persistent, our modified test has a well-controlled size.

Different from Yang et al. (2020), we do not use estimated residuals to perform the Cochrane-
Orcutt correction, as this method is problematic when ug; is persistent. The problem can be

illustrated by following simple example.

Example 4.1. Suppose that uo; and X, are generated by

C’LL
Uor = pP1,7U0—1 T 2o, P17 = 1+ T cy <0,
C, >
X = 1+ T Xi1+ e, €14 = Z@ Chjz14—-5,Cp <0,
]:

Further suppose that py 1 is calculated by regressing egy on its first lag as in Yang et al. (2020).
Then, according to Phillips and Ouliaris (1990), T (pr1 — p1r) = Op(1).

Note that
Uot = €or — P1,7€0,4—1 = €0t — [1 + Op(T_l)} eot—1 = Aegy + 0p(1).
Furthermore,
Deos = A (yf = X[ ) = M = BAXE, = 20— Bers + 0, (1),

Clearly, o, can have serial correlation via the linear process €1, = Z;io Ch,jz14—j, as B does not
converge to zero in probability as shown in Theorem 3.1. Phillips and Magdalinos (2009) showed
that, when serial correlated errors are in presence, recentering the IVX estimator (as in Brvx )
is required for the Wald statistic to obtain a x? limiting distribution. This suggests that the Wald

statistic based on the corrected time series does not converge to x*(k) as no recentering is performed
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after the Cochrane-Orcutt correction.

Remark 4.1. The problem persists if ugs is an AR(p) process with p > 2. For example, consider
p = 2 and we obtain pyr, po from egy = p1reoi—1 + palegi—1 + U Consider the scenario (i) in

3 [ I H
Lemma 2.1. Let Uy, = lef 1, Aeyy, ..., Aei ,1]. We can express

- -1
R 2: 2 a7 E J 7!
p—p = Uo,tflUO,t—l UO,tfl (eo,t - UD,t—lP)
| t=3 =3
s —1
T 2 T _u p T oot if
T " T 2 T H I
| zt:f} eo,t—lAeO,t—l Zt:S Aeo’t_l thf} AeO,t—l eo,t - UO,t—lp
Note that

T
1 R
T Z Aeg,t—l (60,15 - Ué,t—lﬂ)
t=3

T T T
1 A1 A1
=7 Z €0,4—120,t + (5 — 5) T Z €041 (€14 — pac1p—1) + (5 - 5) T Z&,t—ﬂo,t
t=3 t=3 t=3
1 e )
+ (ﬁ - 5) T 251&2 (€14 — p2€14-1) (5 — 5) + 0,(1).
=3

The above expression involves % Zthg €o4—1€1, and % Zthg €04—1€1,t—1, which have non-zero proba-
bility limits as B—B = O,(1) from Panel 1 of Lemma 2.1. Hence, py is an inconsistent estimator of
po. Together with the previous example, it is clear that the Cochrane-Orcutt correction does not re-
move the serial correlation in the errors. As a result, using residuals to obtain the Cochrane-Orcutt
corrected IVX-AR estimator cannot provide the asymptotically x*(k) distributed Wald statistic. The

same arqument applies to an AR(p) model (5) with p > 2.

5 Monte Carlo Simulation

In this section, we design Monte Carlo experiments to evaluate the finite sample performance of

the proposed method and make comparisons with some existing methods, including the original
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IVX-Wald statistic of Kostakis et al. (2015) and the IVX-AR Wald test of Yang et al. (2020). We
reject Ho(3 = 0) if the Wald statistic is higher than the 95% critical value of the x*(k) distribution.

The number of replications is set to 2500.

5.1 Data generating processes
In our simulations, we consider the following DGP:
Yy = ﬁ,Xt—l + uO,tat - 17 27 "'7T7 Xt = (I)TXt—l + 51,t7 XO = 07 (8)

where 8, X; and e, are k x 1 vectors, y; and ug, are scalars.!! Three empirically relevant specifi-

cations are considered.

1. The error term ug; is assumed to have an AR(1) form:

Up,t = PTU0t—1 + €0t

with pr = 1+¢, /T, ¢, € {—30,—10, —5,0} and ug o = 0. X, is a scalar with the autoregressive
parameter

or=1+¢,/T,¢c, € {—20,-10,—5,—-1,0,1,3}. (9)
The error term vector e, = (g, €14)" has following distribution:

0 1 04
E¢ ~ N s . (10)

2. The error term wg, is assumed to have an AR(2) form

Uoy = P1,7U0—1 + P2AUY—1 + €0y, (11)

HTn simulation, we either assume the AR order in the ug,; series is known or select it by BIC. To choose the AR
order by BIC, we fit the AR(p) model to the demeaned y; with p = 1, ..., P4, and then select the model with the
smallest BIC. We set P, = 5 in our simulation.
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with p1r =14 ¢,/T, ¢, € {—30,—10,—5,0}, po = 0.4 and upp = 0. X; is a scalar, & and

g; have the same forms as (9) and (10).

3. The error term ug, is the same as in (11). X; and &1, = (17,61 7,614,1

1 (2 (3) _(4

&7 = Diag(1,1,0.9887,0.9191), and (o4, €' ;) ~ N (0,%) with

—0.0016  0.0003

0.1694

0.0504

—0.0225

—0.0554 0.0043

0

—0.1893

0.0006

—0.0554

—0.0225 0.0043

0.4146

0.0142

0.0142

0.1250

_ 0.0001
—0.0016  1.9110
Y= 0.0003 0.1694
0 —0.1893

0.0006

5.2 Empirical size

) is a 4 x 1 vectors,

Table 2 reports the empirical size of alternative methods at the 5% level of significance with

T = 200,500.'2 Several interesting conclusions can be drawn from Table 2. Firstly, the IVX

method does not have a well-controlled size when the level of persistency of the error term is high.

This result confirms the finding in Yang et al. (2020). Secondly, although the IVX-AR method

has a better controlled size than the IVX method when pr is near 1, its size is not close to the

nominal level. This is especially true when the predictor is explosive (i.e., ¢,

= 3). Furthermore,

from Panel 2 of Table 2, we observe that the empirical rejection rate is 17.8%, significantly higher

than 5% when 7" = 500, ¢, = 3 and py = 1. Thirdly and most importantly, both the modified

IVX-AR method based on the true lag length and its BIC counterpart have a well-controlled size

under various combinations of 7', ¢, and pr.

2The results with 7' = 100 under DGP1 and DGP2 can be found in Section D of Online Supplement.
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Table 2: Empirical sizes under DGP1

Panel 1: T = 200 Co
-20 -10 -5 -1 0 1 3
pr=1-30/T 1IVX 0.880 0.819 0.750 0.654 0.602 0.054 0.567
IVX-AR 0.062 0.070 0.074 0.074 0.081 0.081 0.088
Modified IVX-AR 0.042 0.043 0.040 0.042 0.046 0.051 0.051
Modified IVX-AR (BIC) 0.041 0.043 0.040 0.043 0.047 0.052 0.051
pr=1-10/T IVX 0.854 0.854 0.845 0.810 0.783 0.726 0.742
IVX-AR 0.057 0.058 0.062 0.068 0.074 0.083 0.144
Modified IVX-AR 0.050 0.049 0.048 0.047 0.047 0.050 0.055
Modified IVX-AR (BIC) 0.048 0.049 0.047 0.047 0.047 0.050 0.054
pr=1-5/T VX 0.803 0.828 0.845 0.845 0.826 0.791 0.796
IVX-AR 0.054 0.056 0.062 0.068 0.069 0.087 0.179
Modified IVX-AR 0.053 0.050 0.051 0.052 0.050 0.052 0.066
Modified IVX-AR (BIC) 0.051 0.049 0.051 0.052 0.050 0.052 0.065
pr=1 IvX 0.664 0.735 0.789 0.848 0.855 0.866 0.892
IVX-AR 0.050 0.052 0.056 0.059 0.066 0.073 0.215
Modified IVX-AR 0.049 0.052 0.052 0.050 0.052 0.052 0.061
Modified IVX-AR (BIC) 0.048 0.050 0.051 0.049 0.051 0.051 0.059
Panel 2: T = 500 Cy
-20 -10 -5 -1 0 1 3
pr=1-30/T 1IVX 0944 0913 0877 0811 0.771 0.729 0.714
IVX-AR 0.056 0.068 0.061 0.060 0.064 0.074 0.101
Modified IVX-AR 0.045 0.045 0.044 0.044 0.046 0.052 0.064
Modified IVX-AR (BIC) 0.044 0.044 0.043 0.043 0.045 0.050 0.064
pr=1-10/T 1IVX 0.914 0912 0.896 0.868 0.861 0.847 0.824
IVX-AR 0.052 0.056 0.0564 0.060 0.060 0.067 0.135
Modified IVX-AR 0.050 0.050 0.051 0.049 0.048 0.049 0.064
Modified IVX-AR (BIC) 0.049 0.049 0.050 0.048 0.047 0.047 0.063
pr=1-=5/T IVX 0.878 0900 0.894 0.893 0.882 0.867 0.876
IVX-AR 0.050 0.054 0.059 0.064 0.058 0.068 0.150
Modified IVX-AR 0.050 0.051 0.051 0.049 0.048 0.052 0.067
Modified IVX-AR (BIC) 0.049 0.049 0.049 0.048 0.047 0.051 0.066
pr=1 VX 0.785 0.843 0.872 0.902 0912 0914 0.928
IVX-AR 0.058 0.058 0.053 0.056 0.055 0.061 0.178
Modified IVX-AR 0.052 0.054 0.054 0.052 0.052 0.055 0.056

Modified IVX-AR (BIC) 0.052 0.053 0.053 0.051 0.051 0.054 0.055

Notes: This table reports the empirical rejection rates of the original IVX test of Kostakis et al. (2015),
the IVX-AR test of Yang et al. (2020), our modified IVX-AR test based on the true AR order and the AR
order selected by BIC.
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Table 3: Empirical sizes under DGP2

Panel 1: T = 200 Cs
-20 -10 -5 -1 0 1 3
pr=1-30/T 1IVX 0.444 0477 0474 0468 0.526 0.594 0.674
IVX-AR 0.076  0.076 0.076 0.080 0.067 0.063 0.066
Modified IVX-AR 0.051 0.044 0.042 0.053 0.046 0.040 0.038
Modified IVX-AR (BIC) 0.052 0.045 0.041 0.052 0.044 0.039 0.036
pr=1-10/T IVX 0.617 0.666 0.674 0.696 0.745 0.782 0.818
IVX-AR 0.113 0.126 0.139 0.097 0.098 0.121 0.156
Modified IVX-AR 0.056 0.0561 0.046 0.047 0.044 0.040 0.040
Modified IVX-AR (BIC) 0.056 0.051 0.046 0.046 0.043 0.039 0.039
pr=1-5/T VX 0.700 0.740 0.770 0.764 0.800 0.814 0.844
IVX-AR 0.126 0.167 0.190 0.135 0.154 0.199 0.262
Modified IVX-AR 0.064 0.0568 0.055 0.044 0.041 0.042 0.041
Modified IVX-AR (BIC) 0.063 0.058 0.053 0.043 0.040 0.042 0.040
pr =1 IvX 0.820 0.863 0.892 0.866 0.863 0.828 0.794
IVX-AR 0.159 0.264 0336 0.321 0.367 0.378 0.383
Modified IVX-AR 0.066 0.075 0.067 0.044 0.042 0.040 0.040
Modified IVX-AR (BIC) 0.066 0.074 0.065 0.043 0.041 0.039 0.039
Panel 2: T = 500 Cy
-20 -10 -5 -1 0 1 3
pr=1-30/T 1IVX 0.636 0.645 0.650 0.672 0.724 0.769 0.818
IVX-AR 0.074 0.074 0.080 0.070 0.068 0.074 0.081
Modified IVX-AR 0.051 0.046 0.050 0.049 0.048 0.045 0.042
Modified IVX-AR (BIC) 0.051 0.046 0.050 0.049 0.048 0.044 0.042
pr=1-10/T IVX 0.741 0.784 0.803 0.812 0.847 0.862 0.834
IVX-AR 0.099 0.122 0.129 0.125 0.156 0.182  0.254
Modified IVX-AR 0.059 0.0563 0.046 0.046 0.044 0.042 0.038
Modified IVX-AR (BIC) 0.059 0.053 0.046 0.043 0.042 0.040 0.036
pr=1-5/T VX 0.795 0.838 0.857 0.856 0.876 0.888 0.898
IVX-AR 0.124  0.160 0.180 0.202 0.261 0.316 0.410
Modified IVX-AR 0.062 0.061 0.046 0.044 0.041 0.040 0.038
Modified IVX-AR (BIC) 0.062 0.060 0.046 0.042 0.039 0.038 0.036
pr=1 VX 0.893 0923 0930 0919 0.898 0.892 0.870
IVX-AR 0.147 0424 0321 0476 0.526 0.544  0.527
Modified IVX-AR 0.068 0.075 0.068 0.040 0.040 0.039 0.039

Modified IVX-AR (BIC) 0.068 0.076 0.067 0.038 0.038 0.037 0.037

Notes: Same as Table 2.
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Table 3 reports the empirical rejection rates of alternative tests under DGP2 for 7" = 200, 500.
It can be seen that the IVX-AR method has a noticeable size distortion when pr € {1 —10/7,1 —
5/T, 1} for various T" and c¢,. On the other hand, the modified IVX-AR methods enjoy the best

finite sample performance, with its empirical rejection rates closest to 5% among all the methods.

Table 4: Empirical sizes under DGP3 with 7" = 100, 200, 500

T=100 T =200 1T =500

pr=1-30/T IVX 0.631 0.881 0.980
IVX-AR 0.119 0.082 0.079
Modified IVX-AR 0.044 0.044 0.049
Modified IVX-AR (BIC)  0.044 0.044 0.049
pr=1-10/T IVX 0.910 0.969 0.995
IVX-AR 0.123 0.107 0.135
Modified IVX-AR 0.038 0.048 0.043
Modified IVX-AR (BIC)  0.039 0.048 0.042
pr=1-5/T VX 0.956 0.986 0.999
IVX-AR 0.124 0.123 0.178
Modified IVX-AR 0.035 0.038 0.043
Modified IVX-AR (BIC)  0.036 0.038 0.043
pr=1 VX 0.988 0.995 0.998
IVX-AR 0.144 0.178 0.358
Modified IVX-AR 0.043 0.043 0.046

Modified IVX-AR (BIC)  0.042 0.043 0.045

Notes: Same as Table 2

Table 4 reports the empirical size under DGP3 with 7" = 100, 200, 500. It shows that when
X; is a 4 x 1 vector with an empirically relevant value of ®7, the IVX-AR method does not have
a well-controlled size if pr is closed to unity, with the size distortion exacerbating as pr moves
towards unity. On the other hand, our modified IVX-AR test and its BIC version again have the

best size control.

22



Rejection Rate

Rejection Rate

Rejection Rate

®_20.9, p=0.9
T il oo

L --— D ekl
08| //
)
06F /°/
)
(4
04t %
()
&
02t
0

1

L L L L L L L L L
0 005 01 015 02 025 03 035 04 045 05

Il

&_=0.95, p.=0.9
T LIS, PPN

0.8

0.6

0.4

0.2

E————S
P

0

0

005 01 015 02 025 03 035 04 045 05
8

®.=1, p;=0.9

0.8 r

0.6

0.2

— = Y

0

L L L L L L L L L
005 01 015 02 025 03 035 04 045 05
8

5.3 Empirical power
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Figure 1: This figure plots the empirical rejection rates under DGP1 with 5 € {0,0.02,0.04, ...,0.50}
with &7 € {0.9,0.95,1} and pr € {0.9,1}. The dashed line represents the empirical rejection rate
of IVX method. The lines with triangles, squares and circles represents the rejection rate of IVX-
AR, Modified IVX-AR and Modified IVX-AR (BIC) methods, respectively. The solid line shows

the nominal level.

To investigate the empirical power of various methods, we consider following parameter values for

the first two DGPs: T = 200, 8 € {0,0.02,0.04, ...,0.50}, ®r € {0.9,0.95,1},p7 € {0.9,1} under

Figure 1 shows the finite sample rejection rates under DGP1. The dashed line represents the



empirical rejection rate of IVX method. The lines with triangles, squares and circles represents the
rejection rate of IVX-AR, Modified IVX-AR and Modified IVX-AR (BIC) methods, respectively.
The solid line highlights the 0.05 nominal level. From this figure, it can be observed that the IVX
method has a high rejection rate when S is near 0 under various values of &7 and pr. However,
when [ deviates from 0, the IVX-AR method, the modified IVX-AR and modified IVX-AR (BIC)
methods perform either similarly to or better than the IVX method. This result reinforces the
findings in Yang et al. (2020). Note that, under DGP1, the IVX-AR method, the modified ITVX-
AR and modified IVX-AR (BIC) methods provide similar finite sample performance in rejecting
the null hypothesis 5 = 0.

Figure 2 shows the finite sample rejection rates under DGP2 and chosen parameter values.
With an AR(2) errors in DGP2, the rejection rate of IVX-AR method is higher than those of the
modified methods, which should not be surprising given the size distortion shown for this method
in Table 3 and rejection rate in Figure 2 at § = 0. However, the differences in empirical power
diminishes as the value of [ increases. When £ is greater than 0.3, the IVX-AR and the modified
IVX-AR methods have virtually identical rejection rates.

To investigate the finite sample power under the DGP3 with the multivariate regression, we
conduct simulation and report the power curves in Figure 3. The four panels in this figure report the
rejection rate of simulation under 4 different slope parameter vectors: 5 = (j/1000,0,0,0)" (north-
west panel), 8 = (0,5/1000,0,0)" (north-east panel), 5 = (0,0, 5/1000,0)" (south-west panel) and
B =1(0,0,0,;/1000)" (south-east panel), with j = 1,2, ..., 20, so the non-zero coefficient ranges from
0 to 0.02.

The results for multivariate regression agree with those under the scalar predictor. As shown
in the north-east, south-west and south-east panels in Figure 2, the IVX method has a severe size
distortion and the IVX-AR test may as well suffer from a noticeable oversize. Moreover, although

the IVX-AR method enjoys a higher empirical power than the modified IVX-AR methods, the
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Figure 2: This figure plots the empirical rejection rates under DGP2 with g € {0,0.02,0.04, ...,0.50}
with @7 € {0.9,0.95,1}, p1r € {0.9,1} and ps = 0.4. The dashed line represents the empirical
rejection rate of IVX method. The lines with triangles, squares and circles represents the rejection
rate of IVX-AR, Modified IVX-AR and Modified IVX-AR (BIC) methods, respectively. The solid

line shows the nominal level.

difference quickly diminishes as the value of the slope coefficient increases. Finally, the modified
IVX-AR method under the assumption of knowing p has a performance similar to choosing p by

BIC. It can be seen from Figure 3 that the lines with squares and circles overlap with each other

in all 4 panels.
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Figure 3: This figure plots the empirical rejection rates under DGP3 with 4 different slope param-
eter vectors, and each panel in the figure reports the rejection rate for one slope parameter vectors.
The slope vector considered are: = (j/1000,0,0,0)" (north-west panel), 8 = (0,5/1000,0,0)’
(north-east panel), 5 = (0,0,5/1000,0)" (south-west panel) and 8 = (0,0,0,5/1000)" (south-east
panel) with j = 1,2, ...,20. The dashed line represents the empirical rejection rate of IVX method.
The lines with triangles, squares and circles represents the rejection rate of IVX-AR, Modified
IVX-AR and Modified IVX-AR (BIC) methods, respectively. The solid line shows the nominal

level.

6 Empirical Studies

As an empirical illustration, we re-examine the predictability of quarterly growth rate of U.S.
housing price index (HPI), which has recently been studied by Yang et al. (2020). Historical data
of HPT is collected from the Federal Housing Finance Agency (FHFA) and the time span is from
1975:Q1 to 2023:Q3. The dependent variable, the quarterly growth rate of HPI, is computed as

the percentage change of HPI level. Instead of using the full sample, we consider two sub-samples,
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namely sub-sample I (1975Q1-2005Q4) and sub-sample II (2006Q1-2023Q3). The reason for such
a choice of sample periods is that the HPI series seems to experience a structural break in 2005
to 2006. The sample before 2006 is relatively stable with only mild fluctuations, while the period
after 2006 consists of dramatic shocks like the Global Financial Crisis and the Covid19 pandemic.

As in Yang et al. (2020) we consider ten candidate predictors, including the consumer price
index with all items less shelter for all urban consumers (Index 1982-1984 = 100, CPI), the implicit
price deflator of gross domestic product (Index 2012=100, DEF), the percentage change of gross
domestic product from last period (GDP), the percentage change of real disposable personal income
from the same quarter in last year (INC), the industrial production index (Index 2012 = 100, IND),
the effective Federal funds rate (IND), the shares of the residential fixed investment in GDP (INV),
the 30-year mortgage rate (MOG), the total reserve balances maintained with the Federal Reserve
banks (RES),'® and the civilian unemployment rate (UNE). The time series of the predictors as
well as the quarterly growth rate of HPI are plotted in Figure 4, with recessions defined by the
National Bureau of Economic Research (NBER) shown as the shaded area and the ending time of
first sub-sample (2005:Q4) indicated by dashed line. It can be seen that most predictors are highly

persistent.

B The Board of Governors discontinued the release of RES on September 17, 2020. All results and plots below
involving RES are obtained using data up to 2020Q3.
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To illustrate potential spurious regression, in Table 5 we report the largest autoregressive root of
the OLS residuals from univariate predictive regression, which is high, especially in the sub-sample
from 2006 to 2023. Indeed, as indicated by three common tests for unit root and stationarity,
which are reported in Table 5, many residual sequences seem to exhibit high degree of persistency.'?
Although in some cases these tests yield contradictory results, it is in general plausible to conclude
that most residual series are persistent. Therefore, conventional tests that are designed to deal
with the mds or stationary autoregressive errors may not be applicable.

We first consider univariate predictive regressions. The results are reported in Table 6. To make
a comparison, we report the results obtained from the original IVX test, the IVX-AR test, and our
modified IVX-AR test.'® In line with Yang et al. (2020), we find that among the 10 predictors they
considered, the only one that is significant for both sample periods is the shares of the residential
fixed investment in GDP. The difference is that, for the first sub-sample, our modified test statistic
is much smaller than its IVX-AR counterpart and INV in this case is significant only at the 10%
level after modification. Nevertheless, our analysis confirms that INV is in general a fairly robust
predictor for the HPI growth rate. It is worthwhile to emphasize that for the post-2006 sub-sample,
we find two additional variables, DEF and RES become significant at the 10% level. A notable
feature is that all these indicators are closely related to monetary policy. Our findings hence suggest
that in past 17 years, the monetary factor has a larger impact on the housing price movement than

the macroeconomic fundamentals such as GDP and industrial production.

14 All three tests consider in Table 5 may not be theoretically justified when the error term in the predictive
regression is persistent. The results hence are only informal and serve as indicators for strong persistency.

15Tn the empirical studies we choose the AR order in the ug ; series by BIC. In particular, we fit the AR(p) model
to the demeaned y; with p = 1,...,5 and then select the model with the smallest BIC.
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Table 5: Stationarity/Unit root test for residuals from univariate predictive regressions.

Panel 1: Sub-sample I Panel 2: Sub-sample II
(1975:Q1-2005:Q4) (2006:Q1-2023:Q3)

Largest AR root ADF PP KPSS Largest AR root ADF PP KPSS
CPI 0.753 -2.881 %k -7.580%F* 0.349* 0.537 -2.269%* -4. 371k 0.200%*
DEF 0.751 -2.902%%* -7.608%** 0.348* 0.515 -2.306%* -4.502%** 0.130*
GDP 0.739 -3.092%** -8. 174Kk 0.335* 0.896 -1.347 -3.954%** 1.219%**
INC 0.765 -2.8317%%* ST.AT3HFHH 0.427* 0.704 -1.485 -3.101%** 1.172%**
IND 0.767 -2.8317%%* ST 424%%% 0.419* 0.636 -1.842%* -3.681%#* 0.875%**
INT 0.762 -2.902%%* ST.514%%* 0.562%* 0.697 -1.470 -3.110%** 1.130%**
INV 0.399 -9.553%4* -9.811*** 0.799%#* 0.893 -1.781* -3.545%** 1.182%**
MOG 0.763 -2.904 ¥ ST.61THE 0.620** 0.898 -1.536 -3.724%%* 0.847+**
RES 0.765 -2.856%** STATIRRE 0.466** 0.873 -1.843* -3.538%H* 0.475%*
UNE 0.766 -2.844 % -7.435%%* 0.462* 0.649 -1.714%* -3.565%** 0.906%***

Notes: *** and *** denote rejection of null hypothesis at the 10%, 5% and 1% level, respectively.

Table 6: Results of univariate predictive regressions.

Panel 1: Sub-sample I Panel 2: Sub-sample 1T
(1975:Q1-2005:Q4) (2006:Q1-2023:Q3)
IVX IVX-AR modified IVX-AR IVX IVX-AR modified IVX-AR
CPI 9.171*** (0.002) 2.046 (0.153) 1.919 (0.166) 13.093*** (0.000) 5.491** (0.019) 1.972 (0.160)
DEF 10.486*** (0.001) 2.404 (0.121) 2.188 (0.139) 20.080*** (0.000) 9.893*** (0.002) 3.140* (0.076)
GDP 6.874*** (0.009) 0.129 (0.719) 0.224 (0.636) 8.200%** (0.004) 1.688 (0.194) 0.028 (0.867)
INC 1.819 (0.177) 0.122 (0.727) 0.124 (0.724) 0.130 (0.718) 0.455 (0.500) 0.451 (0.502)
IND 0.018 (0.894) 0.034 (0.854) 0.029 (0.865) 9.649*** (0.002) 0.665 (0.415) 0.467 (0.494)
INT 0.481 (0.488) 0.344 (0.558) 0.345 (0.557) 1.774 (0.183) 0.355 (0.551) 0.505 (0.477)
INV 55.876*** (0.000) 15.925%%* (0.000) 3.595% (0.058) 22.667*** (0.000) 18.301*** (0.000) 8.668*** (0.003)
MOG 0.859 (0.354) 1.192 (0.275) 1.116 (0.291) 1.899 (0.168) 9.388*** (0.002) 0.011 (0.917)
RES 0.054 (0.817) 0.097 (0.756) 0.092 (0.762) 0.417 (0.518) 3.958** (0.047) 2.847* (0.092)
UNE 0.473 (0.492) 0.002 (0.965) 0.003 (0.959) 11.673%** (0.001) 0.553 (0.457) 0.457 (0.499)

Notes: *** and *** denote rejection of null hypothesis at the 10%, 5% and 1% level, respectively. Numbers in the parenthesis are p-values of the test.



Now we move to multivariate regression. In the similar spirit to Yang et al. (2020), we consider
following five combinations: (1) INV + DEF + RES; (2) INV 4+ GDP + INC + IND + UNE;
(3) CPI + DEF + INT + RES; (4) INV 4+ INT + MOG; (5) A “kitchen sink” which includes all
regressors. The first combination considers the joint significance of INV, DEF and RES because
Table 6 shows that all these three indicators exhibit significant predictive ability for the second sub-
sample. Variables in second combination are for main macroeconomic indicators and closely tracked
by investors and policymakers. The third combination mainly concentrates on the monetary policy,
while the fourth combination measures the cost of housing investment, which tends to be affected
by interest rates. The last combination is a “kitchen sink” which considers the joint significance of

all above variables.

Table 7: Stationarity /Unit root test for residuals from multivariate predictive regressions.

Largest AR root ~ ADF PP KPSS
Panel 1: Sub-sample I (1975:Q1-2005:Q4)
INV+DEF+RES 0.647 -12.176%** -12.461%%* 0.029*
INV+GDP+INC+IND+UNE 0.454 -11.033*** -11.135%%* 0.184*
CPI+DEF+RES+INT 0.700 -3.621%** -8.507HH* 0.181*
CPI+INT+MOG 0.715 -3.581*** -8.473%%* 0.297*
”Kitchen Sink” 0.475 -12.489%** -12.869*** 0.033*
Panel 2: Sub-sample II (2006:Q1-2023:Q3)
INV+DEF+RES 0.839 -2.577F* -5.279%** 0.185*
INV+GDP+INC+IND+UNE 0.858 -2.307** -4.454%F* 1.126%***
CPI+DEF+RES+INT 0.820 -2.356%* -4.535%%* 0.151*
CPI+INT+MOG 0.394 -3.246%** -5.446%%* 0.076*
“Kitchen Sink” 0.762 -9.556%** -7.225%%* 0.045*

Notes: This table shows the largest autoregressive (AR) root as well as the results of stationar-
ity /unit root tests for the least-squares residuals of five multivariate predictive regressions. * **
and *** denote rejection of null hypothesis at the 10%, 5% and 1% level, respectively.
Table 7 presents the largest autoregressive root of the OLS residuals from multivariate regres-
sion, as well as the associated unit root and stationarity test results. Similar to the univariate

regression, the residual sequence exhibits strong persistency in many cases, particularly for the

second sub-sample. For example, when the second combination is considered in the second sub-
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sample, the largest AR root is 0.858. With such a large AR root, it seems plausible to assume that
the error term in the predictive regression is not far from a unit root process. Indeed, we observe
again that three tests lead to contradictory conclusions and it is unclear whether the residual series

is stationary or not.

Table 8: Results of multivariate predictive regressions.

IvX IVX-AR modified IVX-AR
Panel 1: Sub-sample I (1975:Q1-2005:Q4)
INV+DEF+RES 87.169*** (0.000) 133.198**%* (0.000)  4.742 (0.192)
INV+GDP+INCHIND+UNE  71.666** (0.000)  30.820%** (0.000)  6.035 (0.303)
CPI+DEF+RES+INT 15.333%%% (0.004)  12.572%* (0.014) 4.190 (0.381)
CPI+INT+MOG 12.903%%* (0.005)  6.994* (0.072) 5.087 (0.166)
“Kitchen Sink” 100.726*** (0.000)  191.418*** (0.000)  11.928 (0.290)
Panel 2: Sub-sample I (2006:Q1-2023:Q3)
INV+DEF+RES 92.390*** (0.000) 66.137*** (0.000) 14.517*%* (0.002)
INV+GDP+INCHIND+UNE  25.386*%* (0.000)  24.147%* (0.000)  8.595 (0.126)
CPI+DEF+RES+INT 40,441 (0.000)  22.321%%* (0.000)  7.394 (0.116)
INV+INT+MOG 54.905%%% (0.000)  38.696*** (0.000)  2.544 (0.467)
“Kitchen Sink” 131.377%%* (0.000)  1039.81*** (0.000)  15.892 (0.103)

Notes: This table shows the results of multivariate predictive regressions for the first sub-sample
(1975:Q1-2005:Q4) and second sub-sample (2006:Q1-2023:Q3). * ** and *** denote rejection of joint
null hypothesis at the 10%, 5% and 1% level respectively. Numbers in the parenthesis are p-values of
the test.

The predictability test results for multivariate regression with sub-sample I are reported in Panel
1 of Table 8 and results for sub-sample II can be found in Panel 2. We find that in multivariate
cases, the conclusions of predictability obtained by the IVX-AR test and the modified IVX-AR
test are quite different, with the test statistic being significantly smaller in the latter case. Using
either tests, we confirm that combination 1, consisting of three individually informative predictors
in sub-sample II, remains highly significant for this period when considered simultaneously. This
combination, however, does not display predictive power in sub-sample I, which is in line with the
results of univariate regression. Surprisingly, all other combinations, including both macroeconomic

and monetary factors, are shown to be insignificant based on our modified test, while the IVX-AR
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test implies that most of them are significant even at the 1% level. The most striking difference
between IVX-AR and our approach is for the “Kitchen Sink” regression in sub-sample II, where
the IVX-AR statistic takes the value of 1039.81, which is about 65 times as large as our modified

IVX-AR statistic (15.892).

7 Conclusion

In this paper, we provide limit theory for predictive regression driven by persistent errors. Various
popular inference methods are shown to be invalid when both the predictors and the error term
are persistent. We discuss the limiting behavior of the OLS estimator, which is known to be super-
consistent when the model is correctly specified but becomes inconsistent in spurious regression.
Our limit theory provides a smooth transition between these two extreme cases. In addition, it is
also shown that the IVX approach proposed in Kostakis et al. (2015), with or without re-centering,
fails to provide correct inference if the regression error is persistent.

To provide reliable predictability test, we propose to modify the IVX-AR statistic considered in
Yang et al. (2020), which is based on Cochrane-Orcutt-type correction. The asymptotic distribution
of our test statistic in the absence of predictability is x?, regardless of the degree of persistency of
the predictors and errors. Extensive simulation studies suggest that our test has satisfactory finite
sample performance under various model setups.

Using the new test, we re-examine the predictability of the quarterly growth rate of the U.S.
housing price index. For univariate regression, main findings of predictability are in general con-
sistent with those in Yang et al. (2020). In particular, we confirm that the shares of the residential
fixed investment in GDP is a fairly robust predictor of the growth rate of HPI, while many other
macroeconomic indicators are not. For multivariate regression, on the other hand, conclusions

based on our modified test are significantly different from those using the IVX-AR test. These
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observations testify to the relevance of our modification for empirical research.
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A. Preliminary Results and Useful Lemmas

Lemma A.1. In model (2), assume that uy; satisfies (5). The OLS estimator of p
given by (6) is consistent and has the following stochastic orders under Hy( = 0).

(i). If pir=1+%, fork=1,...p,

pir —pir = O,(T7h),
Pk — Pk Op(T_l/Q)

(). If pr = 14 75, cu < 0,5, € (0,1), for k=1,...,p,

_1tky

pr—pir = Op(T" 2),
e —pr = O,(T7Y?

Proof of Lemma A.1. Note that the OLS estimator of p can be written as

p—p
T -1 7 T -1 7
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Applying Lemma 3.1 in Phillips (1988) several times, we can obtain

T
Z ug,tflAug,tfl = O,(T).

t=p+1

For the second to the last diagonal terms in ZtT:p +1Uot1Ug, 4, note that taking first

difference makes ufy, stationary. Therefore, these terms have the order O,(T) by the

ergodic theorem. For ZtT:pH(u&t_l)Q, applying Lemma 3.1 in Phillips (1988) gives
ZtT:pH(ug,t_l)Q = 0,(T?). The above results give

T
D' Y UpiUpy 1Dyt = 0y(1),

t=p+1

where

VT
Similarly, EthpH uy ;120 is Op(T) by Theorem 4.4 of Hansen (1992),

T
Z Aug, 5 1201 = Op(ﬁ) for j=0,...,p

t=p+1

by the CLT of the martingale difference sequence. Therefore, we have

T
D:Fl Z Uot—1 (ug,t - U(,),t—lp) = Op(1).

t=p+1

Consequently, we can deduce that

-1

T T
Dr(p—p)= D;l Z UO,tflU(l),t—lD%l D;l Z Uo,t—1 (ug,t - Ué,t—lp) = Op(1).

t=p+1 t=p+1

(ii). Note that (5) implies ug, = p17ug, 1 + p2alug, 1 + ... + ppAug, .1 + 25, Note

also that the above process can be written as a(L)ug, = 2y, with
p—1

(L) = 1—pirL =) a;(l—- L)L

j=1
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= (1= mL)(1 = p2L)...(1 = p, L),

where {y;}_, are the inverse characteristic roots of (L) and |ui| < |po| < ... <

|pp—1] < 6 < 1. Lemma 8a in the supplementary appendix of Mikusheva (2007) implies
that Awug, can be represented by

D(L)z, = Z djzg,tfjv Z |dj| < oo.
par =0

Therefore, {Aug,; 4, ..., Aug, , 1} are stationary, and we can express

o
B H 7 M
Uy = P1,7UG 1 T E :djzo,t—j
=0

pendix of Kostakis et al. (2015) gives ZtT:p 1o 1%0s = Op (TH;“) . For the second

< 00. For the first term in (13), applying Lemma B4 in the online ap-

term in (13), since Aug, ; is stationary, it can be shown that \/i,f ZtT:pH Aug, 124, =
O,(1) by the CLT of the martingale difference sequence (mds). Using the same argu-
ment, we can also show % ZtT:pH AUy 92045 -y \/LT ZtT:pH Augy, 4120, are all Oy(1).
For the terms in (12), using Equation (7) and (10) in Magdalinos and Phillips (2009)
and the ergodic theorem, we can establish that ZtT:p i ufﬁfl = O,(T****) and all other

terms in (12) are O,(T). Finally, we can show

T
Gr' > UpiaUp, 1 Gyt = 0,(1),

t=p+1

where
1+ky
2

T e
T
Gr = VT
vT
Note that, the off-diagonal element of G| ZtT:pH Uo—1U§,_1G7" is 0,(1) since their
orders are O,(T)/T'*3". Also note that

T
G;l Z Uo,t—1 (ug,t - U(/),t—lp) = 0,(1).
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Thus,

1

T - T
Gr(p—p) = |G7' Z UO,tflUé,t—lG;l Gr' Z Uo,i-1 (ug,t - U(/),t—lp)
t=p+1 t=p+1
= Op<1)-
This completes the proof of Lemma A.1. |

To prove Theorem 4.1, it is useful to introduce the following lemma.

Lemma A.2. Under model (2), assume ug, follows the AR(p) structure in (5). Let

Pr = [P2:s Pp]'s P2 = [p2y s pp]s
Zay = [AZ, ..., AZt o),
XA, = [AXF, . AX),

ua: = [Augy, ..., Augi—pl,

Ziw = Ziq— pr1rdog—2 — Ling—2po,

K A © 2 N
U = U — P17Up—1 — UA 102

T
E thﬂf = +0p g Zt lpZ0t7
t=p+1 —p+1
T
7 A
g ZiaXit, = [14+0,(1 E : Zy 19 i lp
t=p+1 t=p+1

where

Zi vy = Zi1— pr174i—2 — Ling2p2,
gy _ M M Iz =
Xt—l,p = Xi1—mrXis— XA,t—2p2-

Proof of Lemma A.2. The proof of Lemma A.2 is omitted because it can be proven
using Lemma A.1 and the steps to prove Lemma 1 in the appendix of Yang et al.
(2020). |

Lemma A.3. Under the same set of assumptions as in Theorem 4.1, as T — oo, the
following approximations and limits hold.

(i). Suppose that ®p = I+ 22, C, < 0,k, € (0,1] and prr =1+ £, ¢, < 0, K, €
(0,1].
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= f Wy W), , + T2wen T Z Zi2Xi 5+ 0,(1)
=p+1 t=p+1

/
E[wl’,tw ] 0202_1 (fol JC’de/ + Q:m:) ) Zf Ky > 1)
Elw, ), ]+ ¢ 2V ey if K <1 ;
Elwpw),,| = iV Co, if ky =1

T

1 ~ .
T Z Zi1pZ1-1,
t=p+1
1 < 1 T
= 7 > w ,,twpt+cu—T1+mm{w} > ZiaZ) ,+0,(1)
t=p+1 t=p+1

]+ cquz, if ke > 1

Elw,w), | 4 Ve, if Kz <1
Elw, ), |+ ¢, IS e (CuVo.C. + CLV).Cy) e ds, if ky =1
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and

1 < -
7T 2, Dot
Icu
= Z Wp,t20,t — . Z Zy_o201 + 0p(1)

t p+1 t p+1

Bw,,(l) - CuUz(1)7 Zf Ky > 7,
= Bwp(l) - CuU (1)7 Zf Ky <1
N (0, (Elwpw), ] + ¢ [ e (CoVo O + C.V),Cr)e’%ds) 02) | if ke = 1,

where By, (s), U.(s) and U,(s) are Brownian motions with variance E [w,,w),, ] o
VEo? and V02, respectively. U.(s) and U.(s) are independent of B, (s).

zZzZ7 Z

If min{n, K.} > 2K,

T2/~cu 1 T
Timin{n e} Z Zia Xl = Cim D Zia X[+ o0y(1)

t=p+1 t=p+1
30 (i Je.dB, + Q) if o > 1
= N Ve, if ke <1 ;
—CVeaCo, if e =1

iy T
m N Tz, = Cim D ZiaZ] ,+o0y(1)
t=p+1 t=p+1
ivzg,cw if ke > 1
= Vs, if Kz <1
2 [T e % (CoV.C, + CLV.Cy) €% ds, if kg =1
and

1+m1n{77 K} ke : : Zt 1ZOt

e —p+1
1
= —Cy 1+m1n{7] K} z : Zt 220 it + OP<1)
T t=p+1
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_CuUz<1)u Zf Ky > n,
= < —c,U.(1), if ky <1

N (0,2 ([, e (CoV,.C, + CLV].Cr)e*%ds) 02) | if ky = 1.

(ii). Suppose that Oy = Ij, + 5= C, > 0,k, € (0.5,1) and p17 = 14+ 2=, ¢, <
0,ky € (0,1). If Ky = Ky, we have

L XT: Tz X'o-T
Tke+min{n.ke} T “tET
t=p+1
_ 1 Cx Zthl CI):FTXM—IZS(,,,t—lq);TCm - Cqu Zthl (I)ETXp,t—IZtI—lq):FT
Tretmin{nch | e, 30 @7 X 1 2y @7 Cr+ Y, 07X 2 BT
+0p(1>

= Cac Cz,mx,y, WCw 3

where
_Cz_17 Zfﬁ"x > na

szﬁz,n = C‘;la Zf Ry < 777
(Cx - Cz)_1 i ke =1

We, = We) = We) - we) + e,

W(Ei) C, / e_pCIYé’ng;e_pCIde’x,Wéi) =c, / e_pCIYCIYCf’; e Pl dpC,,
0 0
Wg’;) = aC; / e PCYL YL e P dp, Wéji) = / e PO Y Y}, e PO dp,
0 0

Ygz =N (O, fooo e*pcﬂ”Qmpe*pCde) and Qyp =Y 00 Elw,w,—;|. Moreover,

j=—o0

T2 - T 5 g —T
— ! F—
T2 min{n,kz} Z (I)T Zy Zt(I)T
t=p+1
_ (I):FT Ca Zthl Xp,tflzg(,,,tflcx — cuCy Zthl Xp,tflzé—l

-T
Tﬂx‘i‘min{nvﬁx} (bT

—Cy 23:1 thlzgfp,t—lcz + Ci Zle Xi 174
+0p(1)
= CC . We,Cok, , Co

43



T

Trs s

m E q)TTZt—IZ&t = Cx 2,Kzm Tﬁx/Q E (I) Zo t C YCPT — CuYC’z)] + 0p(1)
t=p+1 t=p+1

= C,C.p,, x MN (0,W¢, x 02),

where MN stands for mized normal distribution. If k, > k,, we have

T2 T [ Ci T . / .
T Do 04X = s D e X2 0T + 0,(1)
t=p+1 t=p+1
(4)
= CQUCZ’“LTIWCI )
T . T 5 S g—T c - T T
- i i U — / —
m Z q)T Ztth)T - T2min{77,fiz} Z q)T Zt_th_lq)T +Op<1)
t=p+1 t=p+1
= C,C.p, W, (‘i)CMMC
T &~ - rs .
Tmin{n.sa} > ¥zt = W Z ®p" Zi220 + 0p(1)
t=p+1 t=p+1

= C,C.p., x MN (0, W x a§> .

If kK, > k., we have

T L T 5 1T Cy d -7 / -7
Wt;l br 2kl = mtngl% X121 Pr G+ 0p(1),
= C,Cop, WS, 1’,
T d C
—T r7 77 =T x =T =T
T2 min{n,kz } tz;l CI)T ZtZt/(I)T = T2min{n,k;} tz;_l CDT ZXp,t—IZS(p,t—l(I)T Cac +Op<1)>
=p =p
(1)
= ch’z,ﬁz,nwcm Cz,/{z,y,cma
T T
TK?:E -T ~ " CCU =T
Tt 2 ¥ Ly = w2 ¥ Zxemateet op(1)
t=p+1 t=p+1

= CoCup,y x MN (0,00 x 02
Proof of Lemma A.3. (i). Note that
Xio1 — p117Xi—2 — Xa—202

C,
— < T )Xt2+51t1_p1TXt2_XAt2p2
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P

Cx IkCu C’x
= Wpi—1+ (T"ix — Tﬁu) X9 — T ;pk—lXt—k
C, P I.c,
Wpt—1+ 75— T (Xt 2—;Pk—1Xt—k) - jlj X9
C, I.c,,
Wy t— 1+T Xpi—2 — jlj,{u t—2;
where X,; = X; — > 0 o o Xi—pr1 = (1 — poL — ... — p,LP71) X;. And it can be seen

that X,; shares the same stochastic order as X;. Let Zx,; = 23:1 To7AX,; and

_ t t—j
Zpt = ijl Y7 Aw,;, we can express

~ C, Iic,
Zi 1= Zpp1+ EZXp,t—l jlj Zi_o. (14)
Then
1T
T Z (Zir = pr1Zio — Lngapa) (X{ ) — pro Xy — XN, op2)
=p+1
T
C, Iic,
:_Z(ptl+ ZXptl ;Zt2>
t=p+1
Cy Iic,
(wp— 1+T Xpi— 2—; Xia). (15)

Suppose that min{n, x,} < 2k,. It is easy to verify that all terms in (15) except
%Zfzz Zpt—aw,, ; are op(1). For example, using Proposition A2 in Phillips and Mag-
dalinos (2009), X; = O,(T~"=/?) and Lemma 3.1, 3.5, 3.6 in Phillips and Magdalinos
(2009), we have

C12L 1 d / 0121 1 1+min{n,xz }
T2k T' t:;l Zi2Xi o = T2ku T (OP<T ))
= Oy(Tmnirral =) = g,(1). (16)

Eventually, we have

= Z (Zior = prrZia — Zngapa) (X{y — pro Xy — XN, oP2)

t p+1

T
1
= 7 > Zyiawh, 4+ o0p(1)

t=p+1
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1
-7 Z wp,t—lw;,tf1+0p(1)7
t=p+1
where the last equality is obtained by applying Lemma B2 in Kostakis et al. (2015).
By the ergodic theorem, we have %Zfzg Wi wh,_y = Elwp,w), ).
For the term %ZtT:pH (Zir = pr124—2 — Lipng—2D2) (Zio1 — p102i—2 — Ling—2D2)',
note that from (14), it can be rewritten as

—_]'ZH(pt 1+ ZXptl Tr Zt2)(Zpt1+T Zx, 41— Trw Zt2>-

Similar to (16), only the first term is not o,(1). Thus,

C, Iicy C, Iicy ’
— g Z Z Z o — 7 4 Z
tp+1< pt— 1+ Xpit=1 = ey t2)( ot 1+T’% Xpit=1 = T t2>

T
1
= 7 > ZpiaZyy  +o0p(1)

t=p+1

T
1
-7 Z w/’vtw;,t +0p(1) = E[wpytw:;,tL

t=p+1

where the last equality is obtained from applying Lemma B.2 in Kostakis et al. (2015).
For the term \/LT ST Zt,lz(’it, we have

1 K -
TZ 120,

t=p+1
T
C, Iicy
= T Z (( pit— 1+ Zt T ;Ru Zt—2> Zg,t)
t=p+1
T
Zpt- 1ZOt e Z Zy— 120t
+

T

el
P
~ s me% > Ziwdl, - Z Zy 926y

t=p+1 —p+1

Applying Lemma 3.1, 3.5 and 3.6 in Phillips and Magdalinos (2009), we can obtain
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the following orders

14min{n,rxe}
H —
N Ziadl, = op<T : )

T“u Z Zyszy, = op(1).

t p+1

Applying Lemma B2. in the Online appendix of Kostakis et al. (2015) and the CLT

for the martingale difference sequence, we have
Z Zyadl, = \/_ Z Wpi—1704 + 0p(1) = N(0, 0 Elw,w, ]%).
—p+1 t=p+1

Suppose that min{n, k,} = 2k,, from (15) and note that Tﬁ‘;u * S 79X, =

O,(1) when min{n, k, } = 2k, we have

T

1

T E (Zio1 — pr1Zy—o — Lpng—apa) (X{q — prr Xy Xg,t72ﬁ2)l
t=p+1

1 ) ) T1+min{n,ﬁz} 1 p
- T Z wp’twpzt + Gy T14264 Tl—l—min{n,nx} Z Zt_2Xt*2 + OP(l)’

t=p+1 t=p+1

Since 7 S o1 WptWy RS Elw,w,,], Equation (20), Lemma 3.5 and 3.6 in Phillips
and Magdalinos (2009) gives

T 1 !

1 .

Ty 2 ZaXil = —C7 ( / Jo.dBy + Qn) i g > ).
s O

t=p+1

1

T
Tirmin{nma) Z Zyo X}y 5 Vg, if e <

t=p+1
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T
1 .
T1+min{n,xz} Z Zt—zXzi/uf/Z & _‘/zxcgm if Re = 1.
t=p+1
Therefore, we have

T
= (Zio1 — pr1Zi—o — Ling—2p2) (X1 — proXiie — XA, oD2)
T b

t=p+1

Elw,w, ] — c2C,1 (fol Jo,dB! + Qm>/, if kK, >,
= Elwpw), ] + ¢ Vaa, if ke <1,

Elwpw), | = c2VeoCo, if Ky = 1.

Similarly, for ZtT:pH Zt_17p21{717p, applying Lema 3.1, 3.5 and 3.6 in Phillips and
Magdalinos (2009) gives

_E:Ztlptlp

—P+1
T1+m1n{77 Ke} 1
- 7 Z wp twpt + C T1+2Hu Tl—‘rmin{n,nx} Z Zt*2Zl‘{*2 + Op(l)
t=p+1 t=p+1
Elw,pw), ] + Ve, if ke >

= | Elw,w), ]+ch, if kK, <m
Elwpw,, +C2f0 e’% (C,V,.C. + C.V! . C,) e¥%=ds, if k, =1

Similarly, for \FZt —pt1 7 120, since S ik Zt_pﬂ <Zt LYCIIAX, )Z(lf,t —
O,(1) when min{n, k, } = 2k, we have

1 & -
—= D L
\/Tt: %
T Te 1 Z t—1
kCu 11—
= T Z ot— 120,5 T“uﬁ Z (ZT%l JAXj1> z&t+op(1)
t=p t—p+1 j=1

1 cu
- Z Wp,t—120,t — - \/— Z Zi-1204 + 0p(1),
p+1

t t=p+1

If Kk, > n, from Equation (15),(16) and Lemma 3.1 in Phillips and Magdalinos (2009),
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We can express
T

]kcu >
ﬁ Z (wp,tl T Tmin{nra}/2 Ztl) 20,

t=p+1
Ikcu it
Wyi1 — —=Liq1 | 2
pt—1 T2 t—1 | 2ot
1 (

T
Ikcu
E wp,t—lzo,t T2 E Zt 120,t5

t=p+1

—_

as

3=
M-

t=

3\

where Z,_; is referring to as a mildly stationary time series.

Following the procedure to prove Proposition Al. in Phillips and Magdalinos (2009),
we can show the joint convergence of

< Z Wp,t—120,ts 7715y /2 1+77/2 Z Zt 1ZOt>-

t p+1 t=p+1
We have
1 & Ic ~
ﬁ Z (wp,tl — m&o ZO,t = Bwp(l) — CuUZ(l), (17)
t=p+1

If k, <mn, Lemma 3.5 in Phillips and Magdalinos (2009) gives

]kcu [k‘cu
Z Wp,t—120,t— Tﬁz/2\/_ Z t—120,t = Z Wp,t—120,t— Trel? T Z Xi-170t-
—p+1 t=p+1 t p+1 t ptl
Using the analogous argument to obtain (17), we can show
[kcu
Z Wp,t—120,t — TM/Z\/— Z Zy 170 =>Bwp(1) — ¢, Uy (1).

t p+1 t=p-+1

If k, = n, applying Lemma 3.6 in Phillips and Magdalinos (2009) and standard CLT
for mds gives

]kcu Z
T Zl Wpt—1 — Tmm{r] Ka}/2 0.t
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1T 9 T
= N[0, (plim | (wm_lw;,t,l)—l—f—" ARV
T—oo | T Tl+ke

t=p+1 t=p+1

= N (0, (E[wp,tw/p,t] + Cz/ (0, V,.C. + CZVCC’ZCI)eSCzds) 03) :
0

Suppose min{n, K, } > 2k,. Then we have

T2nu T
Tl+min{nra} Z (Zir = prirZia — Zng—apa) (X{) — pro Xy — XN, op2)
t=p+1
1
= Cim Z Zt,QX#_/2—|—Op(1)
t=p+1

/
_e2o ( S Je,dB, + Qx> if Ky > )
=\ Vi, if ki <1

—2V,.Cy, if Ky =1

Similarly,
T2nu 1 T
. -, o, ,
Tl+min{n,ko} Z Zi-1041-1p = Curpiiminfrn} Z Zi-2Z; 5+ 0p(1)
t=p+1 t=p+1
Cu‘/zxw if Ky > n
= Vs, if e <
A [ 5= (C,V,.C. + CLVL,C) eC=ds, if ky =1
And
1+mm{n Ke} ki Z Zt 1ZOt
" t= p+1
T1/2+nu 1 T
= 1+m1n{n K} \/_ Z wﬂt 1ZOt um Z Zt_2207t+0p(1)
t=p+1 T 2 t=p+1
1 T
= G T Y Zizés+0,(1)
= t=p+1
—c,U,(1), if K, > 1,
= § —c U, (1), if K <17

N (0,2 ([, e (CoV,.C. + CLV].Cr)es%ds) 02) | if Ky = 1.
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(ii). In the case where C, > 0,

Xt — pr1,7Xe—1 — Xai—2p2

C, C,
= ( Trs )Xt1+€1t <1+T )Xt 1—Zpk(Tﬁ Xip +E1—(h— 1))

Ce

= ﬁvat_l - Tﬁ?u (18)
where X,; 1 = X;1 — 2522 PrXi k-
From (18), we can express
~ Oa: U
Zy = Tka ZXP: - Tk
where Zx,; = Z;Zl TtT_jAXpJ- and Z,; = 22:1 TtT_jApr-. Then
T T !
. C, Cy Cy Cy
24X = ) (T— Lot = s bi- w) (EXPH = K1 +w,,,t)
t=p+1 t=p+1
o I
- T2:CC Z ZXP’tleévt Tﬁx—&—nu Z ZXpt 1X£ 1
t=p+1 t= p+1
Tﬁx+f€u Z Zt lXPt 1 t—1
t=p+1 —
. T
,t—1w;;,t - QTUU Z Zt—lw;,t
t=p+1 t=p+1
. T T
Zp,tX,/),t—l - T_:u Z ZpeX{_y + Z vatw/p,t' (19)
t=p+1 t=p+1 t=p+1

Lemma 2.4 in Phillips and Lee (2016) and Lemma 3 in Yang et al. (2020) provide the

following stochastic orders:

T
1 — —
Tkz+min{n,kz} Z CDTTXPat_lzgfp,t—l(I)TT = Op(1)7
t=p+1
1 T
Tnz—l—min{n,nz} Z CD;TXP:tflz‘,Xp,t—lq);T = Op(1)7
t=p+1
1

T
D o X Zy, 10" = Oy(1),

Tfix—l—min{n,nx}
t=p+1

o1



1

T
Tke+min{n,kq} Z q);TXt_lzt/*Iq)%T = Op(l)

t=p+1

Thus, the first 4 terms in (19) asymptotically dominate the other terms.

Similarly,
T T )
~ ~ C c O c
ZX/ — z 7 i —UZ, 7 _:BZ B U B
tzsz; o ;1 (T'{x Fot=h e, 1 p’t> <T*€x Kot Tru pit
Cy
= T Z ZXpit 1ZX 1-1C Tmeu Z Zx, 1121
t=p+1 t=pt1
Cu d , - )
t=p+1 t=p+1

T
C
! u !
A= 1Z/’t Tk Z Zt*lZPt

:p—|—1 t*p-i—l
E ! §
ptZX t 1 Tﬁlu ZP tZt 1 + Zpt
t p+1 t=p+1 t=p+1

Likewise, the first 4 terms dominate the last 5 terms.

Suppose that K, = k,.

TZHZ T TE T

— ! F—
T O O 4%y (20)

t=p+1
_ T T
- CI)TT Cz Zt:p-;l Xp,t—lzg(p,t—lccc - Cqu ij:p-‘rl Xp7t—1Z£_1 (I);T +o0 (1)
Ke+min{n, kg g ‘
Tretmintrnad | e, 37 XeaZy, o 1 Cot A Xea 2],

Let kr and k7. be time indexes satisfying Lemma 2.3 in Phillips and Lee (2016), ¥7,, =
22':1 TtT*jXp,j,l, and ZXp,t = Zx,t — TC:f; \I/p Following the proof of Lemma 2.4 in
Phillips and Lee (2016), we can show

Cs

T
ey Do 7 Zx Xy 107 C

t=p+1

C, - Co gt
- T'ka+min{n,ke} Z (I)T ZX/J t-1t Tk \IjTt 1 Xpt 1 CI
t=p+1

C d
— r —T r; / -T
© Tre+min{n,s} E : oy ZXp,t—lXp,tq(I)T Cy
t=p+1
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Ce

T

t=p+1
C.C

T
- m Z (I);T\ijT,t—lX;,t_l‘P}TC’x—I—op(l)
t=p+1

C,C, L v o
= g 2 0 VX, 19 Gt op(1)
t=kp+kip+2

T _ _ /
C,C; —(T—1) ot o (T
B Ttz Z 2 Tk /2+min{n,kz} \Ij%tfl WXp,t—l ¢

t=kr +k’ +2

C.CC. ,
- O S T T 1)
t=1

= G, (W) = CCi, (Cx / ePCngng;eprdex>,
0
where Y = N (O, fooo e*pCZQmpe*pCIdp), Qu,p = Z;’i_oo Elw,w,,—;] and

—C7Y if Ky >,

z

C’Z,fixm - (O 1 if Ky <1,

x )

(Cp — CZ)_I ik, =1

Likewise, we can also obtain the following limits

-T —T 2)
Tmmm{m} Z O 7 X, 07 C, = CoCl,, W

t=p+1

T

C'LLCI' _ _

m Z ®TTZXP7t71X£71¢TT :> CxCZ,H:L‘,n Wc(i)
t=p+1

20 A
- Z 077 2 X BT = Ol W

Tkz+min{n,
t=p+1

Z,KRz,mu
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D, + 0,(1)

S
- Cz p/ - Cz
CfCZ’“-rm (Cu/ e YC:L‘YC;I;e P dex)a
0
)
—pCev P ! _—pC
OICZ»’%,"CUOLB/O ¢’ xYCxYCme P acdpa

oo
CiCm, o / e Yo, Y e P dp.
0



And eventually, we have

TQH””
Tnz+min{n,ﬁz}

T
Y "2 X0" = G, W,

t=p+1
where We, = Wc(*i) — WC(?Z) — Wg;) + Wc(fi). Similar to (20), we can write

T - T 5 g —T
_ /5 —
T2min{n,kz} Z (I)T Ztth)T

t=P+1

T ( T Zt Pl pr,t 1X,41C0 — T%;Eiu S ~P+1 Zxpt-1Xi ) -7+ 0,(1)
= T p

T2 min{n,kz} —ﬁ t Pl A lXpt 10 + T%u Zt Pl L lXé 1
-T
_ CI)T Cy Zt:PJrl ZXpJ—lZX,,,tACa: — cuCh Et:PJrl ZXp,t—lzt—l (I);T +o (1)
- min{n,x. T T ;
T2 {"77 Z} —Cy Zt=P+1 Zt*lZS(p,tflcm =+ C%L Zt:P+1 Zt*1Z£,1 p
and
C T
T2 min?n,/«cz} Z CD;TZvat_lzgfp,t—lq);TCx

t=P+1

C T C C, !
- ]QTM Z (D;T (Zvatl + T_:;\Il%tl) <ZXp7t 1+ Tk \I]g’t 1> (I);TCQJ

—t —t !
_ (T—t) P P P o -7
o Tfiz Z CI) <Tﬂz/2+min{n,ﬁm} \IjTat—1> (Tﬁz/2+min{r],nz} \IlTyt—l) q)T CoCy + Op(l)

— / —
= C’mC’ZMmC’m/ e pCngngwe pCﬂ”de’mMCZC’m
0

et CICZJQZW Wéllz)cz,nz’nc’w'

In a similar fashion, we can obtain that

T
cuCy _ _ o ~
T2min{n,rz} Z (I)TTZXp,t—lzg—l(I)TT = Cz,ﬁz,ncucx/ € pCzYC'[«;YC/«me pCzdeZﬁz’n’
t=p+1 0
= 0., WHC.,. C,
c T
G — 7 (2)
T2min{7]a"’im} Z ®T thle/Xp,tfl(pT Cx = CZCZ:HI,WWCI Cz,nz’an,
t=p+1
2 -T
!
T2m1n{77,nz} Z (I) Zt 1Zt lq) = C CZNan Czliznc

t=p+1

o4



The above joint convergence implies

T2mx

T2 min{n,xz}
t=p+1

P
For }~,_, Zy_14,, we have

T
oz z0,"

= C.C. e, We,C. k., Co

T
1 L
Tmin{n,xz} Z CI)TTZt—lz(l)L,t
t—p+1
- Tmm{r] Kz} Z (I) ( va Tﬁ;u 7t—1) Zg,t
C c d
- Tmin{mzz}""“m Z ®%TZXp’t7226€t a Tmin{nj;z}+m Z Q;TZt72z6tt +
t=p+1 t=p+1
T
1 _
Tmin{n7mx} Z q)TTZ ’t—lz(!)ll,t' (21)
t=p+1
Since K, = Ky, We can express
Tr & .
Tmin{nr.) > ' 2t Tmm{n,nz} Z 7 ( Lxpt2 = T:u ’H) 20,
t=p+1 t=p+1
1 T
= Tmin{nra} Z (b:FT (CxZXp,t—2 —Culy—o + Zp,t—l) z&t
t=p+1
1 T
= Tmin{n,ro ) Z qD;T (CxZXp,t—Q - Cuth2) 20+ + 0p(1), (22)

t=p+1

where the third equality is implied by Lemma 6 in Yang et al. (2020).

term in (22), we can show that

1 T
-7
Tmin{n,mz} Z <I>T

t*p—l—l

Tmm{n,nx} Z (I) (
T

2.

tZkT-‘rkJ,/T-i-Q

(O:cZXp,t—Z -

p
‘Ith 2

1
Tﬁx/2

ot
Tka/2+min{n,ke }

LT {

35

CuZt—

For the first

2) 20t

Cy

uT — W, 2) 204+ 0p(1)

(CxCx‘I}%t_Q — Cqu\I/Tﬂg_g)} 20,t + Op(1>



1 d ot
= Tﬁx/Q Z (I)g:T |:Tnx/2+njlln{ﬂyﬂx} (CxCx‘I}%t_2 — Cqu\I/Tﬂg_g) 20,t + 0p(1>
tIkT-‘rkJ/T-i-Q
1 T
= Ty Z D420 [CoCls, (CoYE —cuYe,)] +op(1)
t=kr+ki+2
1
= C’Q;C’Z,HMW Z O 20, [(CYE — cuYe,)] + op(1)
t= kT+k:’T+2
= C, znanH 7o Z(ID o4 | —cYe, )] + 0p(1)

= CoCep,, X MN (0, / e (G, — eYe,) (Y8, — elYe,) e P dp oﬁ) :
0

where the convergence in last line is obtained following the same steps as in Equations
(22) to (26) of Magdalinos and Phillips (2009).

We, = / e (YL — eYe) (CoYE — eYe,) e rdp.
0

Eventually, we have

TI{

mz¢ ZtlZOtjCCznzanN(OWC XO')

t=p+1

2
Suppose that Ky = Ky- '1%7':“ Z?:p—i—l Zt—lXéfl and m Zf:p+1 q);TZt_QZ&t
asymptotically dominate the other terms in (19) and (21), respectively. Correspond-

ingly, we have

T2nu T e~ B CZ T B B
Frey Do ¥ X0 = s Y 0 2 X 0T + o)
t=p+1 t=p+1

(4)
= CmCz,n,,anz ,

TQI{H T e e CZ T B B
iy Do O L2 = s > 0 4 2,07 + 0,(1)
t=p+1 t=p+1

= C,C.,. WHC.,. C.,
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and

T T
Tr T5 Cu _
Tty 2o O L = gty D 07 Ziazoe +op(1)

t=p+1 t=p+1

= CuCup,y x MN (0,0 x 02

Similarly, if k, > Kk, we can show

TQHI T e~ B Cx T B B
T ke+min{n,kg} Z (I)TTZtXf{q)TT - m Z (I)TTXP»t—lzkp,tflq)TTCm + Op(1>7
t=p+1 t=p+1
= C,C.,, W,
T’iz T ~ C T
T2min{n,xz} Z Q);Tthg@;T - ’IVZTsfn,nl} Z (I);TZXp,t_lzg('p,tflq);Tcm + OP(]'>7
t=p+1 t=p+1
= C,C.p WHC.,.. C,.
and
T T
Tr . Cx -
Tmin{n,kz} Z CI)TTZt*lZg,lt = Tmin{n,re} Z (I)TTZXp,t—ZZO,t +0p(1)
t=p+1 t=p+1
= C,C.p.. x MN (0, W x ag) .
This completes the proof of Lemma A.3. |

B. Proof of main theorems

Before we prove Lemma 2.1, it is useful to present the following Lemma that is a more
detailed version of Lemma 2.1.

Lemma A.4. Under the same set of assumptions as in Lemma 2.1, as T — oo, we
have following set of results:
(1). if X¢ is LUR and ug, is stationary, then

T(B—B) - U, (23)

1 -1

1
Wp = VR R[ / ng(r)ng(r)'dr} Q.R'| RV, (24)
0

o7



(i1). if both X; and uy, are LUR, then

-1

. R 1
B—PB = Bx= { /0 ng(T)ng(r)'dr}

T
Wi = 0(55);
T

(111). if X¢ is LUR and ug, is MI, then

/0 JE (r)JE (r)dr, (25)

TlT—; (B-8) = - [/01 Jh ()Tt (r)'dr} T

(2 (A +50) + /0 I (1) ABo(r) — Bo(1) /0 1 ng(r)dr> ,

T
WT = Op(M>, (26)
T

(). if Xy is MI and ugy is stationary, then

T (B—ﬁ) L (27)
7wy B (RVLAL) V'] (RVSAL)

furthermore, if uo, is an #d random sequence with zero mean and finite variance, then
T(1+ra)/2 (B - 5) = N(0,V'S00), (28)
Wr = x*(q); (29)

(v). if Xy is MI and uoy is LUR, then

!/

B—B = [CoVi ™ [ / JE(r)dBy(r) + 2M01 + Zo1 |

T*e
- o ()
T

(vi). Assume both Xy and upy are MI. If Ky, < Ky, then

T (B B) B2Vt (M + ), (30)
Tl=Fazthu
WT - Op < MT > )
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if Ky = Ky, then
B - B L 2‘/1;1 (Cr + Cqu)_l (A61 + 261> )
T
if Ky < Ky, then

BB B 2V 10 (A + 50,
Tl—/‘ix‘f‘ﬁu
Wr = 0O, (TT) ;

(vii). if Xy is ME and uoy is stationary, then

T T, <B—B> —~ MN (o, \If;cleu>,
Wr = x*(q);

(viii). if X; is ME and ugy is LUR, then
T 0RL (B 8) = Wk O Yo (),

T
Wr =0 (MT> ’

(ix). Assume Xy is ME and ugy is MI. If k, = Kk, then
of(6-8) = MN(03),

T
Wi = 0,(5g);
T

if Ky > Ky, then

A \\J _
Tlre—ru) 2T <5 - 5) = MN <0= TYC%T (Pye, Ca) ' Q00) ;

Tre
Wi = 035 )
T

if Ky > Ky, then
~1

. U
Tl (B-B) = MN (o, YCIYéICg%‘I’y;Qoo)?

2
2cz
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Th
)
In the above, we adopt following notations:
1
W) = Je) - [ e
0

Jo,(r) = /e(T_S)C””dBl(S),
0
-1

v - |f lJamJa(r)’dr} J e (P)Bo(r) + O / 1ch<r>drBo<1>],

00
\IJYC’z = / e PCe ch Yclvz g PCs dp,
0

Ycz = N(O,/ 6PCZQH€pCzdp>
0

= = [(culk +C,) ‘I’Ycz]_l YéZQOO [

where [Bo(r), B1(r)']" is a (k 4+ 1) x 1 vector Brownian motion with variance matriz .

Proof of Lemma 2.1 and A.4. Note that the results in Table 1 can be extracted from
Lemma A.4, so it is sufficient to prove Lemma A.4. To estimate 2, = ¥, + A, + A,

and X, = F [Uo,t%,t}, we use the following estimators

Mt . T T

6, = 2 z( ) 3 costnion S = DI
j=—M MT t=h+1 t=1
M~

o= g > ( )z Coterion, (33)
j=—M t=h+1
M . T

0y = Z ( HMT)tz;leuel,t_h, (34)

where My is the bandwidth with My — oo and My /T — 0, eg, and eq 4 = Xt”—fi)TX[L_l
are the OLS residuals from the first and third equations in model (2), respectively. We

can express the centered OLS estimator as

T
bop= [z X#_le_H] Xl 5)
t=1 t=1

(i). Under case 1, Lemma 3.1 in Phillips (1988) provides the following joint conver-
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gence,

T 1
1
ﬁZ)(t_l)g_l = / Jo, (r)Je, () dr, (36)
t=1 0
1 < L
P2 Xewor = [ Je.(r)dBalr) + A (37)
t=1 0
1 — L
’_ZT/QZXt_I = /ng(r)dr,
t=1 0
1 T
—= ug; = By(1), (38)

The above results and continuous mapping theorem implies (23). To study the limit of

—1 N R
Wald statistic Wr, let Qu = [Ethl Xf_lXt“_'l} Q,, where Q, % Q,. We have
1 -1
T*Qw = { / Jb(r)JE, (r)’dr] Qu.- (39)
0
Thus, Qw = O,(T?%). (23) and (39) imply, under the null hypothesis RS = r, that
. / B .
wr = (RB-r) [RQwR] " (RB-r)
. / _ .
= (RT(B-5)) [RT*QuwR] " RT(3 - 5)

-1

R [ /0 ), (r)’dr] QR

= U'R RV,.

(ii) Under case 2, Lemma 3.1 in Phillips (1988) gives

T 1

1

ﬁth_luo,t;» /0 Jo, (1) J.., (r)dr. (40)
t=1

With Lemma 3.1 in Phillips (1988) and the continuous mapping theorem, we can obtain

_ o e )L (r)dr
Jor T8 (r)JE (rydr

B—p

. A M A T
For the Wald statistic Wy, let Q, =3 ,~ /., (1— MLH)%, A = % > i—hi1 €0,t€0t—h
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and eg; =y — fX!" | be the OLS residual. For 4y,

Yo = ! Z ( BXtH 1) (?/ﬁih - B/Xfikh)

t=1

ET: (uOt + ( ) Xé‘_1> (ué‘,th + (B - B)’Xflh) (41)

t=1

T

Nl =

Under the local-to-unit-root assumption, both u&t_h and X', , are Op(\/T ). Thus,
A = O,(T). (42)

Let M = My where My — 0o as T — oo, and Mr/T — 0. By construction, since the

Bartlett kernel function includes 4y, up to h = M7y — 1, we have
Q. = O, (M/T). (43)

By (38), the continuous mapping theorem and (43), we have

-1

T
. M
Qu = [Z XX =0T 0,06 =0, (7).
t=1
Eventually,
. / .
Wy = (Rﬁ—w)[RQWRT4<RB—r)
M\
= Op(1) [Op (T)] Op(1)
T
(iii). For case 3, let us express X/ jug, as
Xf—lug,t = (q’TXf—Q + 5lf,t—1) (PTUg,t—l + 5g,t—1)
= CDTPTXf—zug,t—l + cDTXt“—ﬁG,t—l
+pT€it71u6ﬁt71 + gﬁt,tflgg,tfl'
Summing up the above expression over ¢t = 1,...,7 and subtracting both sides by

62



T .
Zt:l X#—2ug,t—1 yield
T T
X%—lug,T = (Prpr — Ii) Z X{ouge g + O Z X oghi1
t=1 t=1

T T
I I I I
+pr E €141 —1 T E €1,t—-1€0,4-1- (45)
t=1 t=1

Since (I)TPT - Ik == ((1 + %) (1 + Tc:u) - Ik) = TC:u + O(T_1>7

T

T

Cy -

(T“u +0(T 1)) Z Xﬁz“g,tfl - X;—IUS,T — &7 Z Xt#ﬂgg,tfl
t=1 t=1

T T
p p " "
—Pr § €1t-1Uo -1 — § €1,t—1€0,4—1-
t=1 t=1

By (38), Lemma 3.1 in Phillips (1988), Lemma A.1 in Lin and Tu (2020) and the

ergodic theorem, we can obtain the following limits when & — [, and pr — 1

1+ky

Xp_yupy = Op(TV20,(TF) = O)(T "), (46)

T
1
T Z 5’f,t—155,t—1 = 2015 (47)
t=1
1 T 1 Z 1
T Z Xilo€hs1 = T Z Xt (50,t—1 T Z 50,t>
t=1 t=1 t=1
1 Z 1 T ;I
— 1 7
- T Z Xy 9€0,4-1 — ﬁ Z €o,tm Z Xiso
t=1 t=1 t=1

= /1 JE (r)dBo(r) + Ay, — Bo(1) /1 JE. (r)dr. (48)

To study the limit of £ ST €1+ 1Up_1, Note that
T

1 1
§ : o o § : o o o
— e U = = 3 Pru + e
T pa 1,t—1%0,t—1 T 1,t—1 ( 0,t—2 0,t 1)

t=1

T T
1 1
= PTf Z 5‘11#1“62572 + T Z 5¥,t7155,t717 (49)
t=1 t=1
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~
Q)
S
o~
|
L
2
St
T
no
Nl

(et )oiE)

T
1
€1t 1U0,t—2 TZ&t ITZUOt Tzuo,t—Qthlfl,t
1l 1
+T ; El,tT ; Uo,t- (50)

From Lemma 3.1 and Lemma 3.3 in Magdalinos and Phillips (2009), we know that

1
T

HM’% WM%

1
T Z E1,t—1U0,t—2 RS Af)l. (51)
t=1

For the second term in (50), note that % >/ 1,1 = O,(T~"/?) from the functional
central limit theorem. Also, writing

T T T
E Uo,t = Pr E Up,t—1 T 5 €o,t
t=1 t=1 t=1

leads to
T
UgT — Ugp = T_l)zuo,t 1+Z€Ot
t=1 t=
. T T
()Y Y
=1 t=1
Thus
1 (u Uop) 1 &
g (uor —uop 1
T1/2 4k Zuo,t—1 = ¢ T1/2 — ¢ Tip ZEO,t
=1 =1
— 0,(1) +O,(1) = O (1). (52
Therefore,

—Zm 1—ZUot— W(T7PYT 0,27 = 0,(T7 7).

Following similar steps, we can also show the third term % Zthl Uo’t_g% ZtT L1 =
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O,(T"~1). Finally, for the last term, <% ST 51,t> (% ST u07t> = O,(T"1). There-

fore, we have
1 & 1 <
T Z iUz = T Z E141Uo g2 + 0p(1) = Agy. (53)
=1 t=1

From (51), pr — 1, %Zthl el \_1eh,1 = i because of the ergodic theorem.
Therefore,

T

1

T Z g!f,tflug,tfl - A61 + 261- (54)
=1

By (46), (47), (48) and (54), we have

1 1
TM — Z Xt 5 <2A61 + 25, / Jb (r)dBy(r) — Bo(1) /0 Jh (r)dr) ,

(55)
and with 4 >/ X/ X1, :>f0 J& (r)Jé (r)'dr, we have
T? -
i (ﬁ—ﬁ)

T
E Xt T“u E {-1 U0
1

[ / Jh () ( ’dr} (2A31+22 /J“ )dBo(r) — Bo(1 /J“

This establishes (26).
We now study the limit of the test statistic. For the scaled sample covariance

1 ~ 1 T
Tra Yh = Ti¥re Zt:h+1 €0,t€0t—hs

T

1
m E €0,t€0,t—h
t=h+1

T

= Tlinu Z (ug,t-i- <ﬁ—B>/Xf_1) (UOt ht (5 ﬁ) 1 h)

t=h+1

T T
1 A .
T Tltra Z ugvtugifh + (5 N 5) Tl+ku Z XX <6 N 6)

t=h+1 t=h+1

T T
1 A A7 1
o 2 WX (0-08) + (5 8) e 2o Xlaufie (56)

t=h+1 t=h+1
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We now study the orders of the terms appears in (56). For the first term,

R R 1< 1<
Tltra Z UpUgy—p = T+ Z (Uo,t - Tzuo,t) (Uo,t—h - TZ%,t)
t=h+1 t=h+1 t=1 t=1
1 < R 1 o
= Tltru Z Uo,tU0,t—h — (’]T”u Z Uo,t> Tzuo,t
t=h+1 t=h+1 t=1
R 1 o 1 — [1< i
(e 2 ) 33wt e 3 (13w
t=h+1 t=1 t=h+1 t=1

1 T

_ Ky—1

= it E Ut U0,t—h + Op<T ),
t=h+1

where the third equality is obtained from applying (52). For the term Zthh 11 U0,tU0,t—hs

note that we can write

T T
Z U, tUpt—p = Z (pruoe—1 + €ot) (PTUOt—h—1 + €0,4—1)
t=h+1 t=h+1
T T
)
= pr Z U,t—1U0,t—h—1 + PT Z U0,t—1€0,6—h
t=h+1 t=h+1
T T
+pr Z €0,4U0t—h—1 T Z £0,t€0,t—h- (57)
t=h+1 t=h-+1

Subtracting both sides of (57) by ZtT:hH Up¢—1Uos—h—1 and multiplying them by 7!

give

| T
(hr—1) T Z Up,t—1U0,t—h—1 (58)
t=h+1

1

1 T
= = (UO,T—luo,T—h—l - Uo,huo,o) — PT= E Uo,t—1£0,t—h
T T
t=h+1

T T
1 1
—PTr— E €0,tU0,t—h—1 — = E €0,t€0,t—h
T T
t=h+1 t=h+1

T T
1 1
= —Pr+ E Up,t—1€0,t—h — PT E €0,tU0,t—h—1
T T
t=h+1 t=h+1
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T
1
T Z €0,€0,t—h + 0p(1), (59)
t=h+1

where the second equality is obtained by ug; = O,(T%*/?). For the last term, it is clear
that

T o)
T €0,t€0,t—h — [50,t€0,t—h] =0, C0,5€0,j—h-
t=h+1 =0

. 1 T ~ o 00~ ~ -
We now study the limit of 7>, . uos—1804—n. Let Zo; = ijo Co.jz04—j and g j =

S 11 Co,j by using the Beveridge-Nelson decomposition. We have

1 « Co(l) — 1 «
T Z Uo,t—1€0,t—h = OT Z Uo,t—120,t—h — T Z uO,tflAgo,tfh

t=h+1 t=htl e
T
Co(1 1 : ;
= (; ) Z U,t—120,t—h — {T (uo,7-1Z0,0-h = Uo,p%0,1)
t=h+1
| T
+ Z Z04—h—10Ug 1 (60)
t=h+1
T T
Co(1 1 :
t=h+1 t=ht1

For the first term in (61),

T T -1
1 1 1
T Z Uot—1Z04-h = 7 Z [P%UO,th1 + Z pr ! ]€o,j] 20,t—h (61)

t=h+1 t=h+1 j=t—h
T T t—1
nl 1 t—1—j
= pTT E uO,t—h—le,t—h‘Ff E E Pr = €04 | 2ot—h-
t=h+1 t=h+1 \j=t—h

Since

1 T t—1 '
T 2 <Z ptT_l_]go,j> 20,t—h

t=h+1 \j=t—h

T T T
1 1 h—t11
= = E €0,4—120,t—h + PT = E €04—220,t—h + .-+ P71 = E €0,t—h20,t—h
T T T
t=h+1 t=h+1 t=h+1

h
p, 2 2
- E :CO,h—jE [ZO,t—h] =0, E :CO,h—j-
Jj=1 Jj=1

>
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For % Zf:hﬂ U t—n—120+—n i (61), applying Lemma 4.2 in Magdalinos and Phillips
(2009) gives
] T
Tl@ Z U, t—h—1R0,t—h — Op(1>'

t=h+1

1T _ -1)/2) — 15T 5 :
Thus, T Zt:h+1 UQ,t—h—120,4—h — Op(T(’iu )/ ) = 0p<1). For T Zt:h+1 zw,h,lAuo’t,l n

(61),

T T
1 _ 1 .
T Z Z0t-h—1Aup -1 = T Z Z04—h—1 (Uo4—1 + €0.4—1) (62)

t=h+1 t=h+1
T T
pr —1 . 1 _
= (—T) Z 20,t—h—110,t—1 +T Z 20,t—h—1€0,t—1-
t=h+1 t=h+1

For the first term %Zfzhﬂ Z0+—h-1Uot—1 in (63), note that the proofs of Lemma 4.2
in Phillips and Magdalinos (2009) and Theorem 3.2 in Phillips and Magdalinos (2007)

are still applicable, we thus have

T

_1 )
% Z Z04—h—1Uo—1 = 0p(1).

t=h+1

For the second term, the ergodic theorem yields

T T o) 00
]. Z ~ 1 ~
e 20t—h—1€0t—1 = 5 E Co,jRt—1—j—h E Co,j2t—1—j
T T - J J — J J
j:

t=h+1 t=h+1 \j=

oo o0
£> 2 . . + 2 Cn - .
O-Z CO’]COmjfh O-Z CO»JCO7]+h.
J=0 J=0

So, we can conclude that

T %)
1 b i
— Uo—1€0,-h — 05 Y (CojCoj—n + CojCojih) -
t=h-+1 7=0

For %Zfzh 11 €04Uo¢—h—1 in (59), by the Beveridge-Nelson decomposition and sum-

mation by parts, we have

T T T
1 Co(l) 1 A3
- €0,tU0t—h—1 = E 20,tU0,t—h—1 — 7 E UQ,t—h—12220,¢
T T T

t=h+1 t=h+1 t=h+1
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Co(1) — 1 &
= OT Z 20,4U0t—h—1 T T Z 20+ AU t—n—1 + 0p(1).

t=h+1 t=h+1

For the first term % Zfzh 41 20,tU0,t—h—1, note that the proofs of Lemma 4.2 in Phillips
and Magdalinos (2009) and Theorem 3.2 in Phillips and Magdalinos (2007) are appli-
cable. We have

T
1
e E Zo,tuo,t—h—lep(l)'
=" 55

T ~
For the second term %Zt:hﬂ Z0+Aug—p—1, we have

T T
1 . 1 .
T E ZotAug—p—1 = T E Zou ((pr — 1) uo—n—2 + €0,4-h—1)
t=h+1 t=h+1
T T
lor ~1) 5~ T
= 0,tU0t—h—2 1 7 0,t€0,t—h—1
T T
t=h+1 t=h+1
o0
P 2\ " x
— 0 E Cot14jC0,j-
J=0
2
: 2 _ 2, _ 2 1
Eventually, since p7 — 1 = 754 + 7% = 7% + O (TQ—M) we can conclude that the

first term in (56) has the following limit,

2 o0

1 d o
P z ~ ~
Titre E U, U t—h — o0 E Co,h+1+5C0,j T 2Co,Co,j—n + Co,jCoj+h | -
t=h+1 v

For the second term in (56), note that from (26) and X}' = O,(v/T), we have
5 L - T 3
(9=5) gmm X Xtas (5 -9)
t=h+1

T1+nu 1 T1+Iﬁ2u
= OP< T2 )T1+Hu0p (T2) OP< T2 >

T1+nu
== Op <T> == 0p<1).

The same proving strategy to show (55) is applicable to the last two terms in (56).
Thus, Y, ub, X/, and 3, X{ ugy,_p, are both O, (T"*+) . Therefore,

T T
1 5 A1
Tltra Z ug,tXtullfh (5 - 5) + (5 - 5) Tltme Z Xi_qugy

t=h+1 t=h+1
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- 20,00, (1) = a0

We then have

T 2 o]

1 o
D z ~ ~
T, g CotCot—h = ~5 = E Co,h+145C0,5 + 2€0,C0 j—n + Co,jCoj+h | 5
U

t=h+1 §=0

or equivalently,
Yn = Op(Tnu)-

It implies

O, = O, (MyT™),

T —1
- . i M
Qw = [Z X;‘_lx,:il] Q. = O,(T2)0y(MyT™) = O, ( d ) ,
t=1

and
R / B .
Wy — <R6—w)[RQWRq1<R6—r>
Tl—i-mu T2—nu Tl-‘rﬁu
- oo () o (M)
T2+2f<u T271€u Tnu
- o) o () - ()

(iv). Note that we can express 3., X} up, as

T

T 1 1
ZXf—lug,t = Z (th -7 ZXt) (Uo,t T Z Uo,t)
t=1 t=1 t=1

t=1

T L T T L I T
= Z Xt_1U0,t - T Z Xt—l Z Uo,t — T Z Xt Z Yot
=1 t=1 t=1 t=1 =1
T T

‘f‘% Z Xy Z U, ¢
t=1 =1

T
= D Xivug + IO, (TVH)0,(T'?)

t=1

T
= Z thluO,t —+ OP<TRZ)

t=1
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By the Beveridge-Nelson decomposition and summation by parts, we have

L I
T Z Xf_lufit
t=1

T
Z Xiquo s + Op(T%_l)

T T
1 3 o
S e 13 Xeii O,

t=1 t=1

T T
Uy (1 1 -
o(1) Z X120 + T Z AXi1Z04

t=1 t=1

T
1 - ~ e —1
—\7 (Xr_1Z0r — X1200) | + Op(T777)

T T
1 -
T Z Xt—lzo,t + T Z AXt_lzoﬂg + Op(l)

t=1 t=1

Wo(1) RN 3
Z X120 + T Z (Pr — Ii) Xe—o +€14) Zoy + 0p(1)

t=1 t=1

T T

T
Wo(l C, 1 . 1 -
O( ) Z Xt,12107t + - — Z Xt,QZ(),t + f Z ZO,tgl,t + 0p(1>.
1 =

From the analogous arguments of Lemma 3.1 and Lemma 3.3 in Magdalinos and Phillips

(2009), we have

Thus,

T
ZXt—IZO,t = Oy (T2,
t=1

T

1 z —K

Tl—l—waXt*?ZO,t = Oy(T 1/2)-
t=1

T T

1 1.

= > X b, = = D Zniers+op(1) B A, (67)
t=1 t=1

where Az, = E[Ze1,4). Applying Equation (7) to Magdalinos and Phillips (2009) gives

Tl—i—nz

T T
Z 1 Z
t=1 t=1
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We then have

T (- 8) =

Obtaining the limiting distribution, as in Magdalinos and Phillips (2009), requires re-

th w5 VA

T
1
T D XfilXt’i/l
t=1

centering Zthl X quoy. Let

&

w = T’ix s zZey

= Gojr1%00Ch (1),

=0

where C(1) = Z;O:o C1,;. Applying Lemma 3.4 in Magdalinos and Phillips (2009), we
have

1 T
T(re)/2 ZXt-luOvt - T(1+nz)/2¢

\Ifo(l 1 T
= T0tra)/2 ZXt 120t+mZAXt 120, — mw+op(1)

T
Wo(1) i
= T(—l—?—&Z )/2 ZXt 120t + /— T” (lsz Z Xt—QZo,t - Mo,T)

T
1 .
+m Z (Zo,tgl,t - Ags) + Op(l)
t=1
= \I’()(]_)N(O, Eoo%x) = N(O, ‘/Zm;QO()). (69)

R . -1
Letting By = —T [Zthl leile;'l] Y, we have

T
; R 1
Tne)/2 <B¢ - 5) T, > XX 1+/~cx /2 ZXt 120,
t=1
= V_IN(0,VieQ00) = N(0,V,. Q). (70)

We now proceed to study the sample covariance 4. As will be shown, this helps us
obtain the order of Wald statistic. From (41), we have

Yn = %ET: (Ug,t + (6 - B)/Xt“—l) (ug,th + (5 - 3)/Xt“1h> -

t=1

Since B — 3 = O,(T~"), and X!, = O,(T"=/?), (ﬂ - B),Xt‘il = 0,(T~"/?) = 0,(1),
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we have

. 1 P
W= Z g Uy 0p(1) = 0 = Elug o).
By the standard asymptotics for the Newey-west estimator, we have Ou B Q. Thus,

1

T -1
TlJrﬁzQW —_ m ZX#_lX#_lll Qu ﬁ> ‘/x;lﬂu
t=1

Since the Wald statistic uses the OLS estimator without re-centering, we can express
. / _ .
T We = T (RB =) [RTYQuR] ™ T (R3—7)
5 (RVZ'AL) [Va'] ™ (RVSIAS) .

This implies that Wz = O,(T"'~"=). For the second case, note that if ug; is an mds, the
OLS estimator needs not to be re-centered since m Zthl Xiqupy = m Zthl X120

(70) gives the limiting distribution for the OLS estimator and
. / _ .
Wr = (BB —r) [RT*QuwR]™ (R, —7)

_ pO+s)/2p <B¢ B ﬁ)/ [RTLH{EQWR,} -1 T(+k:)/2 B (Bw _ ﬁ)
= X*(a)-

(v). In case 5, from (45), we have
1 « Ly
(q)TPT_Ik)fZX#—Wg,t—l -7 Xr_ 1U0T Zglt 1€04-1
t—

1 1
—Pp— E X! el | — pr= E el ub, .
T — t—2%0,t—1 T — 1,t—1%0,t—1

Using the same arguments as (46) and (47), we have £X%_juf ; = 0,(1) and

L I

W M P sV
= E :51,75—150,15—1 — Zo1-
T t=1

Moreover,

T

1 ¢ p 0 1 p (u 4 et )
—E e qUp .y = — et (uhy,_ €04
Ttﬂ 1,t—1%0,t—1 TE 1,t—1 \Yo,t—2 0,t—1

t=1
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T T
pr 1
- T Z €1 4 1Upg—2 T T Z €Y1 18041
t=1 t=1
/
= {/ JE (r)dByi(r) + A1 — Bi(1) / Jél(r)dr} + X0

1 <& 1 <& 1 <& 1 <&
" _
T ; Xt—250,t—1 = 7 ; (Xt—Q — (T ; Xt)) <€o,t—1 T ; €o,t>

1
— ? Z Xt—250,t—1 —f- Op(].)
t=1
& AE)lv

where the second equality is obtained by the fact that both %ZtT 1 X and - Zthl €0t

are 0,(1) by (52) and the ergodic theorem. Since ®rpr — I = <= + O (7 ) , We can

obtain

T l

1

m Zleilug,t = Ogc_l |:/ Ji(r)dBl(’f’) + 2A01 -+ 201 — Bl(l) / Jéi(r)d?”:| . (71)
t=1

Due to (68), we have

-1

B-8 =

1 ZT 1 ZT
o w o I
T1+Hz Xt—lXt—l Tl""iz Xt—luo,t
t=1 t=1

= [CpVi] [/ JE (P)dBy(r) + 2Ag1 + So1 — By(1) / e (r)dr}l.

As ug; = O,(V/'T), we can show that Q, = O,(M;T) using an argument similar to the
derivation of (43). Thus,

T -1
/ A C(l4x M-
w = [Z X#lell Q, = Op(T (s z))Op<MTT) =0y ( T) ’
t=1

W= (RG—r) [RQwR]™ (RG ~1) = 0,(1) [OP (%)} T o =0, (L) .

(vi). In case 6, from (45), we have

T
1 1
(q)TpT_Ik)fE quug,tq -7 X 1U0T E 51t 150t 1
t=
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1 & 1 <&
_(I)T_E X”,é?”,—p:r—g et ub, ..
T - t—2€0,t-1 T - 1,t—1U0t—1

Similar to the previous analysis, X7 juf; = 0p(1), 7 S €1+ 16041 B3 As
in (53) and (54), we have

~

1

[N b oA

- E Xi 98041 — Ap
=1

~

N

1
o o P / /
= E €1 4—1Up—1 — Nop + Xos-
t=1

~

Combining the above results and (68) we have

T
1
(Prpr — Ii) T Z Xzi2ul0L,t71 = =2 (A +201) (72)

t=1
and

-1

T

1

Tl+ke Z Xé:lXéill
t=1

T
1
(Prpr — It) T DX ul, B =2V (A + Shy)

t=1

Note that ®rpr — I, = TCJZ T 4+ O (%) . Suppose kg < Ky,

T

1 _

Ti+re Z XziZug,tfl = —2C;" (Aor +201) (73)
t=1

we have

-1

1 <& 1 &

- M Iz - wooop

Tl+ke Zthlthl Tl+ke § :Xt—zuo,tq
t=1 t=1

B =2V 1Ot (A + 2.

-8 =

Suppose Kk, < kz,. Then we have

T

1 _

Tl+ru Z XéiQulOL,tfl = —2¢," (Aor + Zo1) (74)
t=1
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and
1

rese (5-5) =

T T
1 1
T XX | e D Xt
t=1 t=1

rxr u

Finally, if k, = k., we can deduce that

T
1 -1
e 2 Xt au oy B —2(Co+e) ™ (A + Tpn), (75)
t=1
1 < Tz
B=8 = |mmm XX e DX ubes
t=1 t=1

Ly V(O 4+ ) (AL + 20,

Trxr

From the above analysis, we can directly verify that the stochastic order of the
residual eg, is determined by ug;. We can show 4, = O,(T"*) and Q, = O, (MpT").
Eventually,

-1

A —1—k Ku MT
0, = 0T 10,015 7) = 0, (rni ).

T
QW = [Z X#let!ill
t=1

We can therefore obtain the stochastic order of the Wald statistic,
. / .
Wy = (RB - 7“> [RQwR]™ (RB - 7’)
Op <MLT> ) lf Ry = Rg,

o T1+"im—*€u .
= Op< iy ),1ff<cu>/<;z,

l1—kg+kK .
O, <T - “) , otherwise.

Mt

(vii). (31) can be obtained by following the proof of Theorem 4.1 in Magdalinos
and Phillips (2009), we therefore omit its proof. For the Wald statistic, note that de-

meaning X; ; will not make a difference because

T

1 _ _

o 2 X X 9T
t=1
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T T T
1 _ B 1 B -
= o > XX, 0" + T d "X > X[ BT
t=1 t=1 t=1

1 T
- K

T2ﬁ$
!/
T3ka i o7 X L _— T ot X, -
T2m+1 Z Tk /2 Z o e ®r
t=1
1
— T2H"7 Z@;TthlXt/—l(b;T"’Op(T"iz*l)’
t=1
0

where we have applied Lemmas 2.2 in Phillips and Lee (2016) to obtain the second and
third equality. The limiting distribution is achieved using equation (20) in Magdalinos
and Phillips (2009).

Therefore, we can express
1 -1
mo. 2((5-7))

-1 -1

RQ,

T
> XXl

t=1

W = (n(r-3)) |

- (s (o)

(ks 3-9)

= X*(q).

T2“w Z(I) X X T

(viii). Scaling (45) by T~(*«+1/2¢_ T we have

T
(Prpr — Ir) T_(MH)/Z‘I):FT Z Xilotgy

t=1

o T
w2 — g, — (ks _
- (T "/2¢TTX;—1) T2 — T '+1)/2CI)TT+IZX£255,F1
t=1

T T
_p—(ke+1)/25 =T K I _ p—(kae+1)/25-T ,u w
T 7 pr El1Uo—1 — T 7 €1,t-1%0,t—1

t=1 t=1
"

U,
= (T POFTXE ) gy = T RO, (T 07

_T_(H’”H)/Q@}TpTOP(T) . T—(fsw—f—l)/Qq);Top(T)
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o
_ (T—nx/2(1);TX¥_1) Uo, T

T17/2

T
1 ’LL

T M
Uu
= T Po " Xp U | - T 72 X <£>
=1

+ 0p(1)

T1/2 T1/2
Applying Lemma 4.1 in Phillips and Magdalinos (2009) gives
T2 "Xy = Yo, ,, = Yo,

_ T g—J :
where Yy, . = T~ "/? > -1 Pre1 ;. Since

ZXt ZXt 1+Z€1t7

C T T
T D K= Xr = Xo = e
t=1 t=1

we can write

C,
Tr

T
T= nz/Q(I) T Z X, , = T*RZ/Q(I);TXT _ Tfnz/2q);TX0 _ Tfnz/2(1);T Z E1
t=1 t=1

= YCz,T + Op(l) = Op(l)‘

’LLH
Therefore, T"</2d 1L Zt 1 Xio1 = 0y(1), with 737 = JE (r) and @rpr — I, = T
o(1). We then have

@T

WZX QU'Ot 1:>O 1YC J'u( ) (77)

(77) and (76) jointly give

T =D/2T (B _ 5)

1 d B

o 0T D XL X T
t=1

= Uy, Yo, Jh ().

3m;+1 T(3ka+1)/2 ZXt 2u0t 1

For the Wald statistic, note that since B — [ converges in probability to zero at a rate
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faster than v/7 and 7', it can be easily shown that % Zle Uyl = % 2th1 g j+o,(1).
Eventually, since ug; = O,(v/T), we can show that Q, = O,(M7T). Thus,
T -1 -
R|> XXl

Wr = (R(B‘B))l R'Qu <R<B—ﬁ>>
= Op((I);2TT(1fﬁz)>Op(T2nz @%T)Op((MTT)_I)
= 0T )0y (TH)0p(MrT) ™)

T*
- 0,(3 )

(ix). Pre-multiplying (45) by ®,", we obtain

T
(®rpr — Ii) CI);T Z Xf—ﬂg,t—l

T T T

I e e Boop ~T I 7 -T i 7

= 07 XT—1“0,T — 07 Py § Xt7280,t71 — pr®r § €11 -1 — Q7 § €1,t—1€0,t-1
=1

t=1 t=1

T
= O " Xr qugr — @70 Z Xi—2€04-1 + 0p(1)

t=1
T-1 4 T t—2 4
el <Z q)g_J€17j) (Z pT 80 t> — (I)T(I);T Z (Z (I)gv_jSLj) Eoytfl + Op(l) (78)
7=1 t=1 j=1

Second equality above is due to the fact that demeaning the time series has no effect

asymptotically; see Phillips and Lee (2016) for a discussion. Furthermore,

T

T t—2 T—1
q);T Z (Z (I)é“jgl,j> €04—1 — (I);T Z (Z (I)gwjéfld') €0,t—1
t=1 \j=1 = =
T
_(I)TTZ ( Z (I)T 51]> €0,t—1,

j=t—1

since

E

T T
T t—j
O E: E Qre1j | €01
j=t—1

t=1

t=1 :t,
T
< Z 51,j> €0,t—1
j=t—1

IN

E||®7
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IA

T T
LA DK
t=1 j=t—1

= 0(1)O(®;:HO(T™)O(T) = o(1).

@77 ] Ele1 el

We can express (78) as

T
(Prpr — Ii) CD;T Z Xtu—zug,t—l
t=1
T
<Z L~ 51]> (Z ph- 50t> — or0; "y (Z DL elj> cos1 +o,(1)  (79)
t_
‘ T 1
Z q)Tjé‘l,j) (Z pT 80 t> — (I)T(I);T Z (I)tT (Z (I)T]€1 j> €0,t—1 + Op<1)
j=1 t=1 j=1
T T-1 -
Z Pr'€0s - Z Or ' eoe (Z ®5j51,j> + 0,(1)
t=1 j=1
T T T-1 )
Z pT 6015 - (Z @31+2_T€07t + (I)%_T&)p — q)%EO,T)] (Z @;]81,]') + 0p(1) (80)

t=1

T
Z (p;it — (D?FQ T €0 t] <Z (I)T]€1 j) (I)% TEOO TEOT (Z (I) 51 J> -+ 0p(1>

Lt=1

Pre-multiplying (80) by 7'~ (in{xerul+r2)/2 we have

(Prpr — I) D57 -

T (min{ry kot +rz) /2

" _
th2u0,t71 =

(]

T (pg—t _ (DtT+2—T) Eo
Tmax{Kz,ku}/2

T-1
(T_m/z 3 <I>;j61,j>

t=1 t=1 j=1

P2 Te,  _ Ple r-r
(@00 = Be0r) (1 S g, ) 4o

Tmax{ke,ku}/2
j=1

T ( T—t t+2-T T T-1
o pT B ®T ) govt —Ka /2 -7
- Z Tmax{kz,ku}/2 (T Z (I)TJELJ + Op(l)

t=1 j=1

[~ (pr — @2 T) |

Tmax{Ke,ku}/2
t=1

ch’T + 0p(1),

I
[M] =

where we have applied Lemma 4.1 in Magdalinos and Phillips (2009) to obtain the

last equality. We now focus on the term in the bracket. By the Beveridge-Nelson
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decomposition and summation by parts, we have

-t (DtT+2—T) Eoy

[

Tmax{Kz,ku}/2
t=1
_ 5 ) (G - A
B — Tmax{Kz,ku}/2
— C (1) i It - @31+2_T) zO,t B (Ik - (D%v) 2O,T o (,O;_l - @%—T) 20’1
n 0 P Tmax{tz,ku}/2 Tmax{ke,ku}/2 Tmax{Kz,ku}/2
1 T
Tt -1 t+2-T 1\ ~
+Tmax{mx,nu}/2 Z (pT (1 ~—Pr ) - (I)T+ (Ik - (I)T )) 20,t—1-
t=1

. ~ I —®7. )z -
Since Zo7/TY? = 0,(1), [, —®2 = ?pgﬁ +0 (sz) ) qgmkax{nx ),WO}/TQ = Zo,rO (m)
and kK, + max{k,, K, }/2 > 1, we have % = 0p(1). Similarly, using the proof
of Lemma 3.2 in Lui et al. (2021), we can show pl = exp(£L) + o(1). Note that

T—1_53-T)3z
exp(e, T' ™) = 0 as ¢, < 0, and also that @7 = o(1). Hence, we have % =

0p(1). Moreover, as
1 T

Tmax{ﬁgc,nu}/Q Z [pgit'govtfl} = Op(l)

t=1

by Lemma A.2.a in Lin and Tu (2020) and (1 — p7') = 0,(1), we have

1 d i B
Tt O Pr Foea] (1= pr') = 0p(1).

t=1

Finally, note that —— S, 7%, 1 = Oy(1) by Lemma 4.1 in Magdalinos and Phillips
(2009). We then have

Tmax{l-iz Fu)/2 Z CD ZOt 1 (Ik — @}1) = 0,(1).

The above result implies that

T T—t t+2-T T
-0 € Co(1 —(T—
Z (PT T ) 0t _ o(1) Z (pg_t _ q)T(T t)+2) 204 + 0p(1).
t=1

Tmax{Ke,ku}/2 Tmax{Ke,ku}/2
t=1

Following Magdalinos and Phillips (2009), we define a sequence (Kr)reny which in-

81



creases to infinity such that
D] 75 = 0,7 || &r |~ — 0.
We then have
Tmax{ﬁz nu}/2 Z ( 7t — o t)+2> 20, = 0p(1),
which leads to

(Prpr — 1) 077

T(max{nzaﬁu}+ﬁw)/2 Xéu;ng,t*l = BKTYCJmT(]' + Op(l)) + OP(1)7 (8]‘)
t=1
where
Co(1) - Tt —(T—t)+2
Br, = Tmin{rs ) /2 Z (PT — &y >Zo,t
t=Kp+1
T—Kr
Co(1 e e
Tmaxfn(z,zu}/Z Z <p; Kp—t @T(T Kr t)+2> otk
t=1

Let Crivrer = Br, Yo, r and (Mr) e = 325 Erpviscpr (Craier Gy i) We have
the following predictable quadratic variation of (Mr) -

1 T—Krp )
(Mr)r_ g, = ch Q00— ( Tt @;(T_KT—UH)

T Tmax{ﬁz Ku}
YC:C,TQOO [Tcu + %Ci + 2[c, i + Cw]_l] , if Ky = Ky,
= Y8 ks [+ TR+ TG if > e,

2c

2 1 Tru TRz ~2
\ ch7T900 Trx —2cqy O

K .
+Z “} , otherwise.
u

,
Y2 Q00 [7216 + 102 4+ 20e, I + Cx]‘l} Cif Ky =y,
= fchCiQ(]o, if Ky, > K,

1y2 2 .
\ 3YE Cifyo, otherwise.

Note that ®7py—I = 2+ L= +0(1). Following the proof of part (iii) of Proposition A1

and Equation (22)-(26) of Magdalinos and Phillips (2009), we obtain that, as T — oo,
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if Ky = K.

o+ Cp) 05T & 11
(T# ZXf_ng,t—1 = MN <(), YE Qoo [_20 + §C§ + 2c, + Ox]_ID .
t=1 w
(82)
If Ky, > Ky,
C,077 1
AT > X{ub, = MN (0, — Yngzoo) : (83)
t=1 “
If kK, > Ky,
cu@}T T v 1 o o
R > O X{ub, = MN (0, SYE.C000 ) . (84)
t=1
By (82), (83), (84) and (76), if K, = K, we have
of (5-8)
-1
0, [(culpy + C) ¥ Y2
= MN 1 1 [2( g ) i/?] - -1
% Qg [72% + 1024 9e, + C, ] (el + Cy) Uy, ]

If Ky > Kz,

. Uy, )" -
T(m—m)ﬂ@% (5 — ﬁ) = MN (O, MY& (‘I’Ycz Oa:) 1Q00) .

_Cu

If kK, > Ky,
-1

. v
Tl (B~ ) = MN (0, S OOy Qoo) -

2
2cz

For the Wald statistic, following the proof of (64), we can show Q= O, (T" Mr). If

Ky = Ky, We have

MT T'V”“MT
T Wr = T Wr

Therefore, we have Wy = O, <%> . Similarly, we can also obtain Wr = O, (%)
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when k,, >k, and Wr = O, (%) when k, > k,. This completes the proof of Lemma
2.1. |

Proof of Proposition 2.1. We first prove the result for the case where v, is an MI

process with , > 1/3. For the residual ey, we can express
~ N/
eor =yt — X} = ug, + (5 — 5) Xy

Thus, S; = >/, u87t+(6—3)’ S, X/ . For the first term in Sy, note that for t € [Tr|
T
1—pr o 1— pr 1
T2 Z oy = T1/2 Z ot = Z Uoyt
i=1 i=1 =1
T
1 —pr ¢ t1—pr
= e ZUO,t T T2 Zuw
i=1 =1
= B(](?”) — T’Bo(l) (85)

For the second term in Sy, note that

1 i . "'e
(B=B) gt DXt = (B=A(1-p) Y 77
i=1

T1/2
i=1

2

T RV
= e (8- 8) 7m DX
=1
= cuG/g/ Je, (), (86)
0

where

-1

Gy = — { /0 ) (r)’dr] « (2 (AL +50) + /0 I (1) dBo(r) — Bo() /0 o (r)dr) |

Hence, we obtain the result from Lemma A.4(iii). The joint convergence of (85) and
(86) gives

1 _ T
- S = Bolr) = Bo(1) +cucﬁ/ T4 (s) = G(r).
0

From the continuous mapping theorem, we have

(1—pp)? % > s = /0 G(r)dr. (87)
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From (64), we have
Q, = O,(MyT").

Eventually, we have

1 A
P(Lr >cv) = P(ﬁZS§>CUQu>

t=1
1 — Q
= P ((1 _/OT)QEZSE > C“TTZMCU> . (88)
t=1

Since - = 0, (M55") = O, (M) 5 0, from (87) and (88), we have P (Ly > cv) —

1asT — oo. If up, is a LUR process, we have

1 1 A
meo,t = Tl/QU’Ot (5 - 5) TUQX# 1

where 4 is defined in Lemma A .4(ii). In this case ey is Op(T"/?) and the remaining
proof can be obtained following the proof of Proposition 1 in Miiller (2005). This
completes the proof of Proposition 2.1. |

Before we prove Theorem 3.1, We first establish the following lemma, which provides

a more refined and detailed version of Theorem 3.1.

Lemma A.5. Under the same set of assumptions as in Theorem 3.1, as T — oo, we

have the following results.
(1). Suppose X is LUR or MI and ug; is stationary.
If ky >,

Brvx —B=0,(T™") and Ws oo = O,(T1),

Brvx = B = Op(T-UrmintsatD2) and - Wy = x*(q);

if N2> K,

Brvx —B=0,(T") and W, _=O0,T""),

Brvx — = Op(T-Grmintesad/2)  and W, = x2(g).
(i1). If Xy is LUR or MI and uo, is LUR, then
Brvx — B = Oy (T ™5y and W = O, (TP mintrenty;

Brvx
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if Ky <1,
Brvx = B=0p(1) and Wy, = Op(T"'7);
if ke =,
Brvx — B = 0,(1) and Wp, = O,(T?*);
if ke >,
Brvx — B = O0,(T" ") and Wi, = O, (T~ 1/3+20=ra)y
(iii). If X; is LUR or MI and ug, is MI, then

BIVX — 5 — Op(Tmin{nvﬁu}—min{nzm})’
BIVX — /B — Op(Tmin{’ixvﬁu}—min{nm7n}).

]f Ky Z 2/3, then

OP(T[1+2KZ+2min{ﬁz’ﬁu}ignfﬁ“‘]% an < Rg

Op(TRmintre b =retl=ml) if p > pi,

Brvx —
if 1/3 < ky < 2/3, then

e OP (T2+2min{nﬁu}_max{'%_1/3+7771+f€u}_’m) ) an Z Ry

Op (T2min{l€u,'rz}—n+2/3—f€u) , an < Ky
Op (T2min{/€u,n}*ﬂz+2/3*”u) , Zf?’/ > Ky

Brvx —
(). Suppose X, is ME with r, > 1/2 and uo, is stationary, then

Tw@?(ﬁfvx —-p) = MN <07 \I/;Cleu> 7

T%®5(Brvx — ) = MN (0, qf;clxszu) ,

and
Q,
WBIVX = E_uX (Q)a
Wﬁlvx = X2<Q)



(v). Suppose X; is ME with r, > 1/2 and ug; is LUR, then

Brvx -8 = O, (®7 T rat1)/2-min{sz n})
BIVX — 5 — Op(@ETT(Nz-i-l)/Q—min{nz,n})’

and

_ Op(T?mImein{Hz,n})’
WBIVX _ OP(T3Hz_2min{Kx’n}_1/3).

(vi). Suppose X is ME with r, > 1/2 and uoy is MI, then

=T T u .
B 5 OP(CDT re e 7))7 Zf/{xZ/{uZTh
wx —p= — (ku+3rg)/2+min{ry,n} )
O, (@TTT ] wt ) , otherwise.

O, (P Tre =) | if ky > Ky > 1,

— (ku+3kg)/2+min{ky,n} i
Op <®TTT T2min{kg,n} ) 3 Othe/rw/ése’

BIVX _5:

if e < 1/3+ Ky,

Op (TH==3%w) L if Ky > Ky > 1,

Op (T5n$+2 min{nu,n}fllmin{mz,n}) ’ 0th67"11)i5€,’

Brvx —
if ke > 1/3 4+ Ry, then

0, (T3f£x—1/3—2/iu) if Ky > e >,

Op (T3nz/2+min{nz,n}fmin{nu,n}fﬁu/271/3) ’ otherwise.

BIVX
Finally,

Op (T4nz+ﬂu*277*1/3) , Zf Kg 2 Ky 2 1),

Op (TS;{E—FZ min{mu,n}—1/3—4min{/{w,n}) 7 otherwise.

BIVX

Proof of Theorem 3.1 and Lemma A.5. Before proceeding to the proof, we first list sev-
eral results provided in the Online Supplement of Kostakis et al. (2015). If C, < 0,
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pr = p and |p| < 1, we have

T T
1 1 .
T1+n Z Zt_lX#ll Tl Z Zia X+ op(1), if 7 < ky € (0,1), (90)
t=1 t=1

T T
1 1 )
T Y Zaxt, = T > ZiaX]  +0,(1),if K,y € (0,1, (91)
t=1 t=1
. I 1 I
1—+7n Z thlulg,t - 147 Z thluO,t + Op(1)7 1f 7] < Ry € (07 1]7 (92)
= 3 =13
T T
1 1 }
T Z thlug,t = i Z Zyqugy + op(1),if K, € (0,7]. (93)
Ay A ——

While in Kostakis et al. (2015), ug; is an mds rather than a linear process, the above
four results are still valid since \/LT ZtT:l upy = O,(1) is sufficient to establish these
results.

For the sake of the clarity of the presentation, we prove the claims for the IVX
estimator and the re-centered IVX estimator separately in two parts. Now, We first
prove the results for the IVX estimator.

(i). By construction,

t

Zy =) YiIAX;

j=1
t .
=3 Y5 (2r — DXy + &)
=1
= 7 1 (@ — 1)Up, (94)

where 7} = 22:1 TtT—ngj’ Zy =0, and Uy, = 22:1 TtT_ij_l. Suppose that 2/3 <
n < min{k,, 1}. Applying the analogous argument of Lemma 3.1(i) in Phillips and
Magdalinos (2009) and (92), we have

T T
1 1
Tig Z Zt_lug,t = ) Z Zt_1U0’t + 0p(1)
== ==

T
1 *
= mzztiluo’t +Op(1>
t=2
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Applying a similar argument to (69), and letting

C, = . :
Yrvx = WGO,T + No1, Gor = Z Co,j+120001(1)ITJTHa

j=0
we have

1 T

T
T4n)/2 Z Ziaug, — W%\/X

1 T
70Tz Z Zi-1los = T(1+n) /2¢IVX + 0p(1)
‘1’0( ] 1 T
T
\110(

— T T /2 Z Z: 120,t + T’7 T(H"’] Z t 22’0,5 GO,T)

T
1 -
+W Z (Zoe€1,0 — No1) + 0,(1)
=2
= N(07 ‘/zzQOO)7
where V., = [% e Q..e"dr. Proposition Al in Phillips and Magdalinos (2009) is

used to obtain the last result.
Note that since ¥y x = Aoy + O (T7"), we have

T
Z Zi—qugy — No1) = N(0, V.. Qo). (95)

1+77

Thus, we can also obtain that
L T
T Z Zy_yugy = Aoy + Op(TD/2),
=1
For 3.1, Z, 1 X!",, Equation (26) and (27) in the Online Supplement of Kostakis
et al. (2015) give =i ZtT:l Zi 1 X", = O,(1). Therefore, we can obtain
T

1 1
DN I SRR
t=1

t=1

" (BIVX - 5) =
— 0,01).
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And for the Wald statistic, since

1
T1+17

T
Z Zy 17, 2 V., Bo0 B oo, (96)
=1

and noting that TZt_th_lﬂpM is asymptotic dominated by [Zthl Zt—1Zt/,1] ioo, we
have Tl—]‘{n 2 V., Y00. Therefore,

T -1 T -1
Qivx = R ZZt—le_,1 M [Z Xz, R
- o,y
= 0T

Consequently,

Wi = (RBIVX - 7“>/ Qrvx (RBIVX - 7’>
= (T7) 0 (1)
= Op(Tl_n)-

If k, € (1/3,n), from (93) and (67) and Lemma 3.5 in Phillips and Magdalinos
(2009), we have

T T

1 1

T Z Zt—lug,t -7 Z Xiqugs +0p(1) = As. (97)
t=1 t=1

(91), (68) and Lemma 3.5 in Phillips and Magdalinos (2009) gives

T T
1 1
Tl+#e § Zt—lX{‘L:/l - Tl+#ex § Zt—ng_l + Op(l)
t=1 t=1

T
1
= T, D XX +o,(1)
t=1

B Vi (98)

Therefore, we have

1 T

R 1

T <6]VX - B) = T Z Zi_1up,
t=1

T
1
Tl+re Z Zia X
t=1
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= 0,(1).
For the Wald statistic, first note that

T

1

Tltre Z ZiaZy = Vi (99)
t=1

Also note that oo = 300, Tl—]\fﬂz 2 V.. Y00. Therefore,
QIVX — Op (T—2—2ﬁx) Op(Tl-‘er) — Op(T—l—Hx)

and as a result W = O,(T' ).
For k, =, (93) and Lemma 3.6 in Phillips and Magdalinos (2009) give

_Zzt il AOl,ZZt X[ = 0, (T ) (100)

t=1

and

T
Y ZiaZ = 0,(T" ). (101)

t=1

Following the previous analysis, we obtain 7" (BIVX — 5) = Op(1) and W, =
O, (T~ "=).
(ii). We now consider the case that n < k,. Pre-multiplying Z,_, by ug, and

summing over t = 1, ..., T, we have

T
Zumzt = Zutht L (@ = 1)) ub W (102)
t=1 t=1 t=1
Note that

ug,tZt*—l = (pTug,t—l + 55,1:) (TTZ:—2 + 51,t71)

_ I3 * B x_p u
= pTTTuO,t—IZt—2 + prugs_1€14-1 + TTZt—250,t + €0 4€1,t-1-

Taking the average of the above equation over t = 1,...,T", we have

N

~

1
(pTTT - Ik) - Z ug,thZt*f2 (103>
t=1

T T T

l(uz* _Mz*)_ l 10 —Tl T* M_l I

T Uogr4r—1 — Up140 PTT Up,t—1€1,t-1 T t—250,t T €0,t€1,¢—1-
t=1 t=1 t=1
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We rewrite (103) as

!

1 *
(prTr — Ik) — Z uiOL,thZt—2
t=1

~

T T T
1 1 . 1
= _PTT E ug,tflgl,t—l - TTT § thgg,t T E :5g,t51,t—1 + 0p(1),
t=1 t=1 t=1

where we the last equality is due to Z; = 0, Z5 = S0, ®% Ju,; = O,(T"2), and
ug,T = 0,(T"?). Therefore, % (u&TZg;_l _ UI&IZS) 2.

From (92) and using the identical argument that obtains (67), we have % ZtT: 75, 5& LN
Az. — v, where v = Eleg€1,4-1] and by ergodic theorem % Zle 5&51’1‘/71 3 . Since
pr — 1 and

>
B _
e Ug_1€1t—1 =
T 0,t—1
t=1

T T
1 I 1 I
= PTT E Up—2€1,t—1 T T E €0,t-1€1,t-1
t=1 t=1

1
= / JE (r)dByi(r) + 7.
0

!

el
[M] =

(prub ;o +€641) €141

t=1

Eventually, we have

Since
C, c Ciey
].—pTTT—].— <1+W+T+TW+1)
we have
1 < 1
i Sz = ¢ | [ rmmane) +as - o
t=1 0

For the second term in (102), note that

ug,t‘le,t—l = (PTUg7t_1 + Eg,t) (TT‘I’T,t—z + Xi-1)

_ I I [ 7
= prTrug, 1Vrio+ prug, 1 Xe—1 + LrVrsogn, + Xi160,-
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The sum of the above expression over t = 1, ..., T and dividing it by 7"+ lead to

T
1
(L= prTr) s Z gy VT2

1 1
T itk (“0 W0 — UOT\I’TT 1) "‘PTTHN ZUOt 1 X1
1 s 1 I
+TTm Z ‘IIT,t—2507t + m Z Xt—lgo’t‘ (105)
t=1 t=1

Applying Proposition A2 in Phillips and Magdalinos (2009) gives

sup E||Wr,||? = O(1maxtrem+2min{nan}y

1<t<T

This implies

2

sup E O(Tmax{fﬂz M2 min{ﬁz,n}flfoﬁI)

1<t<T

Uty
T1/2+”z

O(T*17r=) " if ) < Ky,
O,(T"1), if n > k.
= o(1),

1 u ug,t |\
Ty 100 Y71 = s iy, = Op(1)0p(1) = 0p(1),

2 1/2 P 1/2
< e (£ wnar) - (£2)
t=1

T
1
B Tl+6e Z\IJT,t—TS/&t
t=1
1 max{kg,n}+2min{kg,n}+1
= e Ol ? )O (T'7?)
= o(1), (106)

and following (37) and (67), one can deduce that Zthl X180, = Op(T) when &, €
(0, 1], thus

T

1

e > Xiigh, = 0,(1) for K, € (0, 1]. (107)
t=1
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Hence, following (37) and (71), we can deduce that

T T
1 1
(1 —prTr) Tites Z g, Vo =PT Z ufy 1 X1+ 0p(1) (108)
t=1 t=1
Jy T (1) e (rydr, i vy =1,
/
! [fol J4, (r)dBy(r) + 2001 + Z301} . if Ky € (0,1)

Finally, since 1 — pr Yy = —% + O(T '), we have

T =1l : _
1 Zuu Vo C1 o JE(r)de, (r)dr, if Ky =1, /
Tl+retn 0,4—1~T;t—2 A1 [ 1 .
=1 _Cz Cx [fO Jél(’l“)dBl(T) + 2A01 + 201] s if Ky € (0, 1)
(109)
By (104) and (109) we have 3., Zy gy, = Op(T7) because

T
1 7 M
T1+n Z t=1to,

=1

T T
1 . 1
=y 2 Loty + (Or = D Y Uy,
t=1 t=1

1 « Co —
:m Z Z;‘_lufit + 1_114_—77::_[{2 Z \IJTﬂg,lug’t (110)
t=1

t=1

_0;1 fol Jéi (T)dqu(T) + Aés - 71:| ) 1f Ry = 17
_Cz_l fol Jéi (T’)dBl<7’) + AE{-: - TN + Cx_l |:f01 Jéi (T)dBl(T‘) + 2A01 + 201i| :| s if Ky € (O, 1)

For the term 3"/, X/*, Z!_,, by Equation (25) in the Online Supplement of Kostalkis
et al. (2015) and Lemma 3.1, 3.5 and 3.6 in Magdalinos and Phillips (2009), we have

T

1

T1+min{rg n} ZXt“_lZé_l = 0,(1), (111)
t=1

Combining (110) and (111), we have

>~ Zivuff, = Op(17 7,
t=1

T
Brvx — = [Z Xiu—lzgfl
t=1

We proceed to analyze the Wald statistic and focus on the stochastic orders of
Qpar, M and Qpyx. For Qpay, note that from (42), we have Yoo = 0,(T), O 2 O,
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. N—
for Qo1, let Yo1,n = 7 >y C04€1,4—n , We have

Yor,n = % S <U0t (5 5) Xt“l) <€g,t—h+ (CI)T_RT>/X#—;L—1)

= 7 Z u0t50t h+ Z utht h—1 (‘I)T RT) (112)

t h+1 t h+1

A 1 7 )
(/B 5) ZXt 150th+<5 5) Zth thl(q)T_RT>

t=h+1 t=h+1

Op(1) + T10,(T?)Op(T ™) + O, ()T 1O, (T)
+O,()T™0,(T*)0,(T™)
O,(1).

Thus,

Qo1 = O, (My) (113)

and
Qs = Oy(T) + O, (ME) = O,(T). (114)

For M, from (96), (100) and (42), we have

T
N ZiaZi = O, (TR S, = 0,(T). (115)
t=1
Therefore,
T
S 2ozl | S = O (TP Fminthy, (116)
t=1

For the orders of TZ; 1Z]_,, the proof of Theorem 1 in the Online Appendix of Kostakis
et al. (2015) shows that

L O, (T*), if n < Ky,
vz, 7 =3 O it (117)
Op(T*=t1=1) " if n > K.

Thus, (114) and (117) give

O,(T* 1), if n < Ky,

TZ 17, Qpas = '
Op(T*F=F1) if n > K.

95



and

Op(T*7) + O, (T?11), if < Ky,
Op(T*H5=) + O, (T?=11), if ) > Ky
_ Op(TQ—l—min{nx,n})'

Therefore, we have
-1
Rl

T -1 T
Qivyx = R ZZt—lXth] M Zthith/—l
t=2 t=2

_ [Op(Tlerin{Kz’n})} —2 Op(T2+min{nz,n})
_ Op(T_ min{kz,n} ) )

and consequently
~ !/ "
WBIVX - <R61VX - 7n) QI_X}X (RBIVX - 7°>
= Op(Tn—min{fix’77})Op(Tmin{fixm})op(Tn—min{mw,n})
= O, (T min{ren}y

(iii). Following (72), we have the following limit,
T

1 \
(prTr — Ik) T Z ugs12; s = —2(Agy + Zoy)-
t=2

SincepTTT—Ik:(1+TCT“u) (1+%):%+%+O(ﬁ),wehave

C.  aw\lws .
(ﬁ T T“u) T ; wosZy-q = —2(Agy + Tpy)-

Similar to (110), we can write

1 T
I
Tl—i—min{n,nu} Z uo»t Zt_l
t=2

1 T C

T

_ Bz x ©
T Plrmine > b2+ Tlrmin{n s +ha Dt et +0p(1):
t=2 t=2
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Similar to (108), we can show

1 < R

(1= prTr) D ol Wy = PT Tiw, D b, X1+ op(1).
i—2 =2

Similar to (55), (73), (74) and (75), we can show

0p(1) if K, =1,

T

1

e Dt Xier = § 0,(1), if iy € (1/3,1) and &, < 5, (121)
t=2

0p(1), if 1 > Ky > Ky

Since k,, and n > 0, from (119), (120) and (121), we can obtain

T T
1 1 .
Ti+min{ e} >t = TlHmin{n,ru} >0z +0,(1)
t=2 t=2

=207 (Afy + 3p) if Ky < Ko,
59 =20t (M + 34, if Ky > s (122)
-2(C, + cufk)_l (Aby +201), if K = Ky

From (111) and (122), we can conclude that

Tmin{nx,n}—min{n,nu} <BIVX . 6)

-1

T T
1 1
H b
T+min{ka,n} Z Zi1 X Tl+min{n,ku} Z Zt—luo,t]
=2 t=2

= 0,(1). (123)

We now proceed to analyze the Wald statistic via the stochastic orders of QOr M, M
and Q;yx. Note that
~1

T
Qvx = R Xtz | R,
t=2

XAJOO - TZt—lzé_lﬂFMy

T -1
> Ztle_/ll M
t=2
T

!
E Zt—lzt—l
t=2

T
N, = 1
Qrar = Do — Q' Zia = ) Zia.

t=2

M =
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From (63) and (115), $oo = O,(T"*), 20 Zy 1 Z!_, = O, (T min{sent)  Thus,

T
Z Zi 17y | Soo = Op(THHmintranitru), (124)
t=2

As in (112),

1 < 1 &
Yo = 7 > bl T > b X, (‘I’T - RT) (125)
t=h+1 t=h+1
2\ 1 $ T A S 7 I3 ®
+ (5 - 5) T Z Xt—15o,t7h + (5 - 6) T Z Xt 1 X h (q)T B RT) :
t=h+1 t=h+1
Note that
1 & 1 &
T Z thtwh 1 _PT Z UOt hXWh 1+ZPT (f Z 5g,t—thwh1>'
t=h+1 t h+1 t=h+1

By Theorem 4.1 in Phillips (1988), Equation (17) in Phillips and Magdalinos (2007),
Equation (10) in Magdalinos and Phillips (2009), Equation (71)-(75), we have

T
1 min{Kq Kz
T Z Ug,ttht{/hq = 0T e }>»

t=h+1

T
1
T Z 5g,t—jX£u—/h—1 = 0,(1),

t=h+1
(I)T - RT - OP(T_HI),
These results imply

T T
1 R R
T > b X, (@T - RT) = Z Uy X <q’T - RT) + 0p(1)

t=h+1
0p(1) if Ky > Ky,

O,(1), if Ky < Ky,

It is straightforward to verify that S 110480, = Op(1) and the rest of the terms
appear in (125) is either O,(1) or 0,(1). Thus, we can obtain

Qo1 = Op(Mr) = O,(T") (126)
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and
Qear = O (T5) + O, (M2) = O,(T") + 0,(T*?). (127)

For the orders of TZ; 1 Z]_,, the proof of Theorem 1 in the Online Appendix of Kostakis
et al. (2015) shows that

O,(T*), if n < Ky,

T22, = 26z+n—1Y ;i
Op (T "7 if n > K.

(128)

If Ky > 2/3, Qpar = O,(T"), we have

O, (T if n < Ky,

TZt—IZQ_lﬂFM = 9 1 .
Op(T Kz+n +"€u)’ if n 2 Ky

From (124), we can obtain

T
Z Zt—thI—l

=2
O, (TYrmrrn) + O, (T*r), if n < Ky,
Op(TH45472) 4 Oy (TP 1-1450) it > i,

M = Soo = TZ1Z; +Qpu

O, (T if 1y < 1y,
OP(T1+KZ+HU)7 if n > Rg,
_ Op(T].-‘rmin{?’],Hg;}-‘rHu)‘

This implies that

-1

—1
Qrvx = R M R

T T
SRR TR
t=2 t=2
_ [Op(Tl—l-min{ﬁz,n})} —2 Op(Tl—O—min{n,nz}—o—ﬁu)
_ Op(Tnuflfmin{n,l-ez}»

Using (123), we can show

A~ / N
WBIVX - (RBIVXT - T) Q;\}X (RﬁlVX,T — 7")

_ (T2 min{n,ky }—2 min{xz,n} ) Op (Tl—i—min{n,nx}—nu )

Op
o Op(T1+2 min{n,ky }—min{kz,N}—Ku ) .
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If 1/3 < ky < 2/3, Qpar = O,(T?/3), we have

Op(TQnJrQ/s)v if n < kg,

TZ 17, Qpy =
t—1 OP(TQRI—H?—l/?)), lfn > K.

(129)

From (124) and (129), straightforward calculation yields

T

Z ZiaZi

t=2
Op(TlJrnJmu) + Op(T2”+2/3), if n < Ky
Op(Tl-f‘Hz'i‘fiu) + OP(TQM—M_US), if N> Ky

O, (T Frmaxtrun=1/31) if ) < g,

Op(Tﬁw'i‘max{Hl‘_1/3+n71+"§u})7 if Ui Z R

Eventually, we have
-1
R/

T -1 T
Quvx = R Ej&AXﬂJ M|y Xtz
t=2 t=2

|:Op<T1+min{nx,n})} -2 Op<T1+77+maX{’iuv7I_1/3})7 if N < Kg
[Op(Tl—I—min{lizm})] —2 Op(THz+maX{Rz—1/3+n’1+H“}), if n > Ky

Op(Tmax{Ru,T]—l/:i}—l_n})’ if N < Kg
O (Tmastse st =2-0) iy > i,

Therefore, we have the following stochastic order for the Wald statistic,

Wanx = (RBIVXVT - r>/ Qrvx (RBIVX,T - 7”)

Op (T2min{n,nu}—2min{nm,n}) Op(771—i—’r]—max{,‘@u,77—1/3})7 if N < kg

T2 min{n,ky }—2 min{ﬁz,n}) Op<T2+nI—max{nm—l/?)—l—n,l—l-nu})’ if n >k,

O, (
Op (T1+2 min{n,lﬁu}—max{”iuﬂn_l/?’}_n) , if n < Kg
O, (

T2+2 min{n,nu}fmax{nl71/3+n,1+nu}7.‘£z) if n > K
) = Py

It can be directly verify that Wi, s % o given the above stochastic orders and our
parameter settings.

(iv). The first result can be obtained directly from Theorem 2.2 in Phillips and Lee
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(2016). For the second result, scaling the Wald statistic by 3—22 gives

. . ~1
Y . 1) .
Q_OOWBIVX = <R61VX - 7’) AOO Qrvx (RBIVX - 7”) ) (130)
00 00
where
a - ~1 a T ~1
—Quvx = R|Y ZaXUh| M) | XLZ| R,
%00 = 200 =
Q d '
=M = | ZaZ | Qoo — —TZiaZ{Qpur.
200 — 200

Since Qoo N Qy, ioo N Yo, and TZ,_4 Zl{_lQFM is only used for finite sample correction,

by applying Theorem 2.3 in Phillips and Lee (2016), we obtain

Q,
Wi, . = E—UXQ(q). (131)

(v). We first focus on the second term in the right side of (102). Since ¥, =
> Yo' X,
Uy =TrWrq 4+ Xio1, Uro = Xo = Op(1).

We can express

ug,t\PT,t—l = (PTUBL,tq + 5g,t)(TT‘I’T,t—2 + Xi—2)

_ 1 1 [ [
= pTTTuO,tfllIITyt*2 + prug,_1 Xe—2 + 50,tTT\I’T,t72 + €04 Xi—2.

Summing the above expression over t = 1, ..., T, we have

T T
(orYr — 1) Y uby Wy = b Urroy —ulfgUr —pr Y b, Xis
t=1 t=1
T T
—TT Z 5g,t\IIT,t—2 — Z 5g7tXt—2- (132)
t=1 t=1

The proofs of Equation (26) in Magdalinos and Phillips (2009), Lemma 2.4 in Phillips
and Lee (2016) and (77) show the following orders:

T
Zug,t—1Xt—2 = 0, (@?T(3“w+1)/2) :
=1
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T
Zgg,t\IIT,t—Q = 0, (@;Tmin{“zm}) :
T
Zgg,tXtﬁ = O, (®7T"™).

Since k, > 1/3, ZtT:l uy ;1 Xi—2 asymptotically dominates the other two terms. From
Lemma 2.3 in Phillips and Lee (2016) and uf, = O,(V/T), we can obtain

(I) =T
T(3ka +1)/2 (“0 V-1 — U 00V, 1) = op(1).

Therefore, applying (77) and noting that prYr — I, = == + (1), we have

(D =T
T /zzuw 1Wri-2 = PTWZ% 1Xi—2 +0p(1)

= C. Yo, JV (r).
Thus,

O

T
(Br — 1) Zu Uy = O (q)TT(5nz+1)/2) Op(clﬁT(S“f“)/?).
t=1

Since
T
S ubZi1 = Oy (T,
it is dominated by
T
(P — 1) Z Ug,t\I’T,t—l
t=1

as T' — oo. Eventually, we have

(3nz+1)/2 ZUO 1l = TBrat+1)/2 Zugﬂfzt—l +(Pr — L) 3nz+1 T Brat+1)/2 ZUO VT

(I)_T
= (B f“mZUot%t 1+ op(1)

C,0;7
- T(Tfl)ﬂ Z ug,t‘IIT,t—1 + op(l)

t=2
= C;'Yo,J W (r). (133)
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By Lemma 2.4 of Phillips and Lee (2016), sty ST 077 X 00T = 0,(1).
This result and (133) give

~

L min(rem)— g <5IVX — 5)

T -1
Zzt_le_q] Zzt_lu'g,t

t=2

_ @%Tnx +min(kz,n)—(3kz+1)/2

-1
1

Tkaz+min(kz,m)

= 0,(1).

T
Z Ot Zia XL Ot 3nz+1 T(Brat1)/2 Z Zi1ugy
=2

For the Wald statistic, Lemma A.2 in Phillips and Lee (2016) gives

T

1 — —

T2min{,‘-@x77]} Z (I)TTZt—lzl‘{fl(I)TT - OP(1)7 (134)
t=2

and
A 1 9 A1 T u w AN/
Yoo = T Z €ot = (ﬁ - 5) T ;Xt—lXt—l (ﬁ - 5)
R A A
+2 <B - 5) T Z X{qugy, + T Z Uy
t=1 t=1
Applying the results from (76), (7 7), Lemma A .4(viii) and Lemma 3.1 in Phillips (1988),

we can show that the last term 4 T Zt L Up) asymptotlcally dominates the other terms.

Thus, we have

For Z,, using Equation (13) in Phillips and Magdalinos (2009), we can express

i

T1+nz Z Ury.
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Applying Lemma 2.3 in Phillips and Lee (2016), we can express

T
_ —(T—t) 1 —t
Tnz-‘rnm/?-i-mm{n Ka} Z qut - TEe Z Q)T Tka/2+min{n,kz } CDT \IJT’t

= Z0,(T7™) = 0,(1).

This implies =% S Wy, = O, (PLTwe/>tmin{nkz}=1) Noreover, using the analogous

steps in proving Equation (7) in Giraitis and Phillips (2006), one can easily show

LS Z; = O,(T"/?). Thus

Zt— L= Op(q)%me /24min{n,ks}—1 ) )

(135)

Finally, the order of Qpas can be established using the same procedure as in (114) and

we have
QFM == OP<T) + Op(T2/3) - Op(T)

Thus, we can establish the order of M as

o MO

T2 min{xkg,n}+1

T

1 _ _

Tommey 2 01 L1 a0
t=2

Soo 07 T2 2 Q@
T o T2 min{xkgn}+1

From (135), (136) and since k, < 1, we have

o7 2,12 Q@ |
T2min{xkg,n}+1 o Op( )

This gives

by
=+ 0,(1) = 0,(1),

oMo
T2 min{kgn}+1

T

1 _ _

T2 min{rg,n} Z q)TTZt—IZL{—l(I)TT
t=2
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Therefore, we have

-1

T -1 T
TZ”H@?QIVX@{? _ T2a-lp ZZthf_’ll M [ZXf_lZg_l R
t=2 t=2
i T 170 <7 -T
_ 1 -7 W g=T Oy MOy
= R T +min{rg,n} Z (I)T thlxt—lq)T T2min{rz,n}+1
L t= i
_ X . 1-1
X m Z q);TXf_lztlil(I);T R/
t=2

= 0,(1).

It leads to

T2 min(kz,n)—kKz—1

72 min(rg,1)—3ka Wy o = Tom [R (BIVX - 5)}/ [Qivx] ' R <BIVX - 5)
_ [R(I)TTmln(Hx - (51\/)( — ﬁ)}/ (T2 97.Q v x P71
X RPLmin(sem) =55 <BIVX - 5)
— 0,(1).

-1

Eventually, Wy = O, (T3« -2min(sem)),

(vi). As in the previous proof, we focus on the stochastic orders of the terms in
(132). The proofs of Equation (26) in Magdalinos and Phillips (2009), Lemma 2.4 in
Phillips and Lee (2016), (81), (82), (83) and (84) show the following orders:

T T
Zgg,t\llT:tﬂ = O, (erT™in{m) 7Z€g,tXt—2 =0, (2777,
= =2

1
Tmln{liz Ko} T‘(max{mz Hu}+,‘iz /2 ZXt 2u0t 1 =0 ( ) (137)

Combining uf, = O,(T"*/?) from Lemma A.1 in Lin and Tu (2020) and Lemma 2.3 in
Phillips and Lee (2016), we have

o,
T‘(fiu+f-egg)/2+min{r§z N} (

UIOA,T\I/T7T_1 — ug’()\IIT,l) = Op(l) (138)

Using the above stochastic orders, after some straightforward calculations, we can ob-
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tain
T .
O, (LT RFru) if )y > Ky >,
(MTT<@§:%FWMJZ o2 : ==
—2 O, (PLT (rut3r2)/2) * otherwise.

Or equivalently, given that

Cqu Cz 1
pTTT_Ik: u+_+0(1)20(m>,

we can write

L fopreen it s ks
Zuo’t_l T2 — T (Ku-+3ka ) /2+min{ku,m} .
—2 O, (D T\ Futsre wi1) | otherwise.

Form (122), it is clear that (pr Y1 — I) Zthl u’gvt_lllfm_g dominates the first term on
the right-hand side of (102). Therefore, when k, > K, > n, we have

T’fz"!"@u‘f"’] Z uo tZt 1

o7 o
= (o7 — ]k)m tz_; ugVri—1 + Op (W) '

When k, > k, > n does not hold, we have

T(K/u"l_'?)K/z /2+m1n{nu n} Z Uy, tZt 1

o o
— _ M
o ((I)T ]k) T (ku+3kg)/2+min{ku,n} ; uU,t\Iijt—l + OP (T(nu+3nm)/2+min{ﬁu,n}—l> ’

Cz

T, we can obtain

Since (I)T — Ik

T Ty, + :
Z O,(P5T ) if Ky > Ky > 1,
t=2

O, (@LT (rutra)/2min{run}) = gtherwise.

Lemma 2.4 of Phillips and Lee (2016) and (139) give

Op(@FTTrwtn—ramintssnd) if e, > 1, >,

O, (T v 2mineum) —se—minfien}) otherwise.

Brvx — B =
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For the Wald statistic, following (63) and (127), we can obtain 3o = O,(T**) and
Qpar = O,(T") + O, (T?3). If 1, < 1/3 + Ky, by straightforward calculation, we can

show S
O TZ 7 Q@
T2 min{kq,n}+Ku - Op(1>'
We can establish the order of M as

BLETC VAN IS W SRR V.7 S,
T2min{ke n}+ruy B T2min{xz,n} — T t—143 1P T N IR
- 1 - : :
o - 00
T | ity >0 ZiaZl 2" T T 00(1)
- t=2 |
= 0,(1).

Therefore, we have

T -1 T -1
reafouef — e |y oo |t e
t=2 t=2
[ T 171 a1 -7
= I 1 =T w §—T (I)T M CI)T
= R T}ix+min{fix7n} ; CI)T Zt—lthl(I)T T2miﬂ{f€x,n}+ﬁu
_ . . -1
X | Frrmte ; o Xtz ot R

= Op(l)-
If that x, > Kk, > 1, we can obtain

3ku—4kz+2n—2min{kz,n} R
T WﬁIVX

T2(Hu+77_ffa: —min{fiz 777})

I ) am R()
_ [R(I);TTnu+77—ﬁ;c—min{Hac,77} (BIVX _ 5)]/ [TQ"“_”“(I);FQIVX@;]_

XRQ);TT”“JF”_“”_MH{H”’"} (BIVX — 5)
= 0,(1).

1

If Kk, > Ky, > 1 does not hold, we have

L W
T56z+2min{ku,n}—4 min{xz,n} Brvx
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= Temi2 mm{nuln} prsc— <R (51VX ﬁ)) Qrvx (R <BIVX - 5))

B R(I)T T2 min{kq,n} _ TQHz—Hu q)TQ (I)T 1
- TT(mu+3nz)/2+m1n{nu n} VX |: TwIVX T:|

. T2 min{xk,n}
(RCDTT(NU-‘,-?)NI )/24min{kw,n} < wvx = ))

= 0,(1).

Therefore, we can obtain

0, (T4m—3nu+2 min{mx,n}—%) cif Ky > Ky >,

Brvx Op (T5HI+2min{nu,n}—4min{liz,n}) ’ otherwise.

If ky > 1/34 Ry, TZt—lz,g,lQFM dominates [ZtTZQ Zt71Z£,1} 200 in M. Hence, we have

ZADOO
T

oML 1

T2min{ke n}+rz—1/3 o Tha—1/3—ku

T
1 _ _
T2 min{kz,n} Z (I)TTZt_lzl{flq)TT
t=2

O T2 Z;_ Qpar®y"
T2min{xz,n}+rs—1/3
T2, 7 Q@ .
B T2min{kgn}+rz—1/3 Op( )
— 0,(1).

We now follow a similar procedure to show the limit of WBIVX under K, > 1/3 + ky,.
We have

-1

, _
T 301 Qryx @ = T 'POLR Zzt_lxg”_q] [ZX# Zia | Rop
t=2
| 1 - w o e M
= R Tnz—l-mm{ﬁz n}z(p Zt 1Xt 1CI) T2min{xz,n}+rs—1/3
- 1 -,
X —Twmm{w}Z@;Txf_lz;_lcpf R
L 2 i
= 0,(1).

Eventually, if k, > k, > 1, we have

T2Hu—3mc+1/3W

Brvx

= [ruSnatl/3 [R (BIVX - 6)i|,QI_\}XR (BIVX - B)
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1

= [RCD;TT’“‘“_”z <BIVX — 5)}/ [T”I_l/‘g(b;QWX(I)ﬂ -
X RO T "= (BIVX - 5)
= 0,(1).
If kK, > Kk, > n does not hold, we have

Tnu/2+min{nu ,n}f%nz —min{ke ’77}+1/3W"
Brv x

—  ru/24min{ren} =3 ke —min{re n}+1/3 [R <BIVX — 5)}/ [QIVX]_l R (BIVX — 5)
_ [ ROLT (s /2 min{ o) —ra —min s n} ( Brvx — B)}/ [T,@z—l/y,q)gQWX@;H*l
« R(I)%T(I{u+nm)/2+min{liu,n}fmzfmin{ﬁz,n} ( Brvx — ﬁ)
= 0,(1).
We now proceed to prove the claims for the re-centered estimators.

(i). Since 2/3 < n < min{k,, 1}, from (95) and Lemma AO in Phillips and Magdali-
nos (2009), let

1 M~ h T
AOl = ? Z (1 — MT i 1) Z 607t€17t,h, (140)

=0 t=h+1
we have
Aot — Aor = 0, (T~ 2"),
and
RS ; R A
A Z (Zt—lug,t — Ao1) = AED Z <Zt_1u0,t — A01> + Op(l)
=2 1 t;2
= a2 Z (Zi—1uor — Aor) + 0p(1)
= N(O, szgzoz). (141)

If k, = 1, Theorem A in the Online Appendix of Kostakis et al. (2015) gives

T 1

1 / /

Tim g Zia X! =V, =-C! (Qoo +/ Je, (r)dJg, (r)) : (142)
t=2 0

where the last convergence in distribution can be obtained using the analogous argument
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n (69). The joint convergence of (142) and (141)% implies

TTn)/2 ) <Zt‘1“g¢ B Am)

t=2

T
1 /
T2 By — B) = i >z Xl
t=2

= MN(0,V'V,.Q, ¥ 1.

If n <k, <1, from (90) and Equation (20) in Phillips and Magdalinos (2009), we can

obtain

T
/ p 71
Tt Z thlxtu_l — _Cz Qll-
t=2

Thus, we have

1 ~
T(+n)/2 Z (thlugi - AOl)

T
1 /
TR (Bryx —B) = Titn Z Zi 1 X{,
t=2
= QO 'C.N(0,V..Q,) = N(0,Q{ C.V..Q00C.Q7)

If n=rk, <1, (91), (93) and Lemma 3.6 in Phillips and Magdalinos (2009) give

T -1 T
T(+re)/2 (BIVX ) T1+ Z Zi— T(+r2)/2 Z (Zf"lugvt N AOI)
t=2 t=2
= Vic? ( e (C V. C. + C.V!.C,) SCzdsQu).

Finally, if n > k., by (93), (69), (95) and Lemma 3.5 in Phillips and Magdalinos (2009),

we have
—1

T T
5 1 / 1 A
T2 (Bryx — ) w2 2 X | S D (Zt—lufit N Am)
t=2 t=2

= V'N(0,Vif) = N (0,Q,V,,").

For the Wald statistic, since T' Zt_lz,;_l(z par in M is used for finite sample correction
that is asymptotically negligible, we treat M = [Zthg Zt,lZLl} Qoo to shorten the
proof. From Equation (14), Lemma 3.5, 3.6 in Phillips and Magdalinos (2009) an by

2The joint convergence is proven by Proposition Al. in Phillips and Magdalinos (2009)
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Qoo 2 Q,,, we have

‘/;ZQU7 if N < Rg,
M
T1+min{n,ﬁz} £> fo SCZ C V;ZC + C VI C ) SCZdSQu, if N = Kg,
‘/xeuy if n > Kg.

Therefore,

1
T14+min{n,kz} Q[VX

1
= T1+min{n,xz} Z Zt_lX#_ll
t=2

T -1

M 1
m /
T1+min{n,kz} Z Xt_ 1 Zt_l
t=2

T14+min{n,xz}

(

QO WLL0,C.00, if 0 < Ky,

= (VIO [T e (CoV4.Cl + CLV],Cr)es @2 dsQ, C MV, i = Ky,
Q VoL it n > k.

T

We have

= (RBIVX - ?")/ QI_‘}X (RBIVX - 7’)
< -1
= (e G = 0) (Rsimigag ) (00D G =)

= X*(q).

(ii). Note that
T -1
Prvx —B=Prvx — B — (Z Zt_lxz"l) TAos. (143)
=2
-1 R ~
We consider the stochastic order of (ZtT:2 Zt,lXt“_ll) TAoi.For Agy, from (112), we

can deduce that Ag; = O,(My). From (111), we have S, Z, 1 X}, = O, (T +min{nsaly,

Using the results in Theorem 3.1(ii), we have

Tmin{ﬁ,ﬂz}fn (B]VX - ﬁ)

. -1
= <5IVX - 5) — qin{nrat=n (Z Zt—1Xf“1> TAy
=2
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Tmin{”]w“ia:}_ﬂ (BIVX . B) . Tmin{n,mw}—nOp (T—l—min{n,nx}) TOP(MT)
_ Tmin{n,f-cz}—n (BIVX o B) _ Op (T1/3—17)
— Tmin{’],ﬂz}*ﬁ (BIVX _ ﬁ) + 0p<1)>
where we have the last equality because My = T'/3 and 7, , > 1/3. This implies that

the stochastic order of BIVX — [ is that of BIVX — f in Theorem 3.1.2. For the Wald
statistic, from (42), we have 4, = O,(T). Thus, Qg = O,(TMy). And

Qrv = Op(TMr) + Oy(Mr)0O,(1)O,(Mr)
— 0,(TMy). (144)

Ifn < Kk, (128) and Qpy = O, (T Mr) imply that TZt_lzé_IQFM = O,(T*MO,(TMr) =
O,(T*1+4/3) and

T
M = |} ZiaZy | Qoo —TZaZy Qrn
t=2
= Op<T1+n>Op(T4/3) + Op(T2n+4/3)
_ Op(T1+”+4/3).
Eventually,
T -1 T -1
Qrvx = R ZZt—lXtM_,1 M[ZXf—IZtI—I R’
t=2 t=2
_ Op(Tf2f2n>Op(Tl+77+4/3>
= Op (T1/3_n)’
and

WBIVX = (RB[VX o T)IQI_\}X (RBIVX o T)

Tn
== Op(l)Op <MT) = Op (Tn_1/3) ﬁ) Q.

If n > Ky, (128) and Qppr = O, (T Mr) imply that

TZ 17, \Qpa = Op(T* 1710, (T My) = O,(T?r=171/3).
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Thus

QIVX = Op(Tf2(1+min{anl}))OP(T2nz+n71/3>
= Op(T—2—2nz)OP<T2RI+77—1/3) _ Op(Tn—s/?))

and

WB]VX _ Op(T2n72min{n,nz})Op(TE)/an)
= 0T )01 )
— Op(Tn+5/3_2nz).

< A -1 .
(lll) Note that BIVX - 6 = BIVX - ﬁ - (ZZ:l Zt—lX#_/1> TAQl. Similar to (126),
we can deduce that Ay, = O,(My). Thus, TAg; = O,(TMr) and

T —1
(Z Zt—leﬁ) TAgy = O, (T~ ™ r=m="10, (T My) =

O, (—Tmifffm}) . From Theorem 3.1(iii), frvx — 8 = 0, (Tmin{mem—min{sen}) - we can

write

Tmin{nz,n}—min{n,nu} v — )

-1
_ Tmin{nz,n}fmin{n,nu} VX _ B Tmln{“z n}—min{n,k. } <Z Zt 1Xt 1) TAOl

t=1

Tmil’l{liz ,n}—min{n,ky}

— Tmin{ﬁz,n}fmin{n,nu} < B) Tmln{nz n}—min{n, mu}o ( MT )

Tmin{xz,n}
(Tmln{/@u,n} >

rointse n}—mingn e} (51\/)( - B) + 0p(1). (145)

6IVX -

For the Wald statistic, from (63), we can deduce that Qg = O,(MyT**), and thus

T
Z ZiaZi

t=2

QOO — Op(Tl-Q—min{fﬂzyﬁ})Op(MTTﬁu) _ Op(T1+fiu+min{f€z,77}+1/3)_

For Qpyy, similar to Qg in (127), we can deduce

Qrar = Op(M7T™) 4+ O,(M2) = O, (M T"™) = O, (T /3), (146)
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(146) and (128) jointly imply

O, (T2 t1/3) 1 if ) < Ky,

_ ] > o
TZt—lzt—IQFM - O (T2nm+77+5u_2/3) lf >
P P B = e

Therefore, if n < k;, we have

T
M = > ZiaZ | Qo —TZaZ{Qpu
=2
_ Op(T1+Hu+77+1/3)+OP(T277+M+1/3)
_ Op(T1+Nu+77+1/3)’
and
T -1 T -1
s — R[S Zeaxt, M[zxmzl ®
t=2 =2

= QIO (THHm 1)
= Oy(T™ 7%,

From Theorem 3.1.(iii), we have

Wiy = (RBrvx —7) Qpix (Rfvx —7)
— Op (T2 min{kv,n}— 277) 19) <T2/37Nu+7))
Oy (

) T2m1n{nu nt—n+2/3— nu) ]

If n > Ky, (115), (146) and (147) give

T

Y Zia 2

t=2

- O (T1+I€x)0 (Tfiu—l-l/?)) +Op(T2nz+77+fcu—2/3)
- 0O (T1+n1) (Tnu+1/3)
- 0O (T4/3+/§z+nu)’

Q(]0 - TZt—lz,;,lQFM

and
1

R/

T -1 T
R ZZHX;L] M [ZX#_lzzl
t=2 =2

114

(147)



_ Op(T7272/<z )Op (T4/3+nz+ﬁu)
_ Op(Tnu—2/3—/£z ) .

Eventually,

WBIVX = Op (T2 min{’i"’n}_Qmin{n:Hz}) Op(T2/3+Hz—nu)
= 0, (T2 min{fium}—Qﬁx> Op(T2/3+“’f_”u)
= Op (T2 min{nu,n}—nz+2/3,,ﬁu) '

It can be directly verified that W5 5 .
(iv). Given the consistency of § as shown in (31), we can show Ag; = Ag;. Applying
Lemma 2.4 of Phillips and Lee (2016), we can show

T -1 o=2T
, .
;_2 Zt—lX;tLLfl TA01 - Op (Tﬁx-&-miz:{mcm}—l) - OP(]'>‘

Therefore, By x —f = B rvx — B+ 0,(1). The result in Theorem 3.1.4 is applicable. For
the Wald statistic, since we use Qog to estimate €2, and Qoo LN Q,, following the proof
of (131), we can easily show W5 = x*(q).

(v). As in (43) and (113), we can show Qg = O (MyT) = O,(T*?), Qo =
O,(Myz) = O,(T"?), and Ag; = O,(T"/3) given Qo = O,(T"/3). Applying Lemma 2.4
in Phillips and Lee (2016), we can show the bias correction term has the following

stochastic order
T -1
(Z Zt—lX#_/1> TA01 _ Op(@;QTTl—l—l/S—nz—min{:‘izW}) — 0p(1).
t=2

Again, fyx — 8 = BIVX — [ 4 0,(1). Thus, the order of Brvx — B can be es-
tablished using Theorem 3.1.4. For the Wald statistic, given Qy = O,(T%3) and
T Dot ©7' Ze1Z,_ @77 = O,(1), by Lemma A2 of Phillips and Lee (2016),

we have
T
> 77,

t=1
For TZ, 17! Qpu, note that Qpy = O,(T'Mr) can be shown using the steps that
prove (144). From (135), Z,_; = O, (®LT"«/>min{mre}=1)  Thys,

Qoo = O, (0FT/3+2mintrant) (148)

TZ1Z Qpy = TOH(®FTr=+2mnins}=30 (T My)
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— Op(q)%TTKIJrQ min{n,n1}+1/3)’

since k, < 1, TthZ;leFM is asymptotically dominated by [Zthl thZtI,l] Qoo
Using Lemma 2.4 of Phillips and Lee (2016) and (148), we can obtain

T2f<cgc —4/3 @%Q[VX @?

-1 _1

T - T
_ M
T2 4/3®§R ZZt—le_,1 T4/3 Xz, R'®7
t=2 t=2
= R 1 d ¢_TZ Xll’ q)—T ) QETM(I);T
- m; v AR P i/
1 d -
AT ; o7 Txr 7zl o7 R
= 0,(1).
Thus,
1
T3kz—2min{rz,n}—1/3 WBIVX
1 A Irx —1 A
= s (B (Brex = 8)) [@rex] ™ (R (Bvx - 5))

CDT . / B } »
B (RT(NI+1)/2TmiH{KI,ﬁ} <BIVX - ﬂ)) [T2ﬁx 4/3<D£QIVX(I)§}

o7 .
X <RT(H1+1)/2—min{nzm} (ﬁIVX — ﬂ))
= 0,(1).

Eventually, W5 = O, (T3ra=2min{ren}=1/3),

(vi). As in (64) and (126), we can show Qoo = O, (MyT ) = O,(T"+1/3) and
Qo1 = O,(Mr) = O,(T"?), thus Aoy = O,(T*/?). The bias correction term has the
stochastic order

T —1
(Z ZHX#_%) TRy O, (@7 THH/3=memminticnly — o, (1),
t=2

Thus, the bias correction term vanishes as T — 0o. As fryx — 3 = BIVX — B+ 0,(1),
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we obtain the order of By x — 3. For the Wald statistic, note that

T
S 77,
t=2

We can deduce Qg = O,(T*+1/3) as in (146). Thus,
TOp((I)%TTNI—i—Q min{n,nz}—2)0p(Tnu+l/3)

QOO _ Op(q)%TTnu—&-l/?)—i-Q min{nz,n})‘

Tthlzé_lQFM =

Op(¢%TTHm +Ry+2 min{n,mw}—2/3) ]

Since k, < 1, TZ,_1Z!_Qpy is asymptotically dominated by [ZtT:z Zt_th’_l} Qoo and

thus M = O, (@ Trut1/3+2min{sen}) Hence, we can express

2kz—ku—1/3R1RT T
T / (I)TQIVX(I)T
—1

T -1 T
= T lB3QLR ZZtht“’l] M[ZXflzgl R}
t=2 t=2
1 Lo I =V =)
_ - W ;=T T T
= R Tnﬁmin{m,n};q)T Zi1 X Op Tru+1/3+2min{r, n}

-1

T
1 — —
X Tﬁz+min{nw7n} Z (I)TTXéilzéflq)TT R/
L t=2

= 0,(1).

If kK, > Ky > 1n, we have

1 1 . " R
T4ka+ru—21—1/3 WBzvx - TAkz+ru—20—1/3 (R (BIVX - 5)) Ql\}X (R (5IVX - B))

oL . ’ , -
(R—T <51VX - 5)) [TQ’%_HU_IB(I)?QIVXCI)g}

THztRu—n

(Rt (v —5))
= 0,(1).

1

If kK, > Ky, > 1 does not hold, we have

1
T5kz+2min{ku,n}—1/3—4min{xz,n} Brvx
1 . L i
- T5kz+2min{ky,n}—1/3—4 min{xg 0} <R <ﬁIVX - B)) QI‘}'X (R (BIVX - 6))
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T2min{rkqz,n} . / D s30T .
TT(Hu-FSM)/Q-I—mm{Hu n} (BIVX _B) [T o o QIVXCI) ]

T2 min{rq,n} .
<R nu+3nz)/2+min{ﬁum} <5IVX - ﬁ))

:Op

Therefore, we have

Op (T4nz+/~tu72nfl/3) ’ if Ky > Ky > 1,

Op (T5Hz+2 min{mu,n}—1/3—4min{f{x,n}) 7 otherwise

BIVX

This completes the proof of Theorem 3.1 and Lemma A.5. |

We are now ready to show the limiting distribution of W5 under the null hypoth-
esis that = 0.

Proof of Theorem 4.1. We first prove this theorem under the case that & = I +
Lo Cp <0,k € (0,1] and prp = 14 2=,
from Lemma A.2 and A.3(i), suppose that min{n, k,} < 2k,

T
1 -
T > Zia Xl \/— Z Ziazh, + 0p(1)

t=p+1 t=p+1
= Elw,w! ]_1]\/'(0 JQE[wmwp’t])
= N(0,0 E[wmw J7).

cy < 0,6, € (0,1]. Applying the results

-1

VTBvx =

For the Wald statistic W,

Wiy = (\/_51VX> [TQIVX]_I (ﬁBIVX) )

Note that
SNzoo - TZtAZULlQFM ;

T ~ ~
= Z ZHZLl

t=p+1

since TZt—1Z£,1§2FM is asymptotically dominated by [Zf:p 1 ZHZ;,I] Qoo as shown
in Equation (33) in the online appendix of Kostakis et al. (2015), to simplify the proof,

T ~ ~
Z Zt—1Z£—1

t=p+1

we assulne

Q00.
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Then, we have

T e I
TQwx = [? ZZHX;‘;] [f > ZaZy

t=p+1 t=p+1

1 & -
Qoo | > XtZ

t=p+1

5 E [wp,tw;),t] E [wp,tw;;,t] 03 E [wmtw;,t] -

= olEw,w, |

~ / ~
From Slutsky’s theorem, we have W5 = = (\/TBIVX> [TQWXr1 (\/Tﬁlvx> = x2(k).
If min{n, K.} = 2k, and k, > 7, we have

r T -1 T
- 1 ~ ~ 1 ~
\% TBIVX = f g Zt—le_/l ﬁ E Zt_12’g7t (149)
t=p+1 t=p+1

-1

(Bwp(]'> - CuUz(l)) )

1
= E[wpvtw;)’t] — 20! </ Jo,dB., + Qm)
0

and
_1 T ) ) —1 1 T ) ) i 1 T ) i -1
TQvx = T Z Zt—leull [f Z Zi1Ziy | $oo [f Z Xt Zi
t=p+1 t=p+1 t=p+1
_ ) .
= | Elwyw),,] —c.C* (/ Jo,dB., + Qm) ] (150)
0

-1

1
X [UEE[wpiw;)’t] + ciag\/jﬂ {E[wp’tw;t] — (/ Jo,dB. + Qm) CiCz—l}
0

Note that the variance of By, (1) — ¢,U.(1) is 02 E[w,w), ] + c;02V. The joint con-

u-z"zz'

vergence of (150) and (151) gives Wj = x*(k). The claims for x, < 7 and x, =7
and the case under min{n, k,} > 2k, can be established using the similar arguments
and the results from Lemma A.3(i).

We now consider the case when &7 = I + %,C’x > 0,k € (0.5,1) and pyr =

1+ 7, ¢y <0,k € (0,1). If K, = Ky, applying the results from A.3(ii) and proposition

2.4 in Phillips and Lee (2016), we have

-1

- TQKI T ~ ~ T/{I T _
7By x T tmin s} Z o721 X} T Tmin(nr] Z CD;TZt,lzé"t
t=p+1 t=p+1
= [CoC.poWe,] F CoClre iy X MIN(0,02We,). (151)
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Moreover, we have

PLQ v x DT
TZRZ T s o . - TQK” T - B -
— J— J— / —
= | Trermin{ne) > ¥ 2 X2 Tomnmra) Y 00 228" | Qoo
t=p+1 t=p+1
T2I§x T _ ~ -1
X Tanrmin{n,nz} Z (I)%TXtM—IZ;—l(I);T]
t=p+1

= [CoC.rsWe, ] [CoCher W, Crer nCal 02 W, CoCl ] (152)

The joint convergence of (151) and (152) implies Wj = x*(k). For the cases where
Ky > Ky and K, < K, applying the results from A.3.(ii), we can replace W, in (151) and
(152) by ng) and W&), respectively. By a similar argument, we have W5 = 2 (k)

under these two cases. [ |

C. Limit Theory for Bonferroni Confidence Interval

and Cauchy Estimator

C.1 Bonferroni confidence interval

Consider the case when X, is a scalar time series. Cavanagh et al. (1995) proposed
to use the Bonferroni confidence interval (CI) for § under the assumption that X; is
a local-to-unit root (LUR) time series. As the localizing parameter in the AR root
can not be consistently estimated, the Bonferroni method, which has an extra layer
of confidence interval associated with the localizing parameter of the regressor (C,), is
often used. This approach is well discussed in the context of predictive regression in
Cavanagh et al. (1995), Campbell and Yogo (2006) and Phillips (2014). Campbell and
Yogo (2006) and Phillips (2014) show that the Bonferroni corrected confidence interval
can have a well-controlled size for the slope parameter in the single-variate predictive
regression model (1) when the regressors has an LUR AR root.

To fix idea, we consider the following Bonferroni CI with a nominal coverage of at
least 100(1 — @)% considered in Cavanagh et al. (1995):

Cola)= | Cye,lan),

cz€Cc, (a1)

Caic, (az) = {P teo, Sty S C2,Cz} (153)
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where t; 5 = BT—TB, Cc,(a1) is the 100(1 — a;)% confidence interval for C,, Cyic, (a2)
T, se(Br) I E
is the 100(1 — a2)% confidence interval for p given C,, @ = a; + as, and ¢; ¢, and o ¢,

are the ay/2 and 1 — ay/2 quantiles for the random variable
e, = 0me, + (1 — 62122,

1 “12 g :
where 0 = (QH?ZW’ Tic, = (fo JE2 (r)dr) Jo J& (r)dBi(r), z is a standard normal
random variable that is independent of 7i¢, .
In practice, the Bonferonni CI confirms the predictiveness of a regressor when Cp()

excludes zero. The following theorem shows the asymptotic behavior of Cjs(c) under
model (2).

Theorem C.1. Under the same set of assumptions as in Lemma 2.1. As T — oo, if
lts, sl 2 00, we have
Pr(8 € Cs(a)) — 0.

Proof of Theorem C.1. Letting Gr.,(y) = Pr(7. < y), we can express the confidence
interval Cgc, (az) as

Coea(@) = {B:Crelere) € Grelty, ) < Groleae) |

B:as/2 < Gre,(ts, 5) <1 a2/2} .

{
{
We have

GTvcz (tBTﬂ> - Pr(TC < tBT,B)
= Pr(0<ts, 45— 1)

Note that |t/5’T,,6’_TC| B 00, a8 7, = O(1) and tor s diverges. We have either G, (tBT,B) N

1 or Gr,(t br.8) % 0. Consequently, Cg|c, (az) asymptotically becomes an empty set as
1>1—ay/2and 0 < ay/2, so does the union set Cz(a) = U  Cpe, (a2). [
cz€Cc, (a1)

Theorem C.1 suggests that the probability for the CI to contain the true parameter
[ shrinks to zero whenever the test statistic diverges. Lemma 2.1 provides the scenarios
when Wr (thus t[_}T’ ﬁ) diverges. Theorem C.1 shows that the limiting coverage proba-
bility of 5 is not at least 100(1 — a)% asymptotically. Moreover, when g = 0, as Cjs(«)
excludes zero when T is large. Consequently, using the Bonferroni CI constructed as
(153) may lead to the spurious conclusion of predictiveness of X; ; under the cases

where the test statistic diverges.
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C.2 Cauchy Estimator

In addition to the Bonferroni CI, Cauchy estimator has also been proposed as an alter-
native for the inference in predictive regression with univariate LUR predictor. Choi
et al. (2016) show that the test statistic built upon Cauchy estimator asymptotically
distributed as a standard normal random variable. As a consequence, a straightforward
test for the predictability can be obtained. To be precise, we define the Cauchy esti-

mator of £ as

T
A X,
Boaw = Zt:l Sgn( t 1) yt, (154)

T
Zt:l | X1

where sgn(.) denotes sign function such that sgn(z) =1 if 2 > 0, and sgn(z) = —1 if

x <0.

The t statistic for B(;au is given as

Bcau

~ T -1
= M7 with Se(BCau) = Q}/Zﬁ (Z |Xt1’> )
t=1

se ﬁCau

where €, is a Newey-West-type estimator with the bandwidth My . For this statistic,

we have following asymptotic results.

Theorem C.2. Under model (2) with o = 0, we have the following asymptotic distri-

butions for Beeu and ts, —under various assumptions.
au

(i). If ©r =1+ %=, pr = p, and |p| < 1,

Bcau - 5 = Op(T71/2)7
toown = N(0,1).
(it). If or =1+ %, pr =1+ %,

Ji sgn (Je, (r) J, (r)dr
Jo 1Je, (r)] dr

T\ /2
tBCau - Op MT ’

(iii). If ®p =1+ G, pr =1+ 7,

Bcau - 6

9

—c; M [ sgn (Je, (1)) dBo(r)
Ji 1Je, (r)| dr

b

7' (Buau — B)
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o (TN
tBC’au - p MT :

Proof of Theorem C.2. (i). For the numerator in (154), note that sgn (X;—1) = sgn (X¢—1/T).

Using the Beveridge-Nelson decomposition and summation by part, we have

Lisgn (Xt_l) u
T vT )

_ Wl sgn Xt Z o
- T (7))
= Wo(1)N(0,0%) = N(0,€,). (155)

For the second equality above, note that \F Zt L 5gn ( NGi > AZy,. Taking summation

by part yields
LTngn< )Azm - % ; (39" ()\(/t%l) — (%)
o (5) o (5]
)

t=1
Note that ‘sgn (X\;%) — sgn (X\;;)‘ = 1 if sgn <Xt 1) #+ sgn <X\;‘T2 .
t—1—Xt—2

condition is ‘X*T) > 0 or asymptotically equivalently |u;,/v/T|40,(1) > 0. Thus,
applying the Beveridge-Nelson decomposition to u; ¢, we have

o (V7)o ()
> 0)

+0,(1) > 0) 20,

A
~£
S

3

I[]~

A necessary

IA
|

21t

VT

where I(-) denotes indicator function and the last convergence in probability is ensured
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by the mean square convergence. Since zy, is i.i.d., we have

+0,(1) > 0)] 2

{ (1)>0)
<|cl< |2+ <>>o)%o,

where the second equality is due to the fact that sup, |2 ¢| =
in (154), we have

T

Z (\01

{ (cun

21,4

VT

th

O,(1). For the denominator

1 T
oz D X
t=1

Combining (155) and (156) we have

Y N /0 | J.. ()] dr. (156)

T(Bcauj - 5) \/> Zt ! i ( f ) o = N(O {2 )

T3/2 Zt:l |Xt—1| fo |ch |d’l“

To obtain the limiting distribution of the test statistic ¢
that

,» hote that Qu 2 Q, and
T
_ Tt g )

02T

IB(;au,T

(ii). For the numerator in (154), noting that sgn (X;_;) = sgn (Xt 1/\/_) we have

1 1 o X1\ u
t—1\ Uot
73 ngn (Xec1)uor = = ngn < ) —.
e 5 Ul VT ) NT
By the continuous mapping theorem, the joint convergence of sgn (T) T (36) and
(38), we have

“\

Z n (X1 u0t:>/ sgn (J., (1)) Je, (r)dr.

(157)
Combining (157) and (156), we obtain

s ) sen (e () e, (r)dr
Bcau,T /B = fol |ch (T>| o
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This proves the first claim of Theorem C.2. For the test statistic {5 ., note that we
. ) :
can express tp - as 2z 3nXeJuor - Also from (43), we have €, = O,(M7T). Thus,

/AT
we can deduce that
) _ Sy sgn (Xi_1) oy B O, (T%?) _0 ( T )1/2
Bcau,T o Q}‘/Q\/T - Op(M,Zl-,/QTl/Z)Tl/2 - p MT .

(iii). Note that

Xe— X,
sgn ( \/tTl) Ugr = Sgn <<I>T \/th + 517t_1) (pruos—1 + €os)

Xt—l) (Xt—1>
= sgn | —— | wpi—1 + sgn | — | ¢ 158
pPTSg (\/T 0,t—1 g \/T 0, ( )
Xt—2) (Xt—1>
= sgn | —— | ug—1 +sgn | —— | ¢ 159
pPTSg (\/T 0,t—1 g \/T 0,t ( )

+p (sgn (Xt_l) — sgn (Xt_2)> u
T \/T \/T 0,t—1>
Subtracting both sides of (158) by sgn (X\}‘TQ) up+—1 and summing over t = 2,..., T, we
sgn (XT_1> UgT — SgN <ﬁ) u
T 0,1 JT 0,1
T T
Xt—Q) (Xt—l)
= —1 sgn Upt—1 T+ sgn €0t +
(pT )tg; g ( \/T 0,t—1 tg; g \/T 0,t
o (om () o ()
v —= 0,t—1-
pa VT VT !

1/2

have

Scaling the above expression by T~/2 and using pr — 1 = ¢, /T"*, we can obtain

Cuy Xt—2
T " ( VT ) o
= —isgn (Xt_l) £ot + sgn (XT_l) BT _ san (ﬁ) UoL
S (Sgn (X) . <X)) o,

o /0 sqn (.. (r)) dBo(r) — /0 [sgn (Ju(r)) — sgn (Jo. ()] dBo(r)
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-~ /0 sgn (Je, (r) dBo(r).

Combining this result with (156), we have

m 23’:2 sgn (X\;%) Ug,t
T
ﬁ thl |Xt—1|
—cp " [ sgn (J, () dBo(r)

T (/Bcau,T — 5) =

= 1
Jo eu(r)| dr
For the t statistic, we have
Zthl sgn (Xe—1) uo,z _ O, (T1/> ) _ O, (T"/?) _ (Tﬁu)l/Q
Q%/Qﬁ OP<M%/2THM/2)T1/2 Op(Mjl—./Q) p MT )

where Q, = O,(MyT") from (64) is used. This completes the proof of Theorem
C.2. |

Theorem C.2 shows that the Cauchy estimator and its corresponding test statistic
also lead to spurious inference as OLS, although the asymptotic distributions are quite
different.
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D. Additional simulation results

Table 9: Empirical sizes under DGP1 with 7" = 100

Cx

-20 -10 -5 -1 0 1 3
pr =1-30/T IVX 0.666 0.602 0.540 0.420 0.384 0.351 0.362
IVX-AR 0.073 0.074 0.076 0.074 0.076 0.078 0.089
Modified IVX-AR 0.036 0.032 0.031 0.034 0.040 0.044 0.046
Modified IVX-AR (BIC) 0.033 0.031 0.030 0.035 0.040 0.044 0.047
pr=1—-10/T IVX 0.732 0.756 0.749 0.698 0.664 0.626 0.621
IVX-AR 0.056 0.066 0.073 0.076 0.084 0.093 0.144
Modified IVX-AR 0.043 0.042 0.041 0.039 0.039 0.045 0.045
Modified IVX-AR (BIC) 0.039 0.039 0.038 0.037 0.037 0.042 0.044
pr=1-=5/T IVX 0.660 0.734 0.764 0.760 0.743 0.710 0.713
IVX-AR 0.053 0.059 0.064 0.075 0.077 0.094 0.188
Modified IVX-AR 0.045 0.044 0.045 0.045 0.047 0.045 0.049
Modified IVX-AR (BIC) 0.040 0.039 0.040 0.041 0.044 0.042 0.048
pr =1 IVX 0.508 0.625 0.687 0.776 0.799 0.825 0.859
IVX-AR 0.054 0.056 0.059 0.066 0.074 0.096 0.256
Modified IVX-AR 0.048 0.049 0.046 0.050 0.052 0.050 0.054

Modified IVX-AR (BIC) 0.043 0.043 0.041 0.044 0.045 0.044 0.050

Notes: This table reports the empirical rejection rates of original IVX test proposed in Kostakis
et al. (2015), IVX-AR test proposed in Yang et al. (2020) as well as the modified IVX-AR we
propose based on BIC. The data is generated from DGP 1 and the sample size is 100.
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Table 10: Empirical sizes under DGP2 with T" = 100

Cx
-20 -10 -5 -1 0 1 3
pr =1-30/T IVX 0.290 0.301 0.300 0.275 0.305 0.344 0.424
IVX-AR 0.077 0.078 0.087 0.089 0.086 0.081 0.081
Modified IVX-AR 0.048 0.045 0.050 0.058 0.056 0.053 0.054
Modified IVX-AR (BIC) 0.047 0.046 0.048 0.056 0.056 0.052 0.053
pr =1—10/T IVX 0.492 0.532 0.538 0.544 0.605 0.645 0.696
IVX-AR 0.102 0.128 0.148 0.088 0.092 0.098 0.117
Modified IVX-AR 0.050 0.050 0.051 0.049 0.049 0.050 0.050
Modified IVX-AR (BIC) 0.050 0.050 0.050 0.046 0.047 0.048 0.049
pr=1-5/T IVX 0.566 0.626 0.671 0.666 0.699 0.738 0.760
IVX-AR 0.123 0.172 0.202 0.108 0.118 0.139 0.173
Modified IVX-AR 0.054 0.058 0.058 0.048 0.050 0.050 0.048
Modified IVX-AR (BIC) 0.054 0.059 0.058 0.046 0.048 0.049 0.048
pr =1 IVX 0.742 0.815 0.842 0.795 0.773 0.762 0.724
IVX-AR 0.174 0.270 0.342 0.216 0.246 0.253 0.251
Modified IVX-AR 0.060 0.070 0.065 0.052 0.054 0.054 0.055

Modified IVX-AR (BIC) 0.060 0.072 0.064 0.050 0.052 0.052 0.052

Notes: This table reports the empirical rejection rates of original IVX test proposed in Kostakis
et al. (2015), IVX-AR test proposed in Yang et al. (2020) as well as the modified IVX-AR we
propose based on BIC. The data is generated from DGP 2 and the sample size is 100.
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