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This chapter provides a selective review on the factor-augmented regression (FAR) models,
where the factors are usually estimated from a large set of observed data, and then as “gen-
erated regressors” enter into the next stage regression. It begins with an introduction to the
large dimensional factor models and the widely-used principal component analysis (PCA) es-
timator. Then we review FAR models with time series data, the extensions of FAR to some
nonlinear models and the factor-augemented panel regressions. Lastly, we briefly introduce
some applications of FAR to financial markets.
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3.1 Introduction

Due to rapid technological advances in data collection and the accumulation of massive amounts
of information, economists now have the luxury of working in a data-rich environment. Com-
mon factor models, as an efficient way to summarize and extract information from large datasets,
have received much attention in this revolutionary era of data science and have been widely used
in empirical studies. Partial previous applications of factor models in economics and finance in-
clude the arbitrage pricing theory (APT) of Ross (1976), the disaggregate business cycle model
in Gregory and Head (1999) and Forni and Reichlin (1998), monitoring and forecasting with dif-
fusion indices in Bai and Ng (2006) and Stock et al. (1998); Stock and Watson (2002a,b), the
demand system in Gorman (1981), and the identification of common factors for exchange rate in
Greenaway-McGrevy et al. (2018), etc. See Bai and Ng (2008), Bai and Wang (2016), Xu et al.
(2016), Swanson and Xiong (2018), Karabiyik et al. (2019) and Fan et al. (2021) for selective
reviews on factor models from different perspectives.

This chapter provides a selective review of factor-augmented regression (FAR) models and
their applications in finance. In the framework of FAR, the factors are usually estimated from a
large set of observed data and then, as “generated regressors” that enter into other models such
as linear predictive models, quantile regression models, or panel regression models, etc. Since
the seminal paper of Stock and Watson (2002b), FAR models have been broadly used for many
purposes. Once the factor components have been extracted, they can be used to date the recession
Stock and Watson (2016), compare forecasts (Boivin and Ng, 2005), measure uncertainty (Jurado
et al., 2015), and evaluate monetary policy (Bernanke and Boivin, 2003).

In the literature on factor models, different methods, such as a principal component analysis
(PCA) based on an eigen-analysis of the sample covariance matrix of the data, a maximum likeli-
hood estimation (MLE), or some low-rank regularization methods that use the low-rank structure
of factor models, have been proposed to estimate factor models. Among all the estimation meth-
ods, PCA is the most popular in empirical applications. As a simple way of transforming the
information content in a large number of series into a smaller number of manageable series, PCA
can provide consistent estimates for some rotation of common factors under certain assumptions.
This chapter focuses on the method of PCA.

The rest of the chapter is organized as follows. We provide an introduction to the factor model
and its PCA estimators in Section 2. Section 3 reviews the FAR with time series data, which mainly
includes the diffusion index model and the issue of model selection. Section 4 focuses on the
nonlinear FAR models covering factor-augmented quantile regression models, factor-augmented
nonlinear models, and FARs with structural breaks and threshold effects. Section 5 surveys a FAR
with a panel data set. Two applications of FARs to financial markets are mentioned in Section 6.
Section 7 presents concluding remarks.

3.2 Factor Models and Principal Component Analysis

In this section, we first introduce the large-dimensional factor models in Bai (2003) and then
review the main theories of PCA estimators.
A typical factor model has the following representation:

Xit = N Fy + eq, (3.2.1)

1 =1,...,N,t = 1,...,T, where X;; is the observed data for the i-th cross-section unit or
variable at time ¢, F} is a vector (r x 1) of common latent factors, \; is a vector (r x 1) of
factor loadings, and e;; is the idiosyncratic error. Both F;’s and )\;’s are not observable. We
are usually interested in the estimation of common factors F' = (Fy,..., Fr)’, factor loadings
A=A, .., N)', and the common components Cj; = )\gFt when both N and 7" tend to infinity
simultaneously.
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In this chapter, we focus on stationary factor models where both {F;}/_, and {e;;};_, are
stationary. For an excellent review of nonstationary factor models, see Chapter 6 of Bai and Ng
(2008). In the literature, there are two general approaches to estimate the factor model (3.2.1).
One is the PCA method, and the other is low-rank regularization. In this review, we restrict our
interest to the PCA estimators, which is much simpler and more popular than other methods in
applications. For the low-rank regularization of factor models, see Section 3.2 of Fan et al. (2020).

Let X; = (Xi1,..., Xir), X = (X1,..., Xn). i = (€i1,...,eir),and e = (eq,...,en).
Then, the model (3.2.1) can be written in T-vector form X; = F'\; + e; or matrix form

X =FA +e.

Note that FA’ = FHH A’ for any invertible r x 7 matrix H, F and A are not separately
identifiable. Bai and Ng (2002) impose the following identification restrictions:

F'F/T = I, and A’A being diagonal.

The 72 restrictions given by the normalization of F and the diagonalization of A’A fix the 72 free
parameters in matrix H. However, the column signs of F' and A are still not fixed. Alternatively,
one can use the normalization of factor loadings A’A/N = I, and the diagonalization that F'F is
diagonal. For other identification restrictions, see Bai and Ng (2013). For any k(k < min|[T, N]),
the PCA estimator with & factors is given by

(ﬁ'k,ka) = arg min S (k) with
Fk Ak

1 & g1
S (k)= NT - tz:; (Xit — )\f'Ftk) = Wtr [(X — FA') (X - FA’)/] ,

subject to

(PC1) F¥F* /T = I, and A¥ A¥ being diagonal; or
(PC2) AMA¥ /N = I, and F"'F* being diagonal.

Under restriction (PC1), we can cancel A* by using A¥ = (F¥FF) Tk = F¥X/T and
obtain

F* = arg n}ikntr (X,MFkX) = arg H}‘E?;Xtr (X'PFkX) = arg n}i}rxtr <Fk’XX’Fk) ,

where Myw = Iy — F¥ (FMER) ™ FR = [ — FREMT and Py = FF (FMEY) T pl =
FEE* /T, The estimated factor matrix FFis given by /T times the eigenvectors that correspond
to the k largest eigenvalues of the 7" x 7" matrix X X', and the factor loadings are estimated
by A¥ = F¥X/T by using restriction (PC1). Now, the restriction A*A* being diagonal is
satisfied automatically. Alternatively, one can use restriction (PC2) and concentrate out F* to
obtain another set of estimators (F k Ak ) : A¥is /N times the eigenvectors that correspond to the
k largest eigenvalues of the N' x N matrix X’ X, and F¥ = X A* /N. Let Vi be the k x k diagonal

matrix that consists of the first & largest eigenvalues of the matrix X’ X/(TN) (or X X'/(TN))?,
arranged in decreasing order. It can be shown easily that

Ak/Ak ﬁwk/ Fk
N T

1/2

o s N1/2 R o
=V, P = <Vk) ,and A" = Ak <Vk)

Note that X’ X and X X’ have the same nonzero eigenvalues.
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For the determination of the number of factors %, Bai and Ng (2002) propose estimating it by
minimizing the following information criteria:
kio = arg IICIEI? IC (k) with IC (k) =log S (k) + kg (N,T),

or
kpc = arg <]%1 PC (k) with PC (k) = S (k) 4+ a%kg (N, T),

‘ N2
where kmax > 7 is a prespecified large number, S (k) = o S, S, (X,-t — AV Ftk’) , 5% is
used as the proper scaling penalty term in PC(k), and g (N, T') is a penalty function that satisfies
(i) g (N,T) — Oand (ii) on7-g (N,T) — oo as (N, T) — oo, where dnp = min[\/_ \/_] The
typical function g (N, T") includes g; = M In (M) g2 = M11[1 (63%1), and g3 = 1MNT.

N+T
For PC (k), 5% can be estimated by S (kmax) = 77 SN ST (X — ;\fmaX'Ftkmax) . Under
standard conditions on factor models, Bai and Ng (2002) show that

Pr (];?10 :r) — 1 and Pr <I%PC :r> —1

as (N, T) — oco. As shown by Bai and Ng (2002), all criteria (IC, PC) with g1, g and g3 perform
very well in simulation when both NV and 7" are large. When either N or 7" is small and errors are
uncorrelated across ¢ and ¢, the ICs with g; and g have better finite sample performance. In this
chapter, we assume a known 7 because the large sample theories of the estimated factors and factor
loadings are not affected when the number of factors is estimated using information criteria. There
are some other criteria on the determination of the number of factors; for example, see Onatski
(2009) for a testing approach based on large random matrix theory, Ahn and Horenstein (2013)
for the eigenvalue ratio (ER) and the growth ratio (GR) estimator based on the calculation of
eigenvalues, Alessi et al. (2010) for the modified information criterion of Bai and Ng (2002) with
an additional tuning multiplicative constant in the penalty, and Li et al. (2017) for the information
criteria for the factor model with a diverging number of factors.

Since the review focuses on the FARs, we are interested in the large sample properties of
the factors estimated by PCA. Therefore, we only state the limiting theories for the estimated
factors in Bai (2003). For the limiting distributions of the estimated factor loadings and common
components, see Theorems 2-3 in Bai (2003). Let F}) and \? denote the true factors and factor
loadings, respectively. Under the standard conditions on factor models, Bai (2003) shows that

(i) If /N /T — 0, then for each t,

/ 1,70
\/N(Ft H'FY) = Vi (FF ) ! ZA%”JFO <\/_> (32.2)
& N(0,VQr,Q VY, (3.2.3)

where H = V. (13‘ "FO/ T) (A’A/N) is an asymptotically invertible  x 7 matrix, Vi is a di-

agonal matrix that consists of the first r eigenvalues of (NT )_1 X X' in decreasing order, V =

diag (v1,...,v,) and Q = plimy ,  F'FO/T = Vl/QTZI_\l/Q, v] > --- > v, are the eigenval-

ues of 21/ 22 le/ % and Y is the corresponding eigenvector matrix such that Y'Y = I with X, =

plimy_, .o AYA%/N and 2 = plim;_, oo FYFO/T,and Ty = limy 0o N7 S0V ZN )\0)\ "E (eite;t).
(i) If lim inf /N /T > 7 > 0, then

T (13} - H’F,F)) = 0,(1). (3.2.4)

From the above results, we conclude that the convergence rate for each estimated factor
is min[V 1/ 2 T), and the asymptotic normality generally holds when VN /T — 0. The rate
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min[N'/2, T reflects the fact that the factor loadings are estimated. If \’s are all known, then
the convergence rate for the cross-sectional least square estimator for F should be V/N.

To make inference about the estimated factors when \/N /T — 0, a consistent estimator for the
asymptotic variance Avar(ﬁt) = V1QT;Q'V~" is needed. Bai (2003) proposes the following
estimator

Rvar(F}) = Vil Vil (3.2.5)

where the r X r covariance matrix I'; can be estimated by

N
() Ty = %Zéitﬂiﬂ‘ (b) T = %Z or(c)' == ZZ)\ N— Zeneﬁ,
i=1 i=1

where — 0in (c) and é;; = X;; — 5\;13} (a) works when e;; are uncorrelated with e

(v T]
for i # j, and (b) works when ¢;; are uncorrelated with e¢j; for i # j and E (e?t) = o2 for
all 7’s and t’s. As argued by Bai (2003), when a small degree of cross-section correlation in
the error terms exists, sometimes restricting them to be 0 could be desirable because the sam-
pling variability from estimating them could generate nontrivial efficiency loss. (c) is termed the
cross-section and heteroskedastic autocorrelation consistent (CS-HAC) estimator by Bai (2003)
and is appropriate for cross-sectional dependent errors with an additional covariance stationarity
assumption that £/ (e”e,t) = 0j; for all t’s. As for the choice of n in (¢), one simple rule is to use
n = min { LN 1/ 2J [T 1/ QJ } as suggested by Bai (2003), where |a| denotes the largest integer
less than a.

Since we focus on the cases where the estimated factors are used as regressors in the next
stage, the following rough uniform consistency result for the estimated factors Fyis given by
max HFt = H’FtOH =0, (1772} + 0, ((r/N)"?).

1<t<T

Bai and Ng (2008) provide a sharper bound. If there exists ¢ > 4 such that £ ||Ft0H£ < M and

¢
E HN‘I/2 Zfil Ne;t|| < M for all ¢, then

s =] =0 (1) (1)

When ¢ = 4, maxj<i<r Hﬁt — H’FtOH =0, (T_3/4) + O, (T1/4/N1/2) — 0 given that
T/N? — 0. In addition, the following results are relevant for the FAR:
A 2 o
DTS | B- HE| =0, (033)
(i) Assume that &; is uncorrelated with e;; for all ¢ and ¢t and F/ |§t|2 < M for all t; then,

T Z;le <Ft - H,Fto) ft = Op (5;f2T) :

3.3 FARs with Time Series Data

In this section, we mainly review the forecast model using the FARs in Stock and Watson (2002a,b)
and Bai and Ng (2006).
3.3.1 Diffusion index forecasting model

When a FAR model is applied to time series data, it is typically for the aim of forecasting some
target variables in a data-rich environment. Consider the following the h-step ahead forecasting
model for y; with h > 1:

Yi+h :a/Ft—i_B,Wt—'_Et-‘rh’t: 17"'7T7 (331)
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where F; is an r X 1 vector of unobservable factors, and W; is a vector of a small number of
observables, which typically includes the intercept and the lags of y; or seasonal dummies, and
¢4 p, is the error term. Clearly, given E (£444|Q7) = 0, where Qp = [Fp, Wy, Fp_1, Wp_q1,--+],
the optimal predictor for y7 . at the T'th period is

Yrinr = E(yrn|Qr) = o' Fy + Wy (3.3.2)

However, based on the observed data set { W, yt}thl, it is impossible to obtain the conventional
mean-squared optimal prediction of y7 ;7 because F} are unobservable.

In a data-rich environment, suppose that there is a large number of series X, = (Xy¢,..., X Nt),
at the tth period that has a factor structure as follows:

Xit = N Fy + ey (3.3.3)

Clearly, X;; is correlated with the latent factors F; and is a noisy predictor for ;. However, one
cannot directly regress y. 5 on X; and W; to construct the forecast due to the large dimension
of X (IV) without imposing some special structure. Instead, one can extract the factors from the
observables X;,’s through PCA and then provide a feasible forecast by using the PC estimates for
the latent factors.

When the target variable 1, is a scalar, the framework in (3.3.1) and (3.3.3) is the famous
diffusion index (DI) forecasting model proposed by Stock and Watson (2002b). The DI can reduce
the dimension of the predictors from N to a much smaller number 7, namely, the dimension of Fj.
That is, it can exploit the information underlying a large data set in a parsimonious way. Due to
its advantage in modeling large data sets, the DI framework has been widely used by government
agencies in different countries and many academic researchers.

Now, we turn to the construction of the DI forecast. Consider the PCA estimator F,, in the
model (3.3.3) based on data { X;;,i = 1,...,N,t =1,..., T}, which is a consistent estimator of
H'F, for some invertible rotation matrix H according to (3.2.2)-(3.2.4) in Section 2. Then, regress

A~ ~ ~ /
yeon on Fy and W, to obtain 6§ = ((3/ i ) by using the usual least square method, namely,
T—h “Lopop
o= ( 2%4) > Zyeen,
t=1 t=1
R /
where 2; = (Ft’, W{) .Leté = (o/H™ Y, 8') and 2, = (F}, W})'. Rewriting

Yeoh = &' F + B'Wy + ey
= H B + Wy + ey + o' H™! (HFt - Ft)
= 5/275 + ep4n + Oé/.l'.'I_1 <HFt — Ft>

leads to the following decomposition:
A b -1 =
VT <5 - 5) = <? tz; ztzt> s ; ZtEt+h
1T_hAA, B 1 N
+ <f22t2t> ﬁ;zt (HFt_Ft) H™  a,

where the first term is O, (1) and becomes the leading term when v/T'/N — 0, and the second
term is O), (T 1/2 /N+T -1/ 2) according to Lemma A.1 (iii) in Bai and Ng (2006). Under some

regular conditions, Bai and Ng (2006) show that when VT /N — 0, 5 is \/T-consistent as the
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estimator of § and is asymptotically normally distributed. Specifically, when /T /N — 0, Bai
and Ng (2006) establish that

VT (8 - 5) 4 N(0,%5), (3.3.4)

zzZ

where X5 = O 121 %,, D 10! with @ = diag (V'Q2A, 1), Bse = plimy o TS 22,
and ¥, . = plimg_,  T7! Z;‘FZI ztzgf-:irh. Let &1 n = Ysrh — Jeen|e- A heteroskedasticity con-
sistent (HC) estimator for X5 is given by

1 T—h -1 1 T—h 1 T—h -1
Ss= | — Y 42 — N " 3,5082 =Nz (3.3.5)

t=1

where Ty, =T — h.
Given the consistency of ¢, a feasible prediction for y7 ., is given by

Jrnr = & Fr+ B'Wr = 2. (3.3.6)
To make inference about the feasible predictor, write
YT hT — YT hT = 6 — 2pd =/ H™ (Ft - HFt) + 27 <5 - 5) ; (3.3.7)

which has two components due to the estimation of F} and §. Recall that as \/N /T — 0,
VN (FT — H’FT) LY (O, Avar <FT)) , where Avar (FT> = V-1QT,Q'V~!. This result
combined with (3.3.4) gives the following:

UT+hT — YT+hT d
| T

N (0,1),
Var (§rinr)

where ) )
Var (?)T+h\T) = Tz‘}Avar <3> Zr + No?'Avar (FT) Q.

The forecast error is given by

Erinr = Urnir — Yr4h = (r4hr — Yranr) + €740

and its variance is given by Var (éTJrh‘T) = Var (g)T+h|T) + Var (epyp). If one imposes a
further assumption that £; is normal with variance o2, then the forecasting error also becomes
approximately normal:

érinr ~ N (0,02 4+ Var (rinr))

so that the confidence intervals (CIs) can be constructed for the forecasts.

Given the consistent estimators for Avar(d) in (3.3.5) and Avar(Fr) in (3.2.5), the predic-
tion intervals can be straightforwardly constructed. For example, the 95% CI for the forecasting
variable y7 4, can be given by

[QTMT - 1-96\/5&2 + Var (Jrsnr)s I + 1-96\/53 + Var (§rinr)

where Var (g7 ar) = 42Avar (8) 2 + ka/Avar (Fr) dand 62 = 77V S0L, 22 with
Eith = Yith — 73{3 For the bootstrap prediction intervals for factor models, see Gongalves et al.
(2017). The bootstrap can relax the assumption of the Gaussianity of the innovations and construct
valid prediction intervals under more general conditions. Moreover, even under the Gaussianity
assumption, the bootstrap procedure leads to more accurate intervals when NV is relatively small.
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The estimated factors £ can be combined with an m-vector of W; to form a factor-augmented
vector autoregression (FAVAR) model, which was originally proposed by Bernanke et al. (2005) to
measure monetary policy. A FAVAR model assumes that a large number of economic variables are
driven by a small vector autoregression (VAR), which includes both latent and observed variables.
To be specific, in a FAVAR, both the unobserved factors F}; and the observed factors W; affect a
large number of observed variables X,

Xit = NiFy + Wi + €4,

and the random vector G; = (F}, W})' follows a VAR of finite order,
(I)(L)Gt = Ug.

where {u;} are i.i.d. (0, o2). For the above model, two ways have been proposed to analyze the
system by Bernanke et al. (2005). The first one is a two-step method: Step 1. Form estimates of the
space spanned by both F; and W; with PCA, where various identification approaches can be used
to obtain the estimates F}; Step 2. The estimated factors are treated as observed in conducting
a VAR analysis of G, = (ﬁ'{ , Wi ),. Due to the problem of “generated regressors”, the two-
step estimator has a different inferential theory from the standard large factor models; see Bai
et al. (2016). The second method considers the joint estimation of the latent factors and impulse
responses with a one-step likelihood approach that uses Gibbs sampling. These two methods can
complement one another, with the first one being computationally simple and the second providing
possibly better finite sample inference but at a heavier computational cost. See Bernanke et al.
(2005), Stock and Watson (2012), and Bai and Wang (2016) for more discussion.

3.3.2 Model selection of the diffusion index forecasting model

In the DI forecasting model, the predictor constructed in (3.3.6) relies on the fact that both the
target variable y; 5, and the large set of variables X;;, 7+ = 1,..., IV, have the same set of factors.
In practice, some factors extracted from the observable X;;’s may provide useless information
for predicting the target variable. In the literature, different approaches to select the significant
predictors exist (the estimated factors and observable predictors), such as model selection crite-
ria, a generalized cross-validation, a shrinkage estimation with sparsity assumptions, and model
averaging techniques.

In the following section, we review three commonly used model selection criteria in DI fore-
casting models.

~ ~ ~ /
Groen and Kapetanios (2013) model selection criteria. Let ' = (F Ty« FT) bethe T' x r

matrix of the estimated factors by applying PCA to model (3.3.3), where the number of factors r
can be determined by the criteria in Bai and Ng (2002). Let

F= {{Ft(l)}thl ’ {Ft(2)}tT:1 B {Ft(S)}:;l}

denote the set of estimated factor variables, where Ft(l) indicates the /th candidate vector of the
estimated factors at time ¢ and includes the d; elements of F3,; the number of all candidate sets is s.

~ ~ ~ /
Let FO = (Fl(l), R F:(Fl )> be the 7" x d; matrix of the estimated factors for the /th candidate set.

Clearly, s < 2" because there are 2" distinct forecasting models when there are r estimated factors.
When 7 is not too large, all 2" subsets can be considered; but when the number of combinations is
too large, a much smaller subset of them can be considered. Furthermore, let

7= {{Ft(l)}toil ’ {Ft(2)}to:1 T {Ft(S)}Zl} ’
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where Ft(l) = plimy ;0 Ft(l) is the probability limit of Ft(l) forl = 1,...,s. To select the

correct specification of factors in the predictive regression, Groen and Kapetanios (2013) propose
the following information criteria (IC):

T _
¢, = Eln (62) +diCnr,

where 62 = T-' L, 1 €7, with £,’s being the ordinary least squares (OLS) residuals from the
linear regression

Yt+h = qu),fs(l) + €ttn

. / . N
with ét(l) = (Ft(l),, Wy ) , dy is the number of factors included in Ft(l), and C'y 7 denotes a penalty

term that satisfies Cyy = o(T)) and limy 700 T min(N, T)Cn 1 = oc. Let F? be the true
factors in the target predictor variable y;, . Under the standard assumptions in Bai and Ng (2006),
Groen and Kapetanios (2013) establish the following factor selection consistency result:

(1) If there exists a matrix A such that Flt0 = AFt(l) for Vt, but no such matrix exists for Ft(j )

when [ # j, then
leTlgloo Pr(IC; < ICj) =1, (3.3.8)

(ii) If there exist matrices A() and A(™ such that F = A(Z)Ft(l) and F = A(m)Ft(m) for Vt
and d; < d,,, then (3.3.8) holds.

The model selection consistency results include two parts: (i) any set of estimated factors
whose probability limits span the true factors will be chosen over any set of estimated factors that
do not span the true factors given the penalty term being o(7'); and (ii) if two sets of estimated
factors both span the set of true factors, then the one with the smaller dimension will be chosen.

Note that the conditions on C' ~n,1 allow for all popular ICs such as the Bayesian IC (BIC) and
the HQIC. To gain a better finite sample performance, Groen and Kapetanios (2013) propose the
following modified BIC and HQIC:

BICM = gln (62) +dIn(T) (1 + %) and
T, ., T
HQICM = S I (67) +2dIn (InT) 1+ 5 ).

When other variables W; such as the lags of the target variable in the forecasting regression also
need selection, Groen and Kapetanios (2013) provide the modified criteria to select the estimated
factors and other predictors jointly:

T T
BICM = In (62) +kInT +dIn(T) (1 + N) and

T T
HQICM = 5 In (62) + 2kIn(InT) + 2dIn (In7) (1 + N) ;
where k is the number of variables in the subset of W; used in the forecasting regression.
Ando and Tsay (2014) PMSE criterion. Let uqp,...,upry, be replicates of the target vari-
ables y14p, - - ., yr+n given the true values of factors F1, ..., Fpr. To assess the predictive ability
of the estimated model, the predictive mean squared error (PMSE) is considered:

:l/
=7

where dG (u) is the Lebesgue measure with respect to the probability density g(u) of the joint

PN

distribution of u = (u14p, ..., ur4+s)’. The PMSE is positive unless u;1p = 2,0 almost surely

T
3 <ut+h - ﬁgs) 2] dG (u), (3.3.9)

t=1
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holds. The best statistical model is chosen by minimizing the PMSE. However, the PMSE depends
on (a) the unobserved replicates uyp, ..., uryh, (b) the observed data (through the estimate 3),
and (c) the use of proxies Z1,..., 27 because the true factors in 2, are unobservable. A natural
estimator for 7 in (3.3.9) is given by

1 L 2
Z (yt-i-h > P
t:l

which replaces the unknown distribution G (u) with an empirical distribution with a mass of 1/7°
on each observation. However, 7 is biased due to the estimation error. The bias is given by

= f{1] 9= 33 (o~ 28) a6 ).

t=1
Assuming that b estimates b consistently by using some procedure, the following bias-corrected
PMSE is considered:

T

Z (Ut+h - Zt )

~

PMSE =1 —b. (3.3.10)
See Remark 4 in Ando and Tsay (2014) for a detailed discussion of b and its consistent estimator b.
Ando and Tsay (2014) choose the best diffusion-index model that minimizes this PMSE score in
(3.3.10). Based on the bias-corrected PMSE, the criterion is a natural extension of the traditional
Akaike information criterion (AIC), but it relaxes the restrictive distributional assumptions for the
likelihood.
Djogbenou (2021) selection procedures for FAR models. The first procedure is a generaliza-
tion of leave-d-out cross-validation (CV), which can select the smallest basis for the space spanned

by the true factors. Given the b random draws of d indexes S'in {1, ..., T} called validation sam-
ples, for each draw S = {s(1),..., s (d)}, define

Ys(1) 1?3(1) (m) Wy
Y A F m) W,
ye — s'(2) and Zs (m) = 5(2).( ) @ |

Ys(d) Fyq) (m) W)

where F} (m) is a subset from the r x 1 estimated factors E by using PCA, and m is any of
the 2" subsets of indices in {1,...,r} denoted M including the empty set. The corresponding
construction sample is indexed by SC = {1,...,T}\S with yg- being the complement of yg in
y, and Zge being the complement of Zg in Z (21,...,27) . Denote §5 (m) = Zg (m) ds (m),

s (m) = (Z’SCZ Sc) v/ 'scysc. The Monte Carlo leave-d-out CV estimated model is obtained
by minimizing

CVy (m ZH}’s—yq m)|,
SGR
where R represents a collection of b subsets of size d randomly drawn from {1,...,7}. When

d=1,5 = {t},and R = {{1},...,{T}}, CVi(m) is the usual leave-one-out CV objective
function. The consistency of the leave d-out CV for the diffusion index model is established in
Djogbenou (2021). In addition, Djogbenou (2021) shows that the usual CV fails to give consistent
model selections.

The second procedure proposed by Djogbenou (2021) is a generalization of the bootstrap
approximation of the squared error of prediction of Shao (1996). Djogbenou (2021) proves the
validity of the described bootstrap scheme under some conditions. The algorithm for bootstrapping
the squared error of prediction is as follows:
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Step 1. Obtain the estimates F and A for F and A from X with the PCA method .

Step 2. For each model m :

1. Compute 6 (1n) by regressing y on Z (m) = <F’ (m), W) .

2. Generate B bootstrap samples X = F/\; + eX, y* (m) = Z (m) 6 (m) + £*, where
{eX} and {e}} are the bootstrap errors based on {é;;} and {&,}, respectively, with &,
being the residual when all the estimated factors are used.

3. {e},} are obtained by multiplying {é;;} i.i.d. external draws n;; with En; = 0 and
Var(ny)=1fori=1,...,N,andt =1,...T.

* T/k A — T 4 .
4. {ef}i=y . p are the iid. draws of {TW (Et —T715 at)} , with K —
oo and m — 0, and q is the dimension of W;.

5. For each bootstrap sample, extract F* from X* and estimate 5:; (m) based on 7+ (m) =
(F* (m), W) and y* (m) .

y 2
Step 3. Obtain 712 as the model that minimizes the average of T'%; (m) =7! Hy 229 (m) 617 (m) H

over the B samples indexed by 7, as given by [', (m) = B~ ZB % (m).

Other recent developments. For a slightly different forecasting model, where both latent
factors and idiosyncratic components from a large set of predictors may enter the predictive re-
gression, Fosten (2017) proposes some model selection criteria that considers the uncertainty in
estimating both components. The criteria can jointly select the estimated factors and idiosyncratic
components consistently. For other approaches to determine the forecasting model with FAR,
see Bai and Ng (2009) for the boosting approach to diffusion index, Cheng and Hansen (2015)
for the forecast combination with FAR based on frequentist model averaging criteria, Kelly and
Pruitt (2015) for the three-pass filter regression approach, and Carrasco and Rossi (2016) for the
regularization methods for in-sample inference and forecasting in misspecified factor models.

3.4 Nonlinear FARs

The FAR framework is also useful in nonlinear or semiparametric regressions. Recent develop-
ments for FAR in nonlinear models include a factor-augmented functional-coefficient predictive
regression, factor-augmented quantile prediction regression, factor-augmented forecasting model
with structural changes or threshold effects, etc. In this section, we give a selective review on
nonlinear FAR models.

3.4.1 Factor-augmented functional-coefficient predictive regression models

Li et al. (2020) introduce a new class of functional-coefficient predictive regression models, where
the regressors consist of lagged target variables and latent factor regressors, and the coefficients
vary with certain index variables. Specifically, they consider the following one-step ahead predic-
tive regression model:

do
Yt+1 = Zau (ut) th+zazg (ue) Yer1- —j t €1
=1 j=1
ton (ug) + Y/ az (ue) + egq1, (3.4.1)
t = 1,...,T, where .y is the dependent variable, Z; = (241, ..., 2q,) is @ gp x 1 vector

of exogenous covariates with gy — oo as ' — 00, Y; = (Yt,--.,Yi—do+1) includes fixed
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do lags of the response, u; is a univariate index variable, oy (-) = [a11(¢),...,a14, (+)]" and
as(+) = [aa1 (+),...,a0q, (+)]" are two vectors of coefficient functions, and ;11 is the error.
When u; = t/T is the time regressor, the model (3.4.1) becomes the time-varying coefficient
(TVC) model. In the above predictive model, Z; are determined by some latent factors outside of
the models, and Y; are determined within the model.

When the dimension of regressors is extremely high or moderately large, some commonly used
approaches such as a shrinkage estimation or screening method are used to remove the insignificant
regressors or reduce the model dimension. However, as Fan and Lv (2008) points out, when
irrelevant regressors are highly correlated with some relevant ones, both methods tend to select
these irrelevant regressors into the model with higher priority than some other relevant regressors,
which then causes high false positive rates and low true positive rates. In time series models, the
problem may be more severe since regressors often contain the lags of the dependent variable and
cause strong correlations among the regressors.

To address this problem, Li et al. (2020) develop an alternative dimension-reduction technique
for the high-dimensional functional-coefficient predictive regression model by imposing a factor
structure on Z;:

Zy=BrF, +V; (3.4.2)

where By is a gr X r matrix of factor loadings, F}; is a  x 1 vector of latent common factors
that is stationary and weakly dependent, and V; is a g,,-dimensional vector of idiosyncratic errors.
The number of factors r is usually unknown and may increase slowly as the sample size increases;
see Li et al. (2017). Using the structure model in (3.4.2), Li et al. (2020) consider the following
functional-coefficient predictive model by using the factor regressors:

Yer1 = FB1 (ug) + Y{ B (us) + €11 (3.4.3)

where 1 () = (B (), B1r () = Bpaa (), B2 (1) = az (), and ey = Ve (ur) +
£¢+1- The model in (3.4.2) and (3.4.3) is called the factor-augmented functional-coefficient model
(FA-FCM). Noting that the factor regressors are unobservable in (3.4.3), Li et al. (2020) propose
to replace them by their PC estimators with data Z;’s. Specifically, they introduce a two-stage
estimation procedure.

N ~ ~ !/
Step 1. Estimate the factor regressors by using PCA. Let Fr = <F1, ceey FT> be the PC estimators,

which are an 7' x r matrix that consists of the r eigenvectors (multiplied by /n) associated
with the r largest eigenvalues of ZyZ’./ (T'qr) (ranked in descending order), where Zq =
(Z1,...,Z7)".

Step 2. Estimate the rotated coefficient functions by the local linear (LL) smoothing method. Let
X, =[(HF), Yt’}/ and By (-) = [B] (-) H, B4 (+)]". Write the model (3.4.3) as follows:
Yrr1 = XiBm (ur) +op1-

Assuming that the coefficient functions S (u;) have continuous second-order derivatives,
one can estimate the above model with the LL smoothing method by using the estimated

~ ~ ~ /
factors in Step 1. Let X; = [Ft’ Yt’} Y7 = (y2,. ., y1)

X X! (ug —u)
Xrp (u) = : : ,and Wy (u) = diag {Kp(uy, u), ..., Kp(ur,u)}
X! X (up —u)
where Kj(u;, u) = K ((u; — u) /b), K (+) is a kernel function, and b is the bandwidth. The
local linear estimate of Sz (u) is given by

B () = [Ty Or-do) x (r-+do) [X/T () W (u)Xyp (U)]_lx% (u) Wy (u)Yy  (3.4.4)

where u € U with U is the support of the index variable wu;.
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Given the feasible LL estimate in (3.4.4), the one-step ahead prediction of y;11 is given by

g = Bur-1 (ur) Xr (3.4.5)

where BAH7T,1 is the LL estimate as in (3.4.4) that uses the sample (yy1,us, Z¢), t = 1,...,T.
Clearly, Y717 in (3.4.5) is an estimate for

yrivr = Frpi (ur) +Yrbr (u) = XpBu (ur) .

For a given 0 < a < 1, the (1 — «) CI of yp4 )7 can be defined by

[@T+1|T — cay2\/ Var(@riir) 91T + Cay2\/ VaT(QT+1T)}

where ¢, /5 is the upper a./2-percentile of (QT+1\T — yT+1|T) /A Var(Griar), and Var(§riqr)
is the estimate of the variance of ¢, 1|7 To construct the feasible CI, these above quantities have
to be estimated by using the asymptotic result (e.g., Theorem 3 in Li et al. (2020)). However, due
to the slow convergence rate caused by the nonparametric nature, such CI construction based on
asymptotic theory usually does not perform well in finite samples. Li et al. (2020) propose the use
of a wild bootstrap procedure to estimate ¢, /o and Var (§71 ‘T), and we then proceed to construct
the prediction interval.

Under some regularity conditions on factor models, Li et al. (2020) establish the asymptotic
properties of the proposed methods:

(i) sup,ey HBH (u) — By (u)H = 0p <(Tb)_1/2), where Sy (u) is the infeasible estimator
that uses the true factors. 4
(i) VT D (ﬂH (u) — Bar (u) — 11282 (u) b2) b N (0ysay, 2 (w)), where piz = [ 62K (u) du.

(iii) Let A (up, Xp) = [BH7T—1 (ur) — Bu (uT)]/XT. For a fixed r,

QT+1|T “Yriyr = A (uT7 XT) —E7+41 1+ 0p (1/ (Tb)l/z) )

and conditional on ur = u* and X7 = X,
1
VTh [A (u", X") = G2b* X" 2) (u*)] 4 N (0,%);

where D7, = (u) and ¥.* are well-defined matrices in Li et al. (2020). The result in (i) shows that
the LL estimator and the nonlinear forecast that uses the estimated factor regressors are asymptot-
ically equivalent to those that use the true latent factor regressors. Result (ii) gives the pointwise
asymptotic distribution of the LL estimator of the functional coefficient, and result (iii) presents
the limiting distribution of the feasible predictor. In practice, to implement the estimation and
forecasting method, Li et al. (2020) use the forward selection criterion as a screening tool and
adopt the BIC as the stopping rule to estimate dy and r.

3.4.2 Factor-augmented quantile regressions

Since the seminal work by Koenker and Bassett Jr (1978), quantile regressions (QRs) have been
widely used in empirical studies such as labor economics, macroeconomics and risk management
in finance, and their theoretical properties have been extensively investigated in the econometric
and statistical literature. In a data-rich environment, the factor structure, as an efficient tool that
summarizes the information in a large set of predictors or regressors, is incorporated into a QR.
For example, Ando and Tsay (2011) study the estimation of factor-augmented conditional QR
models and propose an information criterion based on the bias-corrected expected log-likelihood
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to select the estimated factors and observable predictors; Ohno and Ando (2018) adopt a factor-
augmented quantile predictive regression system to predict the stock returns with the shrinkage
method to select the useful predictors. Other recent developments include the model averaging
approach to forecasting with factor-augmented quantile autoregressions in Phella (2020) and the
quantile-based asset pricing model in Ando et al. (2019) and Belloni et al. (2019). In the literature
of factor-augmented QR models, another strand of works treat the factors as unknown parameters
to be estimated; see Ando and Bai (2020), Chen et al. (2021), and Ma et al. (2021). In this
subsection, we focus on the developments of the factor-augmented approach to QRs.
Ando and Tsay (2011) consider the 7th conditional quantile of y; given X; and W;:

g (lzey) = a(r) B+ B (1) Wy =~ (1) % (3.4.6)

where v (7) = (a (1), B (7)) is a vector of the coefficients that depend on the quantile 7, and
z¢ = (F},W/). If = 0.5, then the model in (3.4.6) reduces to the conditional median regression,
which is more robust to outliers than the usual conditional mean regression. In addition, the set of
latent factors F} also enters a panel data set

Xt:AFt—FEt,t:l,...,T,

where X; = (X14,..., X Nt)/ is an /N -dimensional observable random vector.

The estimation procedure consists of two stages. In the first stage, common factors are esti-
mated from the panel data set { X;} with PCA. In the second stage, the estimated factors are used
in the standard quantile regression. Putting the estimated factors into the model yields

ar (yel267) = a (1) B+ B (1) We=v(7) 4

where 2, = (F/,W/)', and F} is the r-dimensional PC estimator for common factors F;. The
unknown parameters -y (7) are estimated by maximizing the log-likelihood function:

T
I (yriv (1), 2) = %bg [T(l —7)exp {— > or (u - 7(7)'%)}]
t=1

with p; (u) = u (7 — 1 (u < 0)), yr = (y1,...,yr) and Z = (%1,..., 27)". The estimate 4 ()
is obtained as a solution of 9l () /0y = 0, which is a linear optimization problem. Koenker and
Bassett Jr (1978) showed that the solution is

A

F(r) =27 (he) y (he),

where h, is a p-element index subset from the set {1,2,...,T'}, Z (h.) refers to indexed rows
in Z, and y (h.) refers to the elements in y selected by A,. The asymptotic normality of 7 (7) is
established by Bai and Ng (2008). Under some mild conditions and 7%/8 /N — 0,

VT3 (1) =~ ()] % N (0,9,),

where €) is the positive asymptotic variance matrix; see Lemma A.2 in Ando and Tsay (2011) for
the detailed expression of €.

By replacing the unknown parameter v (7) with 4 (7), we obtain the estimated quantile re-
gression model with factor-augmented predictors:

qr (yt’ZAtﬁ/ (T)) = ﬁ/ (T), 2t7t = 17 27 T

The asymptotic properties of gr (y¢|2:; 4 (7)) can be analyzed similar to the term in (3.3.7). After
estimating the model, the goodness of fit can be assessed from a predictive point of view. Let
ur = (u,...,ur)" be replicates of the dependent variable y; drawn from ¢ (u), which is the
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target probability that generates the data. The goodness of fit for ¢, (y;|Z;;) can be given by the
expected log-likelihood

- (G,@, Z) - / I (uT;a(T)j) dG (ur) (3.4.7)

where dG(u) is the Lebesgue measure with respect to the true probability density g(u). The best
candidate model should maximize the expected log-likelihood function in (3.4.7). In this sense, the
optimal number of factors is defined as the value of  that maximizes the expected log-likelihood
function.

Note that the true distribution G(u) is unknown, which can be replaced by the empirical
distribution G (+). Thus, a natural estimator of the expected log-likelihood is the sample-based
log-likelihood:

. N\ a 1 <&
0 (6:3.2) = 1 (v, 2) 4G (yr) =dog [ (L= 1) = 13" pr (= (7) ).
t=1

(34.8)
However, the estimate in (3.4.8) is positively biased because the same data are used both in the
estimation of unknown parameters and the evaluation of the expected log-likelihood. The bias
term is given by

by (G) = / [m (G, 3, Z) o (G, 3, Z)} 4G (V).

A consistent estimator BT (G) is given by Theorem 3.1 of Ando and Tsay (2011). Then, based
on the bias-corrected estimator for the expected log-likelihood, a model selection criterion for
evaluating the estimate is given by

10 =21, <yT;A/ (r), Z) + 2T, (G) . (3.4.9)

Let By = min [N, T3/2]. Ando and Tsay (2011) show that the I/C in (3.4.9) is a consistent
estimator of the expected log-likelihood with order O, (BX[lT) and then can asymptotically select
the optimal number of factors that maximizes the expected log-likelihood.

Recently, Ohno and Ando (2018) have used the factor-augmented quantile predictive regres-
sion system to predict stock returns, where a shrinkage method is adopted to select the useful
estimated factors and observed predictors. To be Specifically, they consider the following quantile
predictive model:

Ur (Yernlzey) = o (7)) Fy+ B (1) Wy =9 (1) &,
Xit:A;;Ft—l-Eit,t: 1,...,7,t=1,...,N.

A two-stage estimation procedure is considered. In the first stage, the factors are estimated with
PCA from the observables X;;’s. In the second stage, the shrinkage method is combined with the
usual quantile regression to select the predictors. The unknown parameters +y (7) are estimated by
using a shrinkage method, which is obtained by minimizing

1 T—h
= pr (an =7 (1) ) +p5 (7 (7)),
t=1

where p; (-) is the check function, and p; (-) is a penalty function of the coefficients indexed by
a regularization parameter o0 that controls the trade-off between the loss function and the penalty.
They propose the use of a smoothly clipped absolute deviation (SCAD) penalty in Fan and Li

(2001) ps (7) = Y_p—1 Prs (1), Where

plwl, o df <k
Por (k) = %ﬂ, if £ < || < KO

0.562 (6 + 1), if kK6 < |y
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for kK > 0 and § > 2. For the algorithm for QR with the SCAD penalty, see Wu and Liu (2009).
Ohno and Ando (2018) establish the variable selection consistency and asymptotic normality of
the estimator under some mild conditions. The regularization parameter is selected by using the
prediction error because the aim is to predict the behavior of the stock market. The FAR quantile
predictive model is applied to analyze the Tokyo Stock Exchange, and they show that macroe-
conomic variables play an important role in predicting the characteristics of the stock market of
Japan even after controlling the various asset-pricing factors.

3.4.3 Time-varying DI forecasting model

The standard DI forecasting model assumes fime invariant factor loadings and coefficients in the
predictive regression model. However, considerable empirical evidence of parameter instability
and time-varying effects has been found in the literature of macroeconomics and finance. Ignoring
such instabilities in the diffusion model may lead to inconsistent estimators of the factors (Bates
et al., 2013) or an inconsistent estimation of the coefficients (Clements and Hendry, 1996). Al-
though the rolling window (RW) method is usually used to address the unstable parameters in
empirical applications, the choice of windows is arbitrary or just based on past experience. As
Rossi and Inoue (2012) and Inoue et al. (2017) point out, the forecasting performance of the RW
scheme is sensitive to the choice of the window size since it balances the estimation efficiency and
the misspecification bias.

To accommodate the time-varying factor loadings and time-varying regression coefficients,
Wei and Zhang (2020) propose a general time-varying DI forecasting model. Given N observable
predictors X; = (Xys,---, Xn;) and a target variable v, they consider forecasting i, for
some integer ¢ > 0 given the information set up according to the 7’th period. Assume that X;; has
a static factor representation with time-varying factor loadings as Su and Wang (2017):

Xu=N,F +ew,i=1,... N t=1,...T, (3.4.10)

where F is an r x 1 vector of the latent factors, A;; = \;(t/T") are the time-varying factor loadings
with A; (+) : [0,1] — R” being a vector of unknown piecewise smooth functions, and e;; is the
idiosyncratic error. Meanwhile, the target variable to be predicted is also driven by the same set of
common factors and some other observables:

Yoo = by + BiWy + £444, (3.4.11)

where W; is a p x 1 vector of the observed variables including the constant, the lags of v, or time
trends, oy = a(t/T') and By = B(t/T") are the TVCs for predictors F} and W, respectively, with
a () and 3 (-) being unknown smooth functions on [0, 1], and £, is the error term. The models
(3.4.10) and (3.4.11) are termed the time-varying diffusion index (TVDI) forecasting models. If
F, is observable and the conditional mean of €.y is zero given the past information, then the
(mean-squared) optimal prediction of y; ¢ is given by

yryor = L Yo Fr, Wr, Fr 1, Wr_q,---) =o' (1) Pr + /(1) Wr.

Here, factors £y and TVCs «(1) and (1) are all unknown. To address this issue, it is tempting to
follow the road map of Bai and Ng (2006) to estimate F}’s first from the large number of observed
predictors and then use them as generated regressors to estimate (1) and 5(1) nonparametrically
in (3.4.11). The two-step procedure to construct the time-varying DI forecast is as follows:

Step 1. Apply the local principal component analysis (LPCA) in Su and Wang (2017) to estimate
the locally weighted factors from a large number of predictors. Let K, (1) = h™ K (-/h)
and Ky 4 = Kj (1 — 1), Where 75 = s/T for 1 < s < T, and h — 0 is the bandwidth
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as (N,T) — oo. At the Tth period, estimate {\;r}._, and {F;}!_, by minimizing the
following kernel weighted least squares objective function:

N
1
min — Z Z (Xi,t — )\;TFt)Q Kpr

{AiT}fV:p{Ft};‘F—l NT i=1 t=1

¢ min ZZ (x5 = Xp D P=r(X D) = TG (XD — pOAGY]

AT7F(T)
(3.4.12)
T T T T T T T
where X\ = XK/, X7 = (x{, xQy. x® = (x{V, X)L B =
EK o FO = (B FDY and Ay = (Mg Aqu’ To identify F(*) and
A7 in (3.4.12), the usual restrictions for PCA are used: F(T / T =1 and N Arisa

diagonal matrix, where I, is the r x r identity matrix. After concentratlng out A7, we can
estimate F(*) by

P = argmax tr [F<T>’X<T>X<T>’F<T>} (3.4.13)

F

subject to F(I)V'F(T) /T = I.. The estimator F'(1) = (F’l(T), : F(T) is /T times the
eigenvectors that correspond to the r largest eigenvalues of the matrix X ( )X () arranged
in descending order, and Ay = XTI FM) (P M) — x TV () /T To mitigate
the boundary bias problem since 7' is at the right boundary, a boundary-corrected kernel
function should be used.

Step 2. Augment the forecasting regression with the estimated factors in (3.4.13) to estimate the
TVCs with the kernel method. Because ¢ is near T', transform (3.4.11) as follows:

Yire = o/(Tt)[ HO s i 2 HOE + 8/ ()W + 644
N(r) D(T + B/ (1) Wi + €144

"r)'D D4 B (r)Wi +€fy

=4 T>'(Tt) el
where v(1)(1) = o (r)[HTV] L, DIET) = K,;%QH(T)’F;T), lA)]ET) = K};%Qﬁt(T),
6(ry) = (W(T)(Tt),,ﬁ(ﬁ),)/ and @gT) = <l§§T),Wt). In the above third equation,

the unobservable composite regressors Dt(T) are replaced by their consistent estimators

ﬁt(T) = K, %QF(T) which come from the local PCA in Step 1. Note that §(7)(7;) are
the TVCs. A feasible forecast is proposed by combining the estimated factors and the non-
parametric estimators of the coefficients. The proposed feasible forecast for Y, follows
as

Yryqr = S(T),(l)G(TT)-

A A (T A -1 .
where (5(T)’(1) = <Z?:_1Z GET)GgT)/Kh*:TO ZtT:_lé GET)yt+gKh*7Tt is the local con-
stant estimator of 8(Y)(1), with h* being the bandwidth parameter.

For the model in (3.4.10) and (3.4.11) without W, Corradi and Swanson (2014) are concerned
with testing the following hypotheses:

HO : At = ()\1,5, N )\Nt) = AO and ar = Q for all t,
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versus

AO,I for t/T S 7'>(\1)
AO,Q fOI‘T>(\1)—|—1 St/T§T>(\2)

H;: A = and/or
Aogrr1 forr™ 11<y/T<1
apy  fort/T < 7'(9)
ago  for Tc(yl) +1<¢/T < 7'52)
ap = .

Q0,q,+1 for T((yq‘*) +1<¢/T<1

where the factor loadings A; and slopes «; are time-invariant under the null hypothesis and may
have shifted under the alternative hypothesis. To construct the test, they proceed in three steps.
First, the IC of Bai and Ng (2002) is used to determine the number of breaks by using the full
sample. Second, the factors are estimated by again using the full sample. The PC estimator is
denoted as G. Third, an estimator of the sample covariance between ;4 and the estimated
factors is constructed by using both the full sample and rolling windows of observations. The
difference between the full sample and the rolling estimators of the covariance between y;,, and
the estimated factors is the key ingredient of their statistic. For / = 1, the testing statistic is
constructed as follows:

1 & 1 & (1 ¢
Zpr=VP T ZGt—lyt -5 B Z Gji-1y || »
=2 =R+l PR

where R is the window for the rolling estimator, and P = 7' — R. The statistic is more in the spirit
of a Hausman-type test than tests for structural stability. Indeed, they compare two estimators that
converge to the same probability limit under the null hypothesis but to different probability limits
under the alternative hypotheses. Furthermore, under the null hypothesis, the full sample estimator
is more efficient. Under some conditions, such as v/7/N — 0 and P/R — 7 > 0, then under
Ho,

Zpr -5 N (0,90)

for some positive matrix {2y, and

lim Pr <P_1/2 \Zp.rll > 5) =1

P—oo

To implement the test, they propose using the quadratic form Z}, RQ;I Zp r, where Q) is a consis-

tent estimator for Q2. Clearly, ZJ’D’RQ}IZRR —a X2 under Hy and Pr (P_IZ};7RQ}1ZP7R > 5) —
1 under H; for any £ > 0.

3.4.4 FAR models with structural breaks or threshold effects

Massacci (2019) considers an unstable diffusion index model as follows

X, = 1(t)T < m) MiFy + 1 ()T > 1) Ao + 4, (3.4.14)
Yirn = 1 (/T < my) (V1 Fy + BIWe) + 1 (t/T > my) (o Fr + BsWe) + €rtns (3.4.15)

wheret = 1,...,T, X, = (X1s,--- , Xn¢)', Fyis a k x 1 vector of factors, A; = (Ajy, - A;N)/
is a N x k matrix of factor loadings, [ = 1,2, v; and 7, are k& x 1 vectors of the coefficients for
factor F}, 51, B2 are p x 1 vectors of the coefficients for W; in the predictive model, and & > 0.
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Obviously, there are structural changes in the factor model of X;; and the predictive regression
model of y; 5.
For the breakpoint factor model in (3.4.14), for a given number R of factors, the joint objective
function to be minimized is
1 X
S (AR,FR,TI'I = WZ {”Xt — 11,5 7TI)A1 FR — 12t (7Tm A2 FRH }
t=1
where 114 (m;) = 1(t/T < mp), A = (A, AF), and F® = (Ff,... Ff). For the above
optimization problem, for a given m,, the PCA method is used to estimate the factors and factor
loadings, and 7, is estimated with the concentrated least squares method. See Massacci (2017)
for the estimation of threshold factor models. Once the factors and breakpoints are estimated, we
can estimate the model (3.4.15) by minimizing the following feasible objective function:

L0, 7,) Z_: [th — 114 (my) (y{ﬁ’t + B{Wt) — 1o (my) (véﬁt + Béwt)}z

where 0 = (71,75, 8}, 85)". As the usual threshold model, we can obtain the estimators 6 and
7y for the unknown coefficients and breakpoint, respectively. The consistency of the estimator 7
of 7 and the limiting distribution for the estimated coefficients are established under some mild
conditions. A test for structural change in (3.4.15) is also provided by Massacci (2019).

Other recent developments include Wang et al. (2015), where a structural break in the coef-
ficient of W, is studied, and Yan and Cheng (2022) for factor-augmented forecasting regressions
with a threshold effect in the coefficient of F} in (3.4.15), where the threshold effect is caused by
some common random variables.

3.5 FAR with Panel Data

In this section, we review the development of factor augmented panel regression models.
A prototypical panel data regression model with a factor error structure is given by

yie = B' Xy + wir, (3.5.1)
uyr = N'F' + g4 (3.5.2)
t=1,...,N,t =1,...,T, where X;; is a p x 1 vector of the explanatory variables, F} is an

r-vector of the latent common factors in the composite error u;;, A{ is a r x 1 vector of factor
loadings, and ¢4 is the idiosyncratic error. The regressor Xj; is allowed to be correlated with com-
mon component A\ F}*. This correlation causes the endogeneity bias issue when the least squares
(LS) or least-squares dummy variables (LSDV) methods are adopted to estimate the unknown
parameters (3.

In the literature, several methods have been proposed to estimate unknown parameters in the
panel data models with multifactor structural errors. For example, Ahn et al. (2013) estimate the
model based on moment restrictions on the error terms, and Bai (2009) considers the joint estima-
tion of the 3, factor space { F, ..., '} and factor loadings {\}, ..., A} by using the iterated
PCA method. Alternatively, one may augment the panel regression directly with the estimated
factors or their proxies from the observable data X;;’s or (y;;, Xi;)’s. For example, Pesaran (2006)
proposes the common correlated effects (CCE) estimators that use the cross-sectional averages
of (yit, X {t)' as the proxies of the unobservable factors. However, the consistency of CCE relies
on the rank condition, which is usually difficult to verify in practice. In contrast, Kapetanios and
Pesaran (2007) and Greenaway-McGrevy et al. (2012) estimate the latent factors from the observ-
ables by using the PCA method, which avoids the rank condition in CCE. For a comprehensive
comparison between the CCE and PC approaches, see Westerlund and Urbain (2015) and Reese
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and Westerlund (2018). For some empirical applications of factor-augmented panel regressions,
see Giannone et al. (2010) for the study of the international saving-investment relationship with
the global factor being extracted from the observables and Kapetanios and Pesaran (2007) for
modeling asset returns. Now, write the model (3.5.1)-(3.5.2) in vector form:

yi = Xif + FUN! + ¢ (3.5.3)

whereyi = (yih . 7yiT),’ Xz = (Xﬂ, ceny X,;T)/, FY = (Flu, ey Fjlf),, andgl- = (81‘1, ceey giT)/ .
The correlation between X;; and the common component A\ F}}* is modeled through a latent factor
structure in Xj;;, namely,

Xu = FXN + Vy, (3.5.4)

where F/X is a vector of the latent factors underlying X, )\%X is the corresponding vector of factor
loadings, and FtX ! )\iX can be correlated with F}* \¥. In matrix form, (3.5.4) can be written as X; =
FXAX 4V, where FX = (FX,... EX), and Vi = (Vi1,..., Vi)' . Let FY = (FY, ..., FY)’
denote the common factors in y; and A\? denote the associated factor loadings. Define F to be
the 7 x m matrix that consists of a subset of the columns of FX and FY such that T~ F'F is

nonsingular, and
FX = FAX and FY = FAY

for some selection matrices AX and AY. That is, F' contains all unique columns in F'X and FY.
When X; and y; share the same factor, it is included only once as a column in F'. Then,

FUXE = FYN — FXNYB=F (AYXNY — AN B) = F (\yi — Ax.iB) = Fu
Replacing I with the full set of factors I, we can write the model (3.5.3) as

Yi = Xif + Fui + e

with A\, ; satisfying F'A,; = F“\}'. Then, an infeasible ordinary factor-augmented estimator is
given by

N 1N
brrap = (Z X{MFXi> > X[ Mpy,
i=1 i=1

where Mp = Ip—F (F'F )_1 F’. When F is replaced with a PC estimate F' from the observables
{(yit, Xit) ,i=1,...,N,t =1,...,T}, afeasible estimator is given by

N -1 N
brap = (Z X{MFXi> > X{ My,
=1

=1

N -1 N N -1 N
=B+ (Z X;MFX,) > X{Mpei + (Z X{MFX,) > XIMpF A,
=1 =1 =1

i=1

where M, = Ip—F (ﬁ’ 'F ) o F’. The properties of brag depend heavily on the last term. In par-
ticular, consistency requires that (N7)~* S>> ™V XiMpXi(ei+F ;i) —p 0, while to make
bpag have an unbiased limiting distribution, we require (N7T' )_1/ 2 Zf\i 1 Zfi V XIMpXi(si +
F\,.i) to be centered at zero. The consistency of b4 is established for the general estimated
factors that are not limited to the PC estimator. Given that 7! HF’ - FH H2 = op (1) for some

nonsingular matrix H, as (N,T) — oo,

7 D,
brag — B.
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This result shows that the consistency of a standard FAE requires only the consistency of the
associated factor estimator, given the PC estimator F’ in the sense that

71 HF - FHH2 — 0,(672)
P\¥NT

with § NT = min[\/ﬁ , \/T] and for some asymptotic nonsingular H. Denote the brag by using
PCs as bpc 4. With the above convergence rate for the PC estimators, when 7'//N — 0, N/T" 3
0, then

VNT <5PCA - BI,FAE) =op(1).

The above result suggests that if /V is large compared to 7" and if 1" is not too small, then the
asymptotic distribution of the PCA is equivalent to that of its infeasible counterpart. Under the
requirement on (N, T"),

VNT (BPCA — 51,FAE> —4 N (0,2),

where = = 3! Q0! with Qg = plimy 7, o0 sy Sony X/ Mpeiei MpX; and By = plimy 7,
ﬁ Zf\i 1 X !MpX;. However, if ' > N, then the asymptotic distribution of v NT' <l§ PCA — ﬁ)

is biased. If N/T" — € (0, c0), then the asymptotic distribution of bpca is biased. A bias correc-
tion as proposed in Bai (2009) should be used to carry out a valid statistical inference.

Finally, we mention the factor-augmented panel regression model where the factors may have
mixed factor strength. Despite the generated regressor problem caused by the use of estimated
rather than known factors, the PC estimators of 3 are still v/ NT-consistent and asymptotically
normal. This requires strong factors. However, in practice, some factors are only weakly influen-
tial; see Chudik et al. (2011) and Chudik and Pesaran (2015b) for some motivating examples. Bai
and Ng (2008) and Boivin and Ng (2006) find that PC factors can be severely impaired when the
factors are not strong. Chudik et al. (2011) investigate the implications of weak, semi-weak and
semi-strong factors on the CCE estimator and find that the CCE estimator performs better and has
fewer size distortions than the iterated PC approach of Bai (2009). The findings are because the
presence of weak or semi-strong factors leads to inconsistent PC estimates of the (rotated) factors
but does not affect the CCE estimator since its aim is to address the endogeneity that arises from
error cross-section dependence. In addition, Onatski (2012) studies the case when some of the
included factors are semi-strong within the context of a PC estimation of a pure common factor
model and finds that the presence of such factors causes the PC estimator to be inconsistent.

Recently, Reese and Westerlund (2018) offer an analysis of the effect of weak, semi-weak and
semi-strong factors on two of the most popular estimators for FARs, namely, PC and CCE. As a
comparison, we present the main findings for two popular estimators that may facilitate the choice
of estimators in applications. They set factor loadings that go to zero at the rate of N ¢ to capture
the different weaknesses of the factor, where a € [0, 1] and N are related to 7" via 7' = N*. Under
the standard assumption of homogenous slopes, the main findings are summarized as follows.

(i) To ensure v/ NT-consistency and to alimit normal distributions, both estimators require
strong or semi-strong factors (¢ < 1/2). The requirement on k generally differs between the
estimators. However, both sets shrink toward 1 as the factors become weaker (a — 0).

(i1) Unless k£ < 1, both estimators are asymptotically biased.

(iii) Both estimators can be consistent when the factors are semi-weak (a < 1), but only PC
allows for a consistent estimation in the weak factor case (¢ = 1) with additional requirements
on k. CCE has binding restrictions on £ only for semi-weak factors. By contrast, PC restricts k
from below for semi-strong factors and requires that £ > 3 when the factors are weak, which is
restrictive.
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3.6 Two Applications of FAR in Finance

FAR has been widely used in finance. In this section, we present two typical applications of FAR
to financial markets: Ludvigson and Ng (2009) use the FAR to study the bond risk premia, and
Qiu et al. (2022) use a factor-augmented HAR model to forecast the realized volatility (RV).

3.6.1 Ludvigson and Ng’s (2009) factor models for bond risk premia

Ludvigson and Ng (2009) use the methodology of a dynamic factor analysis for large datasets to
study the possible linkages between forecastable variation in excess bond returns and macroeco-
nomic fundamentals. They consider the following model for excess bond returns:

miﬂ =B'Zi++4'X; + e,
where Tl'gi)l is the continuously compounded (log) excess return on an n-year discount bond in
period t + 1, Z, is a set of K predetermined conditioning variables at time ¢ and may include the
individual forward rates, the single forward factor, or other predictors based on a few macroeco-
nomic series, X; = (Xy4,..., X Nt)' isa N x 1 vector of macroeconomic Fundamentals, and NV

is large and possibly larger than the number of time periods (717). To handle the large dimension of
the regressors, they assume that X;; has a factor structure:

Xit = N ft + €

where f; is an r x 1 vector of latent common factors, A; is the corresponding r x 1 vector of factor
loadings, and e;; is a vector of idiosyncratic errors. One prominent feature for the factor structure
of X is 7 << N, so that substantial dimension reduction can be achieved by considering the
regression

ngz)l =dF+08'Z + &

where F; C f; because the factors that are pervasive for the panel of data X;; need not be important
for predicting rxgi)l.
The common factors f; are estimated by ft with PCA. To determine the composition of Fy,

form different subsets of ft and/or functions of ft (such as flzt), run regression of r:rgi)l on F and
Z;, and evaluate the corresponding Bayesian information criterion (BIC) and R?. Following Stock
and Watson (2002b), minimizing the BIC yields the preferred set of factors Fy.

The above method is used to study the predictability of excess returns on U.S. government
bonds. The empirical results show that there is a strong predictable variation in excess bond
returns that is associated with macroeconomic activity. The predictive power of the estimated
factors is not only statistically significant but also economically important, with factors explaining
between 21% and 26% of one-year-ahead excess bond returns. The selected factors also exhibit
stable and strongly statistically significant out-of-sample forecasting power for future returns. In
addition, risk premia are found to be substantially higher in recessions when the macroeconomic
factors are added to the information already contained in current bond market data.

3.6.2 Qiu et al.’s (2022) panel HAR model to forecast volatility

Qiu et al. (2022) propose a heterogenous autoregressive panel (HARP) model with error cross-
sectional dependence to control for possibly unobserved common effects in volatility across a
class of assets. Let y;; be the RV of the ¢-th individual asset at time ¢. Consider the h-period direct
forecasting panel data model for y;; :

Yirn = dy + Z ¢§l)§g) + BiXit + Witn (3.6.1)
lec
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1=1,....,N,t=1,...,T, where gjl-(tl) =1 Zlézo Yi t—1> dy 18 a vector of the observed common
effects that may include the constant, the deterministic trends or seasonal dummies, X;; isa k x 1
vector of regressors specific to cross-sectional unit ¢ at time ¢, and «; and 3; are parameter vectors

specific for the h-period forecasting model. Note that the HAR component gg) is the average of

previous [ periods of y;;, and qbl(-l) is the corresponding coefficient. £ is the set of lag index vectors
of [. Furthermore, assume that the error term, w;¢, comprises m unobserved common factors:

wir = N Fy +eqt (3.6.2)

where F} is the m x 1 vector of the unobserved common factors, )\; is the m x 1 vector of the factor
loadings, and €;; are the idiosyncratic errors. With the factor structure error, the RV of individual
stocks is correlated beyond what can be explained by the observed determinants. Finally, F} can
be modeled by a VAR or by a more general relationship:

Fein =@ + (iin- (3.6.3)

Given the model setup in (3.6.1)-(3.6.3), they are interested in forecasting yp at the T'th
period. Plugging (3.6.2) into (3.6.1) leads to

1) (1
Yitrh = idy + E ¢§ )ygt) + BiXit + NiFipn + €itn
leL

and the optimal forecast for y; 7, is given by

D_(
Yirinr = 04dr + Y 75+ BiXir + NeFpinr-
leC

Clearly, an estimator for y; 7, | can be constructed as

X . D=1 | A ) p
Jirsnr = Ajdr + G+ BiXir + NEp gy
lec

where each estimated quantity is obtained as follows.

(i) Obtain ¢&;, qg,gl)’s, and @ based on the dynamic CCE in Chudik and Pesaran (2015a).
(i1) Given the CCE estimators, define

~ ~ (1) =1 5
it =y — djden + > 0T+ B Xt =h+ 1T,
lel

which has an approximate factor structure. By applying the PCA method to {4} to obtain the
estimators, A; fort =1,...,N,,and F; fort =h+1,...,T.
T A
(iii) Based on {Ft} , obtain the usual least-squares estimate ¢ for & and the estimate for
=h+1

Fpipr:
Fripr = ®Fp.

They use the model in (3.6.1)-(3.6.3) to study the linkage among the realized volatilities of
component stocks and find that the linkage is important to forecast the relevant index volatility.
Empirical studies show that the RV models that exploit the linkage effects lead to significantly
better out-of-sample forecast performance, for example, an up to 32% increase in the pseudo R?.
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3.7 Concluding Remarks

In this chapter, we give a selective review of FARs and their applications to financial markets. For
the estimation of factor models, we focus on the PCA method. We emphasize that many important
topics are not covered in the chapter since too many breakthrough methodologies and applications
have been developed for factor models in the literature. For example, the factor structure is used in
the multiple testing, model selection, and robust estimation of high dimensional models to control
the correlation among regressors or errors. More importantly, many learning theories and methods
on the low-rank structure of high dimensional models have refreshed the modern understanding
of econometric modelling in the last ten years. The low-rank structure is one of the key features
of factor models. It provides a new perspective and opportunities to study factor models and leads
to many new discoveries and understanding. For a more comprehensive account on this topic, see
Chapters 9-11 of Fan et al. (2020).
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