Methods for Estimating Discrete-Time Stochas-
tic Volatility Models

XIAOBIN L1U Zhejiang University

This chapter reviews alternative methods proposed in the literature for estimating discrete-
time stochastic volatility models and illustrates the details of their application. The methods
reviewed are classified as either frequentist or Bayesian. The methods in the frequentist class
include generalized method of moments, quasi-maximum likelihood, empirical characteristic
function, efficient method of moments, simulated maximum likelihood based on Laplace-
based importance sampler. The Bayesian methods include single-move Markov chain Monte
Carlo, multi-move Markov chain Monte Carlo, and sequential Monte Carlo.

227



228 9. STOCHASTIC VOLATILITY MODELS

9.1 Introduction

For an asset, when only returns are available, measuring the volatility of the asset at the same
frequency (for example, daily) is challenging. While it is possible to use the square of the return
to measure the volatility, the squared return is known to be a very noisy estimator of the volatility.
To better estimate the volatility, one approach is to use returns at a higher frequency to construct
the so-called realized volatility. This approach has been very popular in the last twenty years. The
literature was excellently reviewed in Andersen and Benzoni (2010) and a good textbook review
of the approach is given in Ait-Sahalia and Jacod (2012).

However, information about the returns of assets is not always available at a higher frequency
than the intended frequency for estimating the volatility. In this case, can the volatility be better
estimated than by the use of the squared return? The answer is yes. There are two popular ap-
proaches in the literature. Both are motivated by the fact that the volatilities of financial assets
tend to cluster over time.

The first approach uses a class of models called generalized autoregressive conditional het-
eroskedasticity (GARCH). The other adopts models from the stochastic volatility (SV) class. The
GARCH-type models, initially proposed by Bollerslev (1986), are extensions of the autoregres-
sive conditional heteroscedasticity (ARCH) model of Engle (1982). The properties of the GARCH
model have been well studied. In addition to the basic model, many specifications have been devel-
oped to accommodate important features, such as leverage effects and fat-tails in return distribu-
tions. In the GARCH-type models, the current volatility is a deterministic function of past returns
and past volatilities. In other words, in the appropriately defined probability space, the volatility at
period t is measurable given the information set at period ¢. This assumption makes the estimation
of the model easier as the likelihood function of the model can be decomposed as the product of a
sequence of univariate conditional densities, thus facilitating the maximum likelihood estimation.

Unlike GARCH-type models, the SV models assume volatilities evolve as a random process
and hence, are latent. The first SV model allowing for volatility clustering was proposed by
Taylor (1986), who suggested modeling the log-volatilities as a first-order autoregressive process.
The properties of the SV model have been investigated thoroughly ((Ghysels et al., 1996)). The
advantages of the SV model relative to GARCH-type models are now well understood (See, for
example, (Broto and Ruiz, 2004) and (Kim et al., 1998)). For example, compared with GARCH-
type models, the SV model fits the asset return series better. Moreover, it has a stronger connection
to the continuous-time SV models widely used for pricing options. Consequently, many methods
have been developed to estimate the SV models. We classify them into two categories: frequentist
and Bayesian.

In the frequentist domain, all methods rely on carefully specifying a criterion function and then
maximizing or minimizing that criterion function. The frequentist methods reviewed include gen-
eralized method of moments (GMM), quasi-maximum likelihood (QML), empirical characteristic
function (ECF), efficient method of moments (EMM), and simulated maximum likelihood (SML).
GMM, QML, ECF, and EMM avoid calculating the full likelihood function, whereas SML relies
on the likelihood information by employing a simulation-based method to approximate the value
of likelihood given the parameter values. The asymptotic behaviors of those estimators depend on
the properties of the targeted model and the criterion function. They are usually asymptotically
normally distributed. Unfortunately, since volatilities of most financial assets are highly persis-
tent, asymptotic normality may not work well in finite samples ((Wang and Yu, 2022)), especially
for the persistency parameter. Therefore, the asymptotic theory-based statistical inference may be
misleading.

Unlike the asymptotic theory-based inference used by frequentist methods, with a Bayesian ap-
proach, finite-sample inference is conducted via the posterior analysis. There are several Bayesian
methods available in the literature for estimating SV models. We discuss two classes of Bayesian
methods based on whether the data augmentation technique is used. Data augmentation treats
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the latent variables (or the log-volatilities) as parameters to estimate. In this case, the complete
data likelihood function for both the parameters and latent variables has a closed-form expression.
Therefore, we can use the classic Markov chain Monte Carlo method (MCMC) to sample from
the posterior distribution (see, e.g., (Jacquier et al., 2002) (Shephard and Pitt, 1997), (Kim et al.,
1998), (Chib et al., 2002), (Liesenfeld and Richard, 2003) and (Omori et al., 2007)). Specifically,
we review two MCMC algorithms. The fist is the single-move MCMC, which updates the latent
volatility step by step. The other is the multi-move MCMC, which updates the volatility in a block
and is more efficient than the single-move MCMC. A smoothed estimate of volatility is obtained
as a by-product in both algorithms.

Without data augmentation, we can use a Bayesian parameter learning algorithm that consists
of the so-called sequential Monte Carlo (SMC) method and a marginal resample-move step. The
SMC method is used to filter the hidden state (log-volatility). We can use it to approximate the
likelihood given the values of parameters by marginalizing the hidden states. The resample-move
step keeps the parameter from being static all the time and hence avoids particle depletion ((Fulop
and Li, 2013)). The algorithm is sequential compared to the particle MCMC (PMCMC, see (An-
drieu et al., 2010)) and it is more suitable for financial time-series applications since the belief is
updated recursively as new data become available. The filtered estimate of volatility is obtained
as a by-product in the algorithm.

However, Bayesian methods require sampling from the posterior. Consequently, the computa-
tion is very intensive, especially for latent variable models. In addition, the model must be fully
specified since the likelihood function is required.

The rest of this chapter proceeds as follows. Section 9.2 introduces the SV model of Tay-
lor (1986) to illustrate alternative estimation methods. This section also discusses some basic
properties of the model. In Section 9.3, the methods in the frequentist domain are reviewed and
the motivations and details of each method are presented. Section 9.4 provides a review of the
methods in the Bayesian domain and explains the motivations and limitations of each method. A
conclusion is provided in Section 9.5.

9.2 The Basic Model

Let y, be the observed return at period ¢. In the literature, the log-normal SV model proposed by
Taylor (1986) is defined as

1
Yt = € €XP <§ht> , (9.2.1)

he =t + & (he 1 — 1) + oy, 9.2.2)

where t = 1,..., T, hy is the log-volatility and |¢| < 1,7, “* N (0,1), & "% A (0,1), ; and &,
2 «
are independent, hy ~ N (O, 1_2;5%) The parameters of interest are 0 = (p, ¢,a,7)/ €0 CR3,

where ® is a compact parameter space. For the simplicity of notation, we use the subscript 1 : ¢
to represent the data ranging from period 1 to period ¢, that is, 1.+ = (y1,¥2....,¥:) . Denote the
information set up to period ¢ as Z;, the model defined in Eq. (9.2.1) - (9.2.2) has the following
properties.

Theorem 9.2.1 The conditional variance and kurtosis of y;11 are

Var (yi+1]Zy)

exp (/1, + ¢ (he—p) + %02) . (9.2.3)

0.2
Kurt (y) = 3exp 1_" 3 (9.2.4)
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Theorem 9.2.2 The moments of y; and |y;| satisfy

m I (2 mp m2o2
(|yt| ) 2 F(%) exp 2(1—¢5)+8(1—¢2) Jorm > )
0 m is odd,
E(y") = m?o?

(m —1)!lexp (%u + 8(qu2)) m is even,
where n!! denotes the double factorial.

Corollary 9.2.1 The model given by Eq. (9.2.1) - (9.2.2) has the following properties,

k
E (?/tQ?/tZ_k) =exp |2u + (1%%7] .

Theorem 9.2.1 shows that the simple SV model can capture the fat tail and volatility clustering
properties that are common in return time series. Theorem 9.2.2 and Corollary 9.2.1 imply that
the moments of powers of both y; and |y;| are finite when some restrictions of the powers m are
satisfied, which is helpful for developing various tools to estimate the parameters. However, the
simple structure raises a challenge to use the maximum likelihood estimation directly. Specifically,
the complete-data likelihood of the model including the unobservable log-volatility hq.7 is

T T )
1 vt 1 (he —p— ¢ (he—1 — p))
p (y13T7 thla) = l eXp |:— :| exp —
t[[l Vare's 2elt };[2 V2moy 202
L[ =) -
- 2.
% 2nol xp [ 202 ’ 9.2.5)

which implies the likelihood of the observed data and the associated maximum likelihood estima-
tor (MLE) is

L(6) = / p (e bt |0) dhyr — / p (el e, 0) p (hiorl0) dhr, 92.6)
Ovie = argmaxlog L (0) . 9.2.7)
0c®

where log L () is not analytically available since the integration is very complicated and suffers
from the curse of dimensionality. The larger the sample size is, the greater the computational
challenge faced by MLE. Therefore, one cannot directly compute MLE.

Lastly, the model is closely related to the well-known state-space model since it can be rewrit-
ten as

log (y7) = hi+log(s}), (9.2.8)
hy = p+¢(hi—1 —p) +ongne.

where log (f—:?) is the logarithm of a chi-squared random variable with 1 degree of freedom. There-
fore, the model belongs to the non-normal state-space models. One can refer to Durbin (2000) for
more discussion of the state-space model. Even though we cannot apply the usual Kalman filter
and smooth technique, the model expression (9.2.8) inspires some innovative alternative estima-
tion approaches. Those approaches for the log-normal SV model shed new light on the estimation
of other types of SV models.
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9.3 Methods in the Frequentist Domain

As mentioned previously, the frequentist estimators are all based on the minimizing or maximizing
a carefully designed criterion function. We define the estimator as the one minimizing a distance
measure closely related to the criterion function,

O froq = arg min Dist () 9.3.1)

where Dist () is the distance measure defined in different estimation approaches. The asymptotic
behavior of the estimators depends on this distance measure and the properties of the model, and
they are usually asymptotically normally distributed.

9.3.1 Generalized Method of Moments

Hansen and Singleton (1982) firstly formalized the generalized method of moments (GMM).
GMM has become one of the most widely used econometric methods in economics and finance.
Unlike MLE, which requires full knowledge of the distribution of the data, GMM only uses a
set of moment conditions. Classic GMM estimation proceeds relying on the convergence of the
sample moments to their population counterparts. Following Hansen and Singleton (1982) and
Andersen and Sgrensen (1996), by denoting the true value of parameters as 6, we define the
GMM estimator as

5 1 g GMM 77 "1 [RF
Ocry = arg min Dist (0) = arg min M(O)- A (0)] W []\I (0)—A(0)],
(932
where the function in the right hand side of the equation is the criterion function, M (8) =
— —~ !~ ~
(M1 (6)...., My (0)) . M (8) = 1., T2
ization of the moments at time ¢, ¢ is the number of selected moments, which is usually larger than
the number of parameters, A (@) are the analytical moments corresponding to the sample coun-

forj = 1,...,q, my (0) is the sample real-

terparts, M (0), W is the weighting matrix. The optimal choice of W minimizing the asymptotic
covariance matrix of 8 is given by

- /
W = Th_IféoE tTZ:l (my (6g) — A(Ho))T(mT (60) — A(6))) |

where m; (89) = (m1 (00), - .., mg (00))". When a model satisfies some regular conditions, the
associated GMM estimator 5@ M 1s consistent and asymptotically normal.

For the SV model, the implementation of GMM is straightforward as the moments have closed-
form expressions. Furthermore, GMM is advantageous compared with MLE since the computa-
tion of the latter is very burdensome ((Melino and Turnbull, 1990)). However, there are many
challenges to GMM. One issue is that the finite sample and large sample properties of GMM de-
pend on the selected moments but in general we do not know which or how many moments should
be used.

Jacquier et al. (2002) and Andersen and Sgrensen (1996) investigated the performance of
GMM for the log-normal SV model defined in Eq. (9.2.1) and (9.2.2). The basic set of moments
they used was inspired by Melino and Turnbull (1990), that is,

{E (™ by AE U1 AE R0 B | 933)

among which the moments of the marginal distribution serve to identify p, and the autocovariance
of the squares and absolute values help to identify ¢. Thanks to Theorem 9.2.2 and Corollary
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9.2.1, these moments have analytical expressions. The weighting matrix recommended is the
kernel estimator of the spectral density matrix,

7o 5 =L 3 [ (6) - 4(6) s () 4(6)]
J=-T+1 M

9.3.4)
where K (j) is a weighted kernel function.

Jacquier et al. (2002) used the full set of (9.3.3) and found that the GMM estimators of the
parameters were substantially biased. Andersen and Sgrensen (1996) investigated the finite sample
performance of GMM extensively. They reported several interesting findings. First, the selection
of moments was limited due to the requirement for analytical expression. Second, they postulated
that the number of moments used should depend on the samples size. When the sample size is
small, an excessive number of moments may introduce more bias and a larger root mean square
error (RMSE) since the highly correlated moments can result in a poor estimate for the weighting
matrix in the criterion function. Third, when the sample is large, a fairly large number of lags
(L7) in the kernel function should be used. Fourth, the paper recommends using lower-order
moments of y; because the higher-order moments can cause erratic finite sample behavior. Based
on the work of Andersen and Sgrensen (1996), one may use the Bartlett kernel function with fixed
bandwidth Ly = 1.273,

L—& j<Ln

K (j) = v
& {0, j> L,

and define another two sets of moments for estimation as below,

MO = {{E (™) e - B (Db 5 (B (5797) b

M14 = {{E (’yt’m)}?nzl AE (\ytyt—k’)}k=2,4,6,8,1o ] {E (yfyf_k) }k:1,375,7,9} :

We can summarize the estimation procedure in the Algorithm 1.

9.3.2 Quasi-maximum Likelihood

The quasi-maximum likelihood (QML) is another popular estimation approach for SV models.
The advantage of the QML approach is its speed and adaptability to various situations. Specifi-
cally, we use an approximated model instead of the true one to obtain the MLE,

n _ : - QML _ s quasi

Oon1, = arg min Dist (0) = arg min [—log L 0],
where log L9“%%% (@) is the likelihood function of the approximated model. This is why we call it
quasi-likelihood and the estimator is denoted as éQ mL- Although the QML method is inefficient,
it leads to consistent estimators and is easy to implement numerically since the quasi-likelihood
function is easy to evaluate.

In this section we discuss how to use QML to estimate the log-normal SV model. According
to the properties of the log-normal SV model discussed in Section 9.2, the likelihood is intractable
and hence the MLE is difficult to obtain. Thanks to the close relation to the linear state-space
model as shown in Section 9.2, Ruiz (1994) proposed to estimate the SV model using QML based
on the Kalman filter. To see how it works, following the derivation in Section 9.2, the model
(9.2.1) - (9.2.2) can be rewritten as

log (y?) = he +log (£7),

hi = p+ ¢ (he—r — p) + oy,
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Algorithm 1 GMM estimation

1. Initialize 6(©).

2: Select the moments to use. When 7" > 1000, adopt the moments M = M14. Otherwise
adopt M = M0.

3: Compute

61) — arg min [ 77 (6) - 4 (9)}' [(37(0) - 4(0)].

4: Define Ly = 1.2T 3 and compute

5: Compute the weighting matrix

T+1 T

P 8 K000 5 (o) (0] s (07) 407

j=—T+1 t=j+1

where the moments used are from M.
6: Compute

B = argyin [V (0) - A(0)] W [ (0) - A(0)]

where the moments used are from M.

where log (E%) is the logarithm of the chi-squared random variable with 1 degrees of freedom.

If log (5%) is indeed normally distributed, the model above is the state-space model widely
used in economics and finance. We can obtain the MLE of state-space models with Gaussian error
terms via the Kalman filter. However, we know that log (5% ) does not follow a Gaussian white
noise process, therefore, the Kalman filter can only approximate the outcome of the true nonlinear
optimal filter. Specifically, in the QML method, we use a normal distribution to approximate
log (5%). However, as pointed out by Harvey et al. (1994) and Ruiz (1994), the performance of
QML depends on the magnitude of o,,. If o, is large, the log (h;) will dominate the error term
log (5?) in the measurement equation. As a result, a normal approximation may be adequate and
the Kalman filter may be close to the optimal filtering. However, for small values of o), the normal
approximation may break down and the QML method may perform poorly compared to the full-
likelihood-based approach. Jacquier et al. (2002) also showed that the QML estimator has similar
performance relative to the GMM estimator only for high values of ;. Following the steps in Yu
(2002), we use a normal distribution with mean —1.27 and variance 72 /2 to approximate log (5%)
and rewrite the model as

yr = A+ Bhy + &6 ~ N (0, R),
hit1 = Ohy + ves1, v ~ N (0,Q),

where A = —127T+u, B =1, R = 7T2/2, lNzt =hy—pu, Q = 0727. We describe the algo-
rithm employing the Kalman filter to evaluate the quasi-likelihood of the log-normal SV model in

Algorithm 2.

9.3.3 Empirical Characteristic Function

There is a one-to-one correspondence between the cumulative distribution function (CDF) and
the characteristic function (CF). As a result, the empirical CF (ECF) should incorporate the same
information as the empirical cumulative distribution (ECDF). Therefore, we can use the ECF
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Algorithm 2 Computation of log L% (@)

1: Initialization: l~11|0 =0, 53”0 = 0727/ (1 — ¢2).
2: Sequential updating:
z 7 S y— A— Et\t—l
hyp = by + B —=——-—
\ \ \ S + R

. . . . —1 .
Yije = Bygp—1 — Bije—1 <Zt|t—1 + R) Y1

3: In-sample sequential predition

= = yr— A — ht\t—l
h = ohy—1 + = ,
t+1)e = Phyje—1+ @ 1 +th_|t171

4: Compute the quasi-likelihood

quast — _1 d N _ l d
log L7 (9) = —5 > log (zt‘t_l +R) =Y
t=1 t=1 -

to estimate parameters for a model. Essentially, the method approximates the likelihood by the
product of joint densities of overlapping blocks with a fixed size. We briefly outline the ECF
method below for general models. For more details, one can refer to Knight and Yu (2002) and
Knight et al. (2002).

Given a random variable X and its realization x, we assume the cumulative distribution func-
tion (CDF) as [ (x|@), which depends on a parameter 6. The CF is defined as

C(m,0) =E (") = / e dF (x]0), (9.3.5)
and the ECF is .
Cr(m) = T tz:;e“m‘ = /e "TdFp (x), (9.3.6)

where Fp (z) is the ECDF and m is the transform variable. Apparently, Eq. (9.3.5) only involves
the parameter @ and Eq. (9.3.6) contains only data. Hence we can estimate € by minimizing the
distance between the CF and ECF, i.e., given a grid of transform variable my, ..., m, and the
weight function w (), the ECF estimator minimizes

q
2
S 107 (my) — € (my, 0) > w (my).
j=1
or we can minimize the distance given the continuous transformation m,
/ |Cr (m) — C (m, 8)|* w (m) dm.
The marginal ECDF cannot capture the structure of dependence in time-series data. Knight

and Yu (2002) and Knight et al. (2002) recommended to use the joint ECF involving moving
blocks of data. Given the observations {x1, ..., x}, the overlapping blocks are

T‘j:($]‘,...,$j+p) (j:l,...,T—p),
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which imply that each block has p periods overlapping with its adjacent blocks. The CF of each
block is basically a joint CF and is defined as

C(m,0) =& (eim”‘j) , 9.3.7)
where the transformation variable m = (my, ..., my;1)". Hence, the joint ECF is
1 n
Cp(m) = - Z m'r;  wheren =T — p. (9.3.8)

J:

It is obvious that r; is dependent since it is a sequence of overlapping moving blocks. Feuerverger
(1990) proved that under standard regularity conditions, C,, (1) converges almost surely to C'(m, )
for any m. Matching the joint CF in Eq. (9.3.7) with the ECF in Eq. (9.3.8) over a grid of dis-
crete points is an alternative method for MLE ((Knight and Satchell, 1997)). Knight et al. (2002)
defined the estimator for time-series data as

Ouor = arg min Dist"T () = arg min / C(m, 0) — Co(m)[w (m)dm,  (93.9)
6cO 0cO®
or equivalently, the parameter that solving
/ [C’(m, Opcr) — Cn(m)] g <m, 5EGF) dm =0,

where C'(m, 0) and Cp,(m) are from Eq. (9.3.7) and (9.3.8), respectively. g (m, ) and w (m)
are weighted functions. In fact, if m is a discrete grid of points (discrete ECF, DECF), the esti-
mation is equivalent to matching a finite number of moments like GMM. (Knight and Yu, 2002)
and Knight et al. (2002) proposed minimizing the integral in Eq. (9.3.9), i.e., matching all the
moments continuously. To do this, the weight function should be continuous and hence we do
not need to choose the transform variable, m, which will be integrated out in Eq. (9.3.9). One
appropriate proposal for the weight function is the exponential function, exp (—m/m). The expo-
nential function can put more weight on the interval around the origin and also has the advantage
of convenient computation of the integration. Specifically, we can use the Hermitian quadrature or
Monte Carlo integration to calculate the integral in Eq. (9.3.9). Theoretically, an optimal choice
for the weight function w (m, ) is

1 ; iidn—1,0
w* (m,@) _ /exp (—Zm/'T’J) a ng(‘rj“!‘["xj.J“!‘P 1, )dxj:j—‘r;n

00

which is not available for some time-series models where the conditional score function does not
have an analytical expression ((Knight and Yu, 2002)).

The estimator in Eq. (9.3.9) is consistent and asymptotically normal for strictly stationary
processes under some mild assumptions ((Knight and Yu, 2002)). For the log-normal SV model,
we firstly transform the return data following the logarithm operation in Eq. (9.2.8),

x; = log (y) = hy + log (£7) , (9.3.10)

and then plug the transformed data into the general estimation procedure. Specifically, the joint
CF for 444,118

p+1 p+1 p+1 p+1
j—l—1
C(my,...,mpq1,60) =exp me] 1_¢2 Zm —|—2¢lz; Zl;rlqb mpm;
J

Hp+l ( +im;) 9i P m

93.11)
r(3)"
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As pointed out by Knight et al. (2002), the autocorrelation for kth lag for {:vt}thl is

oy/ (1= 97)
op/ (1= ¢%) +c’

op = " k=1,2,...,andc =

() [F'( )r ~ 0.4948.

VRN C)

Therefore, we only need k£ = 1 to identify the parameter ¢. We briefly summarize the evaluation
of criterion function in Algorithm 3.

Rl [

Algorithm 3 Computation of Dist”CF ()

1: Compute

2
o
C (my,me,0) =exp |iu(my + me) — 2(1—:& (m? + 2¢mima + m3)
r (% + Z'ml) I (% + img)
1\2
r(3)

by extracting the real and imaginary parts Re (C (m1,m2|@)) and I'm (C (m1, ms2|0)).

2: Compute

> 2im1 +imo

n

1 ) .
Cp (my,mg) = - Z exp (im1x; + imoxjq1),
j=1

by extracting the real and imaginary parts Re (C, (m1,m2)) and I'm (Cy, (m1, ms)), where
n =T — 1. Specifically

n

1
Re (Cy, (m1,m2)) = - Zcos (mizj + maxji1),
j=1

1 .
Im (Cp, (m1,m2)) = - Z sin (mixj + maxji1).
j=1

3: Compute the criterion function

Dist”Cr (9) = / / {[Re (C (m1,ma|6)) — Re (Cy, (m1,ms))]”

+ [Im (C (m1,m2|0)) — Im (Cy, (mq, mg))]Q} exp (—mi — m3) dmydms.

9.3.4 Efficient method of moments

Unless the moment conditions correspond to the scores, GMM leads to, in general, an ineffi-
cient estimator. The efficient method of moments (EMM) provides more efficient estimators than
GMM. Specifically, EMM relies on an auxiliary quasi-likelihood to generate a set of moments.
Like GMM, EMM accommodates a variety of models, and its asymptotic property has been stud-
ied in Gallant and Tauchen (1996)

Following Andersen et al. (1999), the estimation procedure includes two major steps. In the
first step, we choose an auxiliary model and estimate it by QML. Denote the conditional density
of the auxiliary model as f (y; | Z;—1, 1), where Z;_, is the information set up to time ¢t — 1 and ¥
is the parameter. EMM firstly obtains the QML estimator for 14, 19, which satisfies the first-order
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condition based on the quasi-score function s (y;, ¥) = W, that is,
1~ 0 SO ~
=3 Zlog f (yt | T, 1, 19) - =3 (yt, 19) —0. 9.3.12)
T — 09 T 4

After that, we use GMM to estimate the original parameter . The moment conditions used to
identify @ are denoted as

m(0,9) = Egls(y,D0)] = /s(yt,ﬂo)dP (yi,0) (9.3.13)
B dlog f (i | Zr—1,90)
- / 5 P (y,,0), (9.3.14)

where the number of moment conditions should be larger than dim (@) for identification and
P (y1.¢, 0) is the probability measure induced by the targeted model.

However, the presence of the latent log-volatility makes the moment condition analytically
intractable. Following Duffie and Singleton (1993), the corresponding sample moments for Eq.
(9.3.14) at the fixed QML estimate 9 are

1

g (9, ?9) =5 z: % log f (g 6) | Z,_1 (6) ,?9) , (9.3.15)

where ys (0) is the simulated data from the targeted model given the value of 6, S is the sample
size. As S — 00, mg (9, 1A9> —m (9, 1A9> almost surely. Conditional on Eq. (9.3.15),

~ N\ — ~
Opn = arg géiélDiStEMM (0) = arggéiél [ﬁ@ <9,19> wWlm <9,19>] , (9.3.16)

where the weighting matrix W is one of the remaining problems. Andersen et al. (1999) proposed
to use the quasi-information matrix
T
W=7 toaf (v T1d) oo f (w1 T B), 037
which can be obtained directly from the QML step. Clearly, the second step is simulation-based.

EMM uses the scores as moment conditions. However, the scores do not come from the
original model since those are analytically intractable. Instead, the moment conditions are based
on the quasi-score of the auxiliary model. Clearly, the choice of the auxiliary model determines
the efficiency of the EMM estimator and hence, is critical. If the quasi-score of the auxiliary model
asymptotically spans the true score vector, the estimation achieves the full asymptotic efficiency.
In other words, as the score generator gets close to the true one, the covariance matrix estimated
converges that of the MLE.

Gallant et al. (1997) proposed using EMM to estimate stochastic volatility models. Andersen
et al. (1999) performed an extensive Monte Carlo study of the performance of EMM to estimate
the log-normal SV model. Specifically, they examined the sensitivity to different choices of the
auxiliary model such as ARCH, GARCH, and EGARCH models for the score and found that the
inference is sensitive to the choice of the auxiliary model when the sample size is small but robust
in large samples. They further showed that the efficiency of EMM approaches that of MLE as the
sample size increased. Following Andersen et al. (1999), one may choose GARCH(1,1) as the
auxiliary model given by

Ye = O&y,

2 2 2
Ut = w + O[O't_l + ﬁgt—l'

where we denote the parameters of the GARCH(1,1) as ¥ = (w, o, 3)'. We describe the details of
evaluating the criterion function of EMM to estimate the log-normal SV model in Algorithm 4.
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Algorithm 4 Computation of Dist“MM (@)
1: Estimate the parameters of GARCH(1,1) model given the data y;.7

Y = arg max log L (9),

where - T
. T-1 1 2 vi
log L (9) = — 5 10g27r—5210gat— ﬁ
t=2 t=2
2: Compute
T
—~ 1 0 ~\ 0 -~
w=-5"2 ( I_,fﬂ)—l ( I_,z‘}),
thzlaﬁ ng yt| t—1 819/ ng yt| t—1
where ,
14 Y
0'? 2(7;1
dlog f(ye | T 1,9) _ | o2, n Yioi
09 7
€i-1 + Yici—1
O'? 20,‘51

3: Simulate data from the log-normal SV model given 6 with .S = 20000. The first one uses the
simulated {&;,7;} to construct the {7} }le, while the latter uses the simulated {—&;, —7;} to

generate the {371? }le .

4: Compute
s
m(6.9) =5 [gz%logf (7 (0) | Z.-1 (6) D)
s=1
Lys 0 1 72 (0) | Zs—1 (9) ,9
+§;% ng(ys( ) | Zs-1(0), )
5: Compute

DistEMM (9) = 7 (9, @)'W—lm (9,?9) .
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9.3.5 Simulated Maximum Likelihood

The GMM, QML, ECF, and EMM methods reviewed above are alternative approaches to the
classic MLE when the likelihood of the model does not have an analytical expression. These
methods lead to estimators that are consistent but less efficient compared to the MLE. With careful
design, ECF and EMM can approach the efficiency of the MLE for only a limited set of models.
Under mild regularity conditions, the MLE is consistent, asymptotically normal, and efficient.
Further, due to the invariance principle, any function of the MLE is still an MLE, inheriting all
its asymptotic properties. Therefore, it is worthwhile to obtain the MLE. One popular approach
to resolve the intractable likelihood function is to use simulation-based methods. Shephard and
Pitt (1997) and Durbin and Koopman (1997) introduced SML methods for nonlinear non-Gaussian
state space models. Durham (2006), Durham (2007), Koopman et al. (2009), Skaug and Yu (2009)
and Yu (2012a) used the SML method to estimate SV models and showed its reliable performance
in different cases. There are other variations, like the Monte Carlo likelihood (MCL) method
proposed by Durbin and Koopman (2000) and the efficient importance sampler (EIS) of Richard
and Zhang (2007). For more details, one can refer to Yu (2012b). In the section, following Yu
(2012b), we focus on how to use the simulated maximum likelihood (SML) to estimate the log-
normal SV model. The methodology can also accommodate other complex models.

Recall the discussion in Section 9.2, the likelihood function for the log-normal SV model does
not have a closed-form expression. By treating the log-volatility h,.;- as missing data, the so-called
“complete-data likelihood ” is

1

T T )
Py, hurl0) =] | y’?]H L exp [—(ht_“‘¢<ht_1_u>>
t=1

exp |—
- 27“25 p[ 2eht :2271'077 20727

2 t
1-¢2 (1=¢%) (b1 — p)*
A\ 2oz P 902 !
o, oy
which implies that the likelihood of the observed data is
L(O) = [ plnrtnr0)diny = [ ol 0)p(rl6) dhvr.

Although the integration cannot be solved analytically, the integral can be approximated by the
Monte Carlo integration, that is,

S
LSML (g Z (yrrlnf).0), (9.3.18)

where th)T is the s-th sample generated from the targeted model given 6. The associated SML

estimator is
Osn = in DistSML (9) = in [— LML (g)]. 9.3.19
smL = argmin Dis (9) argglelél[ 0)] ( )

In practice, the direct simple average in Eq. (9.3.18) is not efficient and very hard for convergence.
Therefore, we need to find a proposal distribution ¢ (h1.7|@) to replace the original one and then
based on importance sampling, the integral can be approximated by

(s)
it 1y (s) p<h1:T’9)_1S (s) ()
Lb]WL (yl:T|9) - g sz:;p <y12T|h1fT7 0) W = g Sz:;p (yl;T|h1fT, 0) w', (9.3.20)
9

where hng is now the sth sample generated from proposal distribution ¢ (h1.7|@) and the weights

w(®) compensate for discrepancy between p (th)T\B) and q (hgsgpw) Apparently, as S — oo,

S

1 , h1.7|0

g E p (y1T|h§s%“ 0) w(b) — /p (yl:T|h1:T7 9) Zghiileiq (hlzT|0) dhl:T-
s=1 :
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In the following, we discuss one of the popular approaches to specify a “good” proposal distri-
bution, g (h1.7|0). Here we introduced a multivariate normal distribution based on the Laplace
approximation. We then draw a sequence of independent variables from the multivariate normal
distribution and approximate the integral by the sample mean of a function of the independent
draws. Here the carefully selected multivariate normal distribution is served as the proposal dis-
tribution in the importance sampler. This method is called the Laplace-based importance sampler.

The Laplace approximation is to choose a multivariate normal distribution as the proposal
distribution given the values of parameter €, namely MN (hZ, —Qz_l). To select the desired
multivariate normal density, we need to pin down the mean and the covariance matrix, which can
be achieved by

hy = 1 /R, 8), 9.3.21
o = arg max logp (y1.1|h, 0) (9.3.21)

where p (y1.7, h|0) is defined in Eq. (9.2.5) and h = hy.p. Besides, the covariance matrix can be
obtained by
s _ 0logp (yrrlh, 0)

0 — / :

(9.3.22)

The SV model in Eq. (9.2.1) - (9.2.2) does not have analytical expressions for hg and hence
numerical methods are needed. Following Shephard and Pitt (1997), Durham (2006), Hans and
Yu (2014), we can use Newton’s method for calculation, which is very straightforward to use
in widely available programming languages such as MATLAB, Python, and R. In particular, the
evaluation of L5MF (y,.7|@) can be summarized in Algorithm 5.

Algorithm 5 SML estimation based on Laplace approximation

1: Initialize h°.
2: Calculate the hy according to the first-order condition

0
—1 rlh,0) =0
o, ogp (y17|h, 0) = 0,
which can be achieved by Newton method in a recursive algorithm. For j = 1to J

a: W/ =Rk — [Q(R1)] T I, where () is defined below,

1 1.2 K2
_0_127 251 0_72] O 0
) I4+¢2 1.2
£ — — z¢ e 0 0
(7,,2] 012) 2<2
Q(h‘) = : . )
1+¢% 1.2
0 0 K2 —L 12
o2 o2 2°T

and €; = y¢ exp (—%), fort=1,...,T.
b: Stop when |hj . _1| < 6, and hy = h7, where ¢ is some stop criterion otherwise
hy = h’.
3: Calculate 5 = Q (h}) and obtain g (h1.7°|@), which is M (h}, —Q5 ).
4: Simulate th% =h'® ~ MN (hy, —Qp") fors = 1,..., S, and compute

((170)

W. (9.3.23)

S
LSML () — % 3 (mrlh®.0) w9, w0 =
s=1




9.4. METHODS IN THE BAYESIAN DOMAIN 241

Under the assumption of finite variance, Kolmogorov’s strong law of large numbers ensures
the convergence of Eq. (9.3.23) to the true likelihood as S — oco. By the central limit theorem,
the square root rate of convergence achieves if

p (y1;T|h(S)7 9)
RICOR

Hence, we can apply Eq. (9.3.23) to compute the likelihood value given parameter value 6. The
Laplace approximation is straightforward to implement, but it will result in approximation errors.
The magnitude of errors is determined not only by the distance between the true distribution and
the proposal but also the value of S. The approximation error decreases as .S increases. To ensure
that the likelihood surface is smooth, when simulating the random samples over the parameter
space, the same set of random seeds should be used.

For the estimators discussed above, the inference relies on the asymptotic normality properties
of the estimators. The asymptotic behavior of the estimators may not work well in finite samples,
especially when the time series is highly persistent. Therefore, inference based on asymptotic
theory may lead to a misleading conclusion.

Var < 00,Vs.

9.4 Methods in the Bayesian Domain

In the Bayesian paradigm, when we combine the likelihood function p (y|@) with prior informa-
tion, which is expressed as a probability distribution with density 7 (8), we obtain the posterior,
which is another probability distribution, 7 (8|y). The posterior is obtained by the Bayes formula,

p(y|0) = (6)

m(0ly) = (W)

where p (y) is the marginal density of y (see, e.g., (Robert, 2007)).

In the Bayesian domain, the estimation of the parameter 0 is based on the decision theory
framework. To achieve this we firstly need to specify a loss function p (8, @), which represents the
loss caused by choosing the estimates of @ as . The Bayesian estimator is the one minimizing
posterior risk defined below,

~B
0 " = arg gniél//p (6,0) 7 (0ly) dOdy. 9.4.1)
€
Specifically, we usually choose the quadratic loss function

p(8,0) =6 — 8|
. . . ~Bayes -
Then the Bayes estimator is the posterior mean 6 =0=E(0y).

Unlike frequentist methods, Bayesian approaches estimate the parameter by performing pos-
terior analysis. Given the likelihood function p (y|@) and the prior 7 (@) for parameters, the pos-
terior distribution 7(8|y) is also available. If we can obtain random samples from the posterior
distribution, we can use sample moments to estimate parameters and make statistical inference
about parameters. For example, we can use the sample mean (the posterior mean) and the sample
quantiles (the posterior quantiles) to calculate the point estimate and credible intervals, respec-
tively.

While the inference of frequentist methods often relies on asymptotic theory that may or may
not provide accurate approximations to the finite sample distribution, Bayesian inference is based
on the posterior distribution. The exact finite sample inference provided by 7 (8|y) can be per-
formed in the Bayesian domain via posterior analysis. However, the Bayesian approach always
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requires numerical integration or sampling techniques. Consequently, the computational cost is
generally high. Besides, the model must be fully specified since the likelihood function is re-
quired.

The log-normal SV model belongs to the class of latent variable models. For latent variable
models, one way to implement Bayesian estimation is to treat the unobserved variables hy.7 as
additional parameters to estimate. This technique is known as data augmentation. Another way is
to directly calculate the likelihood function without data augmentation, which can be achieved by
applying the sequential Monte Carlo method (SMC). We discuss how to estimate the parameters in
the log-normal SV model with and without data augmentation. The procedures can accommodate
other types of latent variable models. Specifically, when using data augmentation, we can esti-
mate the model either through the single-move Markov chain Monte Carlo method (single-move
MCMC, see, (Jacquier et al., 2002)) or multi-move MCMC method (multi-move MCMC). In the
former, only one variable at one time is updated and in the latter, the latent vector h is sampled
in a single block, which is more efficient (see, e.g., (Shephard and Pitt, 1997), (Kim et al., 1998),
(Chib et al., 2002), (Liesenfeld and Richard, 2003) and (Omori et al., 2007)).

9.4.1 Single-move MCMC

When applying data augmentation for the log-normal SV model, we treat the unobserved log-
volatility h = hj.7 as a parameter vector. By doing this, we avoid the problem of intractable
likelihood function. Instead, according to the discussion in Section 9.2, the analytical expression
for (h, @), the so-called complete-data likelihood, is given by

T T 2
1 y? 1 (he — 1 — ¢ (he—1 — )
p (yi.rlh,0) = exp [— / ] exp [—
g Vi 27re% 2eh g V2o, 2072/

1-¢? [_ (1= ¢ (hn - u)2] |

2
2077

To perform Bayesian estimation, the prior for 0 is specified as

™ () = (1) 7 (6) 7 (2).

Therefore, the joint posterior density function is

(0, hlyr.7) < 7 (p) 7 (p) ™ (072]) p (y1.7|h,0). (9.4.2)

which implies that we only need to focus on the posterior of (€, h) and the next step is to draw
samples of (8, h) from the posterior distribution in Eq. (9.4.2).

How to draw samples from the targeted posterior distribution is the key problem in Bayesian
estimation. MCMC is one of the popular approaches in practice. Essentially, MCMC is a category
of algorithms which generate a correlated sample from a Markov chain with stationary distribu-
tion being the same as the posterior distribution. The single-move MCMC was first proposed by
Jacquier et al. (2002) and Kim et al. (1998) summarized the algorithm clearly. Here we use the pri-
ors in Kim et al. (1998) to illustrate how the single-move MCMC works. In the following, s indi-

cates the s-th MCMC draws and we define the notation h(_st_ b= (hgs), ey hgs_)l, hgi_ll), iy

The Gibbs sampler with Metropolis-Hasting step is illustrated in Algorithm 6.
We discuss the posterior distributions used in Algorithm 6 in detail.

The Posterior for Ay, 7 (hy|-)

The posterior density function has the following property,

7 (halb Yy, 0070 o e (ol ™0 p (b, 6071

t+2 0

.,hgf‘l))'.
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Algorithm 6 The single-move MCMC algorithm

1: Initialize 6V = (/,L(l), oW, 072,(1)> and hy =0fort=1,...,7T.

2: Pre-specify the number of effective samples .S and the burn-in samples Sy i -
3: for s = 2t0 .S + Spurnin do

4 Draw h,gs) ~ T (ht|h(_st_1), Y17 9(5_1)), fort=1,...,T.

5. Draw oy~ m (G2, 00D, D).
e &)
7 Drawp® o (i, 00,05

(S) 2(5) S+Sburnin .
8: Collect {hl.Tvé(S),,u(S),Un } s . as the effective samples.
- $=Sburnint

where f is the normal density function with mean and variance as

oV [ (b2 = V) + (A = pe )|
(1 + ¢t-02) ;

hgs)* — ‘u(s—l) +

2(s—1)
20s) — 9~
1+ =12

Besides, since

hy Yt

log p (y¢|he, @) = —log 2w — 5~ 5ok
1 3/7,? . . .
< —log2m — §}Lt ey [exp (—h}) (1 + h}) — hyexp (=h})],
we can find
7T (ht’h(—st_l)vyl:Tv 0(8_1)> < fn (ht’u:(s), U2(8)> ,

where

i = n 4 UZ;) [yf exp (—hif (S)) - 1] :

One may say that it is possible to directly sample the latent variable h; from the normal pro-
posal distribution and implement the Reject/Accept algorithm to obtain the samples. However, in
practice, we usually use the Metropolis-Hasting step to ensure the effectiveness of samples. The

sampling of hgs) is performed as follows.

1. Draw h ~ N (,u,f(s), v2(5)>.

2. Compute

P () g (1 20) p ()
far (Al v2)) i (1,02 ) p (sl 0¢1)

a=min | 1,

3. Generate u ~ U (0, 1),
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The Posterior for o), 7 (0,|)
Following Kim et al. (1998), we impose a conjugate prior
op | ¢~ TG (5,/2,54/2),

then 0727 is sampled from an inverse-Gamma distribution,

2
T S, + (hgs) o M(s—l)) (1 _ ¢(s—1)2)
2 7 2

1 (18 =) = (19 = o))’
2

0727 ‘ YT, hg?%’7¢(s_1)7 s=1) Ig

+

where ZG denotes the inverse-gamma distribution. Here we set o = 5 and S, = 0.01 X o,.

The Posterior for ¢, 7 (¢])

For ¢, denote ¢ = 2¢* — 1, where ¢* follows a Beta distribution with parameters (71, v2). Hence,
the prior used for ¢ is

71-1 _ v2—1
(E%) H (B L

o) | :

and has support on the interval (—1,1). Here we set y; = 20 and 2 = 1.5. Then the posterior of
¢ is
m <¢|y1;T, R Y, 03(8)> x 7 (¢)p (hf)Tlu(s‘”, ¢, 0,27(8)> :

The Metropolis-Hasting sampling procedure is illustrated as below,
1. Draw ¢ ~ N (gb*(s ) where

5 (1 - ) (57— )

-1 (h(s) M(s—l))Q

S(S_ Tlh(s &1)2_1
(1 =ue )]

t=1

¢*(8) —

2. Compute

i (aﬁ(s D]+, § *)) o (</)) » <hg‘2p| u(sfn,(g’gg](s))
e R (TP

g =min{ 1,

3. Generate u ~ U (0, 1),

¢(s) B qz~5 ifu < ag,
oY ifu > ay.
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The Posterior for /i, 7 (1)

We can impose a normal prior for i ,
7 (uIh 09,029 o< (B, 6, 020 ) 7 (),
where 7 (1) is the prior N (O, 7)3). It can be derived that
ulh(), 6, 026 A7 (#*(s> 02<s>> ,

where

* (1 - ¢(S)2) (s) (1 - gb(s)) = (s) (s)
) = e { ORI AT Z (ht+1 — oW, ) '
Oy On

0_2(3) — L .
T AT (T 11— 92+ (1= 602)]

There we can directly sample p from the normal distribution.

After iterating until S'4 Spqnin We can obtain a series of correlated samples from the posterior.
To remove the impact of initial values, we must perform the burn-in step, that is, remove the
first Spyrnin samples. The final remaining samples are treated as the effective samples from the
posterior distribution and can be used for inference. In particular, we can directly compute the
estimator according to Eq. (9.4.1). If we choose the quadratic loss function, the estimator is the
posterior mean, that is,

T ,00
S Y

and we can use the posterior samples to construct posterior intervals for parameters.

9.4.3)

9.4.2 Multi-move MCMC

As pointed out by Kim et al. (1998), the samples generated by single-move MCMC have high
correlation and hence, are not efficient. Multi-move algorithms are more efficient. Shephard and
Pitt (1997), Kim et al. (1998), Chib et al. (2002), Liesenfeld and Richard (2003) and Omori et al.
(2007) have developed various multi-move algorithms to estimate univariate and multivariate SV
models. Essentially, the multi-move algorithms sample the latent volatility h;.7 in a single block.
Here we use the algorithm in Kim et al. (1998) for illustration.

As discussed in Section 9.2, the observation equation can be rewritten as

log (y7) = hy +log (£7) (9.4.4)

where log (5%) is the logarithm of the chi-squared random variable with 1 degree of freedom and
hence, the Kalman filter cannot be applied. In Section 9.3.2, we use a normal distribution with
mean —1.27 and variance 72 /2 to approximate log (5%) and the Kalman filter to conduct the QML
estimation. However, a better approximation of the logarithm of the chi-squared distribution is a
mixture of normal distributions given by

K
Zwlf./\f (Et ’ mi:”lz) ’
i=1

which is a mixture of K normal densities fx- with component weights w;. The constants {w;, m;, v? }
are pre-determined (see, e.g., (Kim et al., 1998)) and summarized in Table 9.1.



246 9. STOCHASTIC VOLATILITY MODELS

Table 9.1: Selection of {w;, m;, v? }

Wi m; v%
0.00730 —10.12999 5.79596
0.10556 —3.97281 2.61369
0.00002 —8.56686 5.17950
0.04395 2.77786 0.16735
0.34001 0.61942 0.64009
0.24566 1.79518 0.34023

0.25750  —1.08819 1.26261

N O\ DB WD =,

We then rewrite the density of the mixture of normal distributions in terms of a component
indicator variable ¢; at each time ¢, such that Eq. (9.4.4) is now,

log (y7) = he+2, (9.4.5)

Elag=1 ~ N (m;—12704,07),i=1,... K, (9.4.6)

P(g=1) = w;. 9.4.7)

Therefore, by introducing the indicator vector ¢ = (g1, ...,qr) and the mixture normal distri-

bution, we can directly use the Kalman filter and smoother since we can use a normal random
variable to replace the loge? at every time ¢ given the values of ¢;. The log-volatility h1.; can
now be treated as state variables in a Gaussian state-space model and updated in a block. In
other words, we only need to add the updating of indicator vector g and use the Kalman filter
and smoother to update h.7 in the single-move MCMC. By doing this, the samples obtained are
much more efficient relative to those obtained as in Section 9.4.1. The algorithm is summarized
in Algorithm 7.

Algorithm 7 The multi-move MCMC algorithm

1: Initialize 81 = (u(l),qﬁ(l),ag(l)) and qt(l) =1fort=1,...,T.
2: Pre-specify the number of effective samples S and the burn-in samples Sy pin -
3: for s = 2t0 .S 4+ Spurnin do
4: Draw h(®) ~ 7 (h]:iz7 g b, 9(3_1))
5 Draw q©®) ~ 7 ( |z, h(5)>.
6: Draw 0727(8) ~ T ( 2\h(b N o 1))
7: Draw ¢ ~ 7 (gb]h 9 us= o ( ))
8: Draw p(®) ~ 7 <,u]h(5), ), or oy )).
S+Sbu'rnz'n

9: Collect{ h(s) NIQRNON 2(8)} g as the effective samples.
§=Spurnin+1

In the following, we discuss how to sample the h and q.

The Posterior for h, 7 (h|-)

The posterior for h conditional on g can be sampled by the Kalman filter. Specifically, given q,
the state-space model is
B — b =2+ &,

2t :¢( )Zt 1+U( )77t

Therefore, conditional on g, we can sample h(*) at the s-th sampling as below.
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1. At the s-th sampling, initialize h = ,u(s), e,z =0,fort=1,...T.

2. Kalman filter: let z;|y1.4—1 ~ N (c¢—1, Cy—1), conditional on g¢ = 4, & ~ N (m;, v?),
ar = ¢me_1, Ry = ¢2C_y + 02,
fo = ag +m; — 1.2704, Q; = Ry + v?,

o= ar+ RQ; ! (& - n) — £1) .G = Ry~ B/ Q.

3. Smoother: let z¢|y1.;7 ~ N (dy, D), conditional on ¢; = i, & ~ N (m,-, v2),

dy = c; + 90y (cre1 — apg1) /Res1, Dy = Cp — ¢2C2 (Rysy — Dysr) /RE .

4. Draw z; ~ N (dy, Dy) fort =1,...,T.

5. Recover hgs) = 2 + (9.

The Posterior for q,  (q|-)

The posterior for ¢; has the property,

Pr (qts) =1

gzt,hf)) o w; frr (a?t] ) 4 mi,vf) i=1,... K.
Therefore, it can be sampled by using the probability mass function.

In summary, the above-reviewed MCMC methods perform well in estimating the SV model.
Moreover, the posterior mean of h is easy to obtain, which serves as the smooth estimate of log-
volatility as it is conditional on y. However, these MCMC methods require full knowledge of the
likelihood function and are time-consuming. Besides, we must usually design the Gibbs MCMC
estimation procedure case-by-case for a specific data generating process.

9.4.3 Parameter Learning via Sequential Monte Carlo Methods

The single-move MCMC and multi-move MCMC algorithms are all based on data augmentation,
which makes the complete-data likelihood function analytically tractable. A class of alternative
Bayesian approaches uses the particle filter, or the sequential Monte Carlo (SMC) method. SMC
is mainly used to analyze state-space models, in which there is a hidden state of interest. Inference
regarding the states depends on the known parameter € and the noisy observations y. Different
from the classic Kalman filter, which is optimally designed for linear and Gaussian state-space
models, the particle filter also works well for nonlinear and non-Gaussian state-space models.
Essentially, the particle filter uses a set of random samples (“particles” ) with associated weights
to represent the density in the prediction and updating steps.

However, the target here is to estimate the parameter 8 instead of h. To estimate parameters,
the particle MCMC (PMCMC) proposed by Andrieu et al. (2010) combines the MCMC method
and SMC. They provided a generic solution to estimate parameters for a variety of models. While
it is flexible, Fulop and Li (2013) and Fulop et al. (2015) emphasized that sequential learning (i.e.,
filtering as opposed to smoothing) is preferred in financial and economic applications, in which the
states and parameters are updated as new observations arrive. Therefore, we explain how to use
the sequential learning algorithm combined with the SMC method. For convenience, we divide
the estimation procedure into two parts. The first is the bootstrap filter (see, e.g., (Gordon, 1993),
(Kitagawa, 1996)) for the inference of hidden state h, the other is the parameter learning as in
Fulop and Li (2013). Estimates are computed based on the particles and weights. As the number
of samples generated becomes large, this simulation-based empirical distribution is equivalent to
the true distribution.
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Sequential Monte Carlo Method

In this section, we show how to use the sequential Monte Carlo method, or particle filter to filter the
log-volatility in the log-normal SV model. This filter necessitates simulation from the transition
density p (hyt1|ht, y:) and computation of the measurement density p (y;|h;). Suppose we have
a set of “particles”, hgl), cee hEM) with associated discrete probability masses wgl), R ng).
Based on the Bayes rule, SMC algorithms propagate and update particles to yield a sample from

p (he|yi:t, @) according to the following filter density,

P (helyr:e, 0) O(p(yt|ht79)/p(ht|ht—lyyt—la0)p(ht—l|y1:t—170) dhi_1.

Following Chopin and Papaspiliopoulos (2020), the bootstrap particle filter algorithm is out-
lined below in Algorithm 8. For the log-normal SV model Eq. (9.2.1) - (9.2.2), we can define

1
p(h1|@) =N (0, 1__¢205) ,

p(hilh—1,0) =N (,U + & (hi—1 — ) 7072;) 5

he, ) = — e
p (yelhe, 0) = %GXP T oeht |

The estimator for the log-likelihood is

T T M ~ (i)
-~ R w
log Lsmc(0) = Zlogp(yt’ylzt—lyg) = Zlog (Z W) )
t=1 t=1 i1 2lim1 Wy

where th(Z) are the weights for the particles at time ¢.

The particle filter is flexible for a variety of models. However, the accuracy depends on the
number of particles (M). The larger M is, the better the approximation. Given M, if the sample
size is large, the computation will be intensive. There are many other variations of the particle
filter, which are similar to the bootstrap particle filter, like sampling importance resampling filter
of Gordon et al. (1993), auxiliary sampling importance resampling filter of Pitt and Shephard
(1999), and regularized particle filter of Smith (2013). They can improve certain aspects of the
performance, but face some trade-offs between the computational burden and restricted model
forms.

Parameter Learning via Marginal Resample-move

SMC for state filtering is relatively straightforward, but the goal of drawing 8 from 7 (8|y) sequen-
tially is still difficult. If we simply apply a particle filter over 7 (6|y) while keeping € invariant,
the algorithm will quickly fail and result in particle depletion. Following Fulop and Li (2013),
by approximately integrating out the states using a SMC as in Section 9.4.3, we can break up the
interdependence of the log-volatility h and the static parameters 6. In what follows, we apply
a Bayesian resample-move algorithm according to Gilks and Berzuini (2001) and Chopin (2002)

after the marginalization. For more details, one can also refer to Chopin et al. (2013).
(1) ~ (@)

Conditional on 8, we denote the particles for the log-volatility h; at time ¢ as S; = {hgi), wy L wp i =1,..

We denote S; associated with the n-th particles 0™ as St(n) and outline the procedure in Algo-

n)

rithm 9. In the algorithm, the proposal distribution ¢, (9 | é(n)) is used to keep the particles ¢

away from being static all the time. In practice, following Fulop and Li (2013), we can define
/

qt (9 | é(n)) = MN (p,X) where p = + SV é("), E >N (é(") _ N) (é(n) _ “> .

M
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Algorithm 8 The Bootstrap Particle Filter

1: Draw hgi) ~ p(h1]0) fori =1,..., M and initialize

(@) oY - (i)

wl = T, wl
2im @ gz)
2: fort =2toT do
3: Calculate the effective sample size (ESS),
1

ESS), = —r g
Zi]\il ngl—)l

4: if £S5y, < ¢, then
(1)

Draw hgi_)l by resampling according to w;—1 = <wt_1, .

6: Change
o _ 1
VA

o =1,w

7: else A ,
: hi?l, wgl_)l and &Jt(z_)l are unchanged.
9: Drawﬁgi) N}?(M\hé?l,@),fori: 1,...,M.

10: Calculate normalized weights,

(4)

' w (i T (i
wt(z) = ]wt (i)° w?E ) =P (yt’h’g )7 0)

Zi:l Wy
11: Calculate

M - (d)

P (yelyre-1,0) = Z f (ytlﬁﬁ”, »9) ﬁ -

i=1 Doim1 Wiy

M

>t
M ~()

i=1 Zi:lwt—l

0

=p (yl\ﬁgl)

o),
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Finally we can collect the joint particles from p (0, h|y;.7), namely, {h(7b’i), o™ }

For any function g (@, h), its posterior expectation can be approximated by
N M ‘
E(g(0.h) lyre) = 3> Ww(™ g (OWhW@). (9.4.8)
n=1 i=1

Therefore, based on Eq. (9.4.8), given the quadratic loss function, the Bayesian estimator of
parameters is

N
0= E:M/ Jg(m).
n=1

Algorithm 9 Bayesian Parameter Learning

1: Draw ) ~ 7 (@), forn =1,..., N and initialize the particle weights Wl(n) =1
2: Conditional on y;, run Algorithm 8 to obtain S{n), n=1,...,N.
3: fort =2to 7 do

4: At the beginning, {0(")7 St(ﬁ)l, Wt(n%, W(n) } are known forn =1,... N.
5: Run Algorithm 8 to obtain St( ),

Calculate
- < () T
th) = Wt(f%p (yt|y1:t71,9(n)) 7Wt(n) = ﬁ,
anl Wt
ﬁ(?/l:tw(")) =p (?/11: A ) <7/t\1/1t 179(n)) :
7 Calculate the effective sample size
ESSp;: = __
ot — ZN_ Wt(n)2 .
8: if ESS@J < Bj then
9: Resample the particles proportional to Wt("), denoted as é(n).
10: Update the weights 7D§n) =1,forn=1,...,N.
11: Move the particles via the Metropolis-Hasting step:
12: forn =1to N do B
13: Draw 6("* ~ ¢ (9 | O(n)).
14: Calculate

p (9(")*> P (yu | 9(”)*) a ( 6" | o )
» <é(n)> b <.7/1:t | é(")) a <0(n)* | é("))

15: Generate u ~ U (0, 1),

a=min<{ 1,

0 ifu < a,
0 ,  ifu>a.

n=1,...,Ni=1,...,
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9.5 Conclusion

In this chapter, we reviewed and illustrated several methods for estimating the discrete-time SV
model. The methods reviewed were either in the frequentist domain or in the Bayesian domain.

Due to the intractable likelihood function, classic MLE estimation is difficult, and many al-
ternatives have been proposed in the literature. The frequentist methods include GMM, QML,
ECF, EMM, and SML. The frequentist estimators are extreme estimates obtained by minimizing
a distance measure function. Additionally, inference regarding frequentist estimators relies on the
asymptotic normality. Among these methods, GMM, QML, ECF, and EMM avoid calculating the
likelihood. They generally suffer from a loss of efficiency. The SML method instead approximates
the likelihood via simulation. The asymptotic normality of the frequentist methods may not hold
in finite samples, especially when the volatility process is highly persistent.

In contrast to frequentist methods, Bayesian inference is conducted based on the posterior dis-
tribution. We reviewed three Bayesian methods for estimating the log-normal SV model. The first
two methods use the data augmentation technique and the third one applies SMC. Data augmenta-
tion treats the log-volatility as parameters and hence, the likelihood is analytically tractable, facil-
itating posterior sampling via MCMC. Specifically, we reviewed two types of data-augmentation-
based MCMC methods. One updates the log-volatility step-by-step and is referred to as single-
move MCMC. The other draws the log-volatility in a block and is known as multi-move MCMC.
Without data augmentation, we introduced the Bayesian parameter learning algorithm combining
the SMC for the hidden states (log-volatility) and a marginal resample-move step for the parame-
ters. Bayesian parameter learning is recursive and generic and hence is suitable for financial time
series. However, compared with frequentist methods, the computation of Bayesian estimation is
always very intensive.

Although we reviewed methods that estimate volatility using return observed at low frequency,
many of the reviewed methods are applicable when we use realized volatility to estimate integrated
volatility or spot volatility. This is because log realized volatility is an estimate of log integrated
volatility and hence, a nonlinear state-space model is needed.
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