Posterior-Based Specification Testing and
Model Selection

TAO ZENG Zhejiang University

This chapter provides an overview of posterior-based specification testing methods and model
selection criteria that have been developed in recent years. For the specification testing meth-
ods, the first method is the posterior-based version of 10S 4 test. The second method is moti-
vated by the power enhancement technique. For the model selection criteria, we first review
the deviance information criterion (DIC). We discuss its asymptotic justification and shed
light on the circumstances in which DIC fails to work. One practically relevant circumstance
is when there are latent variables that are treated as parameters. Another important circum-
stance is when the candidate model is misspecified. We then review DICy, for latent variable
models and DIC), for misspecified models.
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11.1 Introduction

For many widely used models in economics and finance, it is not straightforward to obtain the
maximum likelihood (ML) estimate (MLE) or construct a nonparametric estimate. Examples in-
clude, but are not limited to, latent variable models and structural dynamic choice models; see
Imai et al. (2009), Norets (2009). As a result of the difficulties in implementing these frequen-
tist methods, there has been an increasing interest in using Bayesian posterior methods, such as
Markov chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC), to conduct posterior
analysis of econometric models. With the rapid growth in computer capability, fitting models of
increasing complexity using MCMC or SMC has become more feasible. After the MCMC and
SMC output are obtained, two important questions naturally arise. The first question is how to per-
form the specification test of the model. The second is how to compare alternative models that are
not necessarily nested. Specification testing and model selection are of fundamental importance
in empirical studies. Therefore, posterior-based answers to these questions are critical in practice.

Li et al. (2018) proposed two new specification tests based on posterior output. The first test
(referred to as BIMT) is the posterior-based version of 10S 4 of Presnell and Boos (2004) and
its asymptotic null distribution is normal. To implement this test, one does not need to specify a
model in the alternative hypothesis. The second (referred to as BMT) is motivated by the power
enhancement technique of Fan et al. (2015) that is based on the model expansion strategy. It
combines a component (called .J;) that tests a null point hypothesis in an expanded model and a
power enhancement component (called Jy) obtained from the first test. It has been shown that .Jy
converges to zero when the null model is correctly specified and diverges when the null model
is misspecified. It has also been shown that .J; is asymptotically x?-distributed, suggesting that
the test is asymptotically pivotal, when the null model is correctly specified. The second test has
several nice properties. First, its size distortion is small, and hence, the use of bootstrap methods
is not necessary. Second, it is straightforward to compute from posterior output, and hence, is
applicable to a wide range of models, including latent variable models for which ML and bootstrap
methods are difficult to use, and structural dynamic choice models. Third, when the test statistic
rejects the specification of a null model and J; takes on a large value, BMT suggests the source of
misspecification.

In the Bayesian community, there are two important metrics used for model selection. One is
the Bayes factor (BF) which compares the posterior model probabilities of candidate models, all
conditional on the data. Despite the appeal of its statistical interpretation, the BF suffers from a
few serious theoretical and computational difficulties. For example, it is not well-defined under
improper priors. It is subject to Jeffreys-Lindley-Bartlett’s paradox, that is, it tends to reject the
null hypothesis even when the null is correct when a vague prior is used. For many models, the
posterior model probabilities, and hence, the BF, are difficult to compute.

The second method is the Deviance information criterion (DIC) of Spiegelhalter et al. (2002).
DIC has been interpreted as a Bayesian version of the well-known Akaike information criterion
(AIC) of Akaike (1973). Like AIC, DIC is used to select a model that minimizes a plug-in pre-
dictive loss. Compared with the BF, DIC can be well defined under improper priors and immune
to Jeffreys-Lindley-Bartlett’s paradox. More importantly, DIC is easier to calculate from posterior
output than the BF, especially in the context of latent variable models. Hence, it has been used in
many applications. For example, it has been widely applied to compare alternative specifications
in stochastic volatility models (Chan and Grant (2016), and Berg et al. (2004)), and VAR mod-
els (Chan and Eisenstat (2018)). However, Spiegelhalter et al. (2014) pointed out that DIC lacks
formal theoretical justification.

Li et al. (2020b) provided a frequentist justification for DIC by showing that DIC is an asymp-
totically unbiased estimator of the expected Kullback-Leibler (KL) divergence between the data
generating process (DGP) and a predictive distribution with the posterior mean plugged in. The
justification relies on three important conditions. The first condition is that the Bernstein-von
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Mises theorem must be valid. The second condition is that the standard ML large sample theory
(such as consistency and the asymptotic normality) must be valid. The third condition is that all
candidate models are correctly specified, at least asymptotically. These conditions may not hold
in practice. Li et al. (2020a) pointed out that the Bernstein-von Mises theorem and the standard
ML large sample theory may not hold for the latent variables in latent variable models when DIC
is calculated based on the conditional likelihood (i.e., the probability of observed data conditional
on the original model parameter and the latent variables). As a result, Li et al. (2020a) proposed
a new version of DIC, namely DIC;,, to compare latent variable models. Under a set of regularity
conditions, Li et al. (2020a) provided a frequentist justification for DIC;, similar to that of DIC
in Li et al. (2020b). Moreover, Li et al. (2020a) proposed another version of DIC, namely DIC,,,
to compare misspecified models. It has been shown that DIC); can be regarded as a Bayesian
version of the TIC of Takeuchi (1976).

The chapter is organized as follows: in Section 2, a review of the posterior-based Specification
tests and their asymptotic properties is presented; in Section 3, an overview of the posterior-
based model selection criteria, including DIC, DIC;, for latent variable models, and DIC,; for
misspecified models is given; Section 4 summarizes the conclusions.

11.2 Posterior-based Specification Tests

It is well-known in the literature that, when the ML method is applied to estimate a candidate
model, several specification tests may be used. These include the information matrix test (IMT) of
White (1982)), the in-and-out likelihood ratio (I0S) and IOS 4 tests of Presnell and Boos (2004).
Unfortunately, these tests are not directly applicable to estimates based on posterior output.

Recently, Li et al. (2018) proposed two posterior-based specification tests. One of them can be
regarded as a posterior-based version of IOS. The other is constructed by the power enhancement
technique of Fan et al. (2015) that can assess the validity of the model specification and identify
the source of model misspecification if the null model is rejected.

First, we define some notation. Let y = (y1,...,%,) be the observed data from a probabil-
ity measure Pr on the probability space (€2, F, Prg). Let model Pr be a collection of candidate
models indexed by parameters @ whose dimension is P. Let Prg denote Pr indexed by 6. Fol-
lowing White (1987), if there exists 0, such that Prg € Prg, we say the model Pr is correctly
specified. However, if for all 8, Prg ¢ Prg, we say the model Pr is misspecified. We would like
to test whether or not the model in question is correctly specified. Let g (y) be the data generating
process (DGP) of y.

Let y' = (yo,y1,....y) forany 0 < t < nandl; (y*,0) = Inp(y*(8) — Inp(y'~'|6) be
the log-likelihood for the ¢ observation for any 1 < t < n. Often, we simply write [, (yt, 9) as
l; () when there is no ambiguity so that In p(y|@0) = >, l; (). It is important to note that in
our definition of the log-likelihood, we ignore the initial condition In p(yy). For weakly dependent

data, the impact of the initial condition is asymptotically negligible. We define z§j ) (0) to be the
jt derivative of I; () and I\’ (8) = I, () when j = 0. Additionally, we define

srh0) = PPV S0 g) s (6) = Y (6) = s(y".6) - sy 0).
=1
hy'0) = TP 2 (g) miio) = 1Y (0) = hiy'. )~ h(y'.6),
i=1
HL(0) = > hi(6)H,(6) = [ H.(0)g(y)dy.5(6) = > (0.
t=1 t=1

% Sy <0>]  Ln(6) = np(Bly), LY (8) = & n p(6ly)/ 06",
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3.0) = 5> [5:(6) ~ 5(6)] [5(6) ~5(0))'. 3u(6) = [ Tn0)g (v) dy.
t=1

We impose the following regularity conditions which will be used throughout the Chapter.

Assumption 1: ® C R is compact.

Assumption 2: {y;};°, satisfies the strong mixing condition with the mixing coefficient
-2

a(m)=0 <mé_5) for some € > 0 and r > 2.

Assumption 3: For all ¢, [, (0) satisfies the standard measurability and continuity condition,
and the eight-times differentiability condition on F*  x © where F* _ = o (y;, yt—1," ).

0 -1 @) < () o0
i (v')| | < coand 37, (d (v) — B (]

Assumption 4: For j = 0, 1,2, for any 0,0’ € ©,

in probability, where r'é (yt) is a positive random variable with sup,
0.
Assumption 5: For j = 0,1,...,8, there exists a function M;(y") such that for all § € O,

lgj) (6) exists, supgce ngj) (O)H < My(y?), and sup;, HMt(y < M < o for some § > 0,
where 7 is the same as that in Assumption 2.

t)||1"+6

Assumption 6: {lij ) (0)} is La-near epoch dependent with respect to {y:} of size —1 for

0<j<1land —% for 5 = 2 uniformly on ©.
Assumption 7: Let 62 be the pseudo-true value that minimizes the KL loss between the DGP
and the candidate model

1 9(y)
6P = arg min — / In g(y)dy,
" ocon )  p(yl6)
where {6? } is the sequence of minimizers interior to ® uniformly in » and lim,,_,~ 6% €Int(©).
Forall e > 0,

lim sup  sup 1 > {E(8)] - E[l: (63)]} <0, (11.2.1)
oo @\N(OZ,&) n t=1

where N (6% <) is the open ball of radius ¢ around 6.

Assumption 8: The sequence {H,, (6?)} is negative definite and the sequence {B,, (6?)} is
positive definite, both uniformly in n.

Assumption 9: The prior density p () is thrice continuously differentiable and 0 < p (6%) <
oo uniformly in n. Moreover, there exists an n* such that, for any n > n*, the posterior distribution
p(8ly) is proper and [ ||0]* p (8ly) d6 < oo.

Assumption 1 is the compactness condition of the parameter space. Assumption 2 implies
weak dependence in y;. Assumption 3 is the continuity and measurability condition for /;. As-
sumption 4 is the Lipschitz condition for [; first introduced in Andrews (1987) to develop the
uniform law of large numbers for dependent and heterogeneous stochastic processes. Assump-
tion 5 contains the dominance condition for /,. Assumption 6 is the weak dependence condition
for l;, especially for the case where /; is a measurable function of the distant past or future of a
mixing process. Assumptions 4-6 imply that le St E'[l: (8)] is continuous on © uniformly in
n and the likelihood function 2 3% | I, (6) converges to 2 >~' | E'[I, (9)] uniformly on ©. As-
sumption 7 is the identification condition used in Gallant and White (1988). Assumption 1-7 are
sufficient conditions for the consistency of standard ML estimator, and the asymptotic normality
can be ensured by adding Assumption 8. These assumptions are well-known primitive conditions
for developing the ML theory for dependent and heterogeneous data; see, for example, Gallant
and White (1988) and Wooldridge (1994). The first part of Assumption 9 ensures that when the
sample size increases, the likelihood information dominates the prior information so that the prior
information can be ignored asymptotically, the second part ensures the existence of the second
order posterior moment.
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11.2.1 Posterior-based 10S test

One of the earliest specification tests is proposed by White (1982) based on the information matrix
equivalence. Under the null hypothesis that the model is correctly specified, it can be shown that
H,(07)+J,(0°) = 0. Let d(yt, 0) = vech [h:(0) + s¢(0)s}(0)] where vech is the column-wise
vectorization with the upper portion excluded. White (1982) proposed the following information
matrix test

n

IMT = nD, (é) Ul (é) D, (é) : (112.2)

where 0 is the MLE of 0, and
.(0) =1 0(0d). 0= 0,(6) =2 S5 (6) o)

V¢ (é) =d (yt: é) — Dn <é) :E[T_L1 (é) St (é) .
Based on a set of regularity conditions, White (1982) showed that IMT-% x? as n — oo under
the null hypothesis.

Presnell and Boos (2004) proposed an alternative test — the IOS test for models with i.i.d.
observations,

[T=ip <yt’é> — Zn: [lnp (yt’é) —Inp (yt\é(t)ﬂ 7

I0OS =1In
A(t)
H?:ﬂ) <yt’9 ) t=1

where é(t) be the MLE of 6 when the tth observation, y;, is deleted from the full sample. From
the predictive perspective, the single likelihood p (yt|é (t)) can be regarded as the predictive like-
lihood of y, by all the other observations. It has been shown that the asymptotic form of 10S is

10S, = tr [—ﬁ;l (é) 3, (é)] : (11.2.3)

and IOS—IOS 4 = o, (n_l/Q). Like IMT, IOS 4 also compares H, (9) withJ,, (é) , butin aratio

form instead of in an additive form. Under the null hypothesis, 10S 4 %> P and n!/2 (I0S4 — P)
converges to a normal distribution with zero mean and finite variance.

IMT, 1I0S, and IOS 4 all suffer from serious bias distortions if the critical values for testing
are based on the asymptotic distributions. It is because that these asymptotic distributions poorly
approximate their finite sample counterparts. To reduce the size distortion of these tests, bootstrap
methods have been proposed to obtain the critical values. Unfortunately, bootstrap methods are
computationally demanding in many cases.

LetV (0) = [ (0 —0)(0 — é)/ p (0]y) d6, a natural posterior-based informative matrix test
statistic can be defined as:

BIMT = tr [nV (0) J,, (0)] = n/ (6-8)'3,(8)(6-6)p(8ly)as, (11.2.4)

Based on Assumptions 1-10, Li et al (2018) showed that under the null hypothesis,
BIMT =10S4 + O, (n™') (11.2.5)

because

V(8) = - LE18) + 0,0,

S|
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see Li et al. (2020a) for detailed proof. From (11.2.5), if the model is correctly specified,
BIMT = P + O, <n_1/2) +0,(n"Y)=P+0, (n—1/2> :

since n'/? (I0S4 — P) converges to a normal distribution Assumptions 1-8. Then it is straight-
forward to show that

n'/2 (BIMT/P — 1) = n*/2 (10S4/P — 1) + 0, (1),

so n'/2 (BIMT/P — 1) has the same asymptotic distribution as n'/? (I0S4/P —1). Hence,
BIMT may be regarded as the posterior-based version of IOS 4. Unfortunately but not surpris-
ingly, BIMT inherits the size distortion problem of IOS 4 and bootstrap methods must be used.

11.2.2 Posterior-based specification test with power enhancement

To solve the size distortion and the computational problem of BIMT, Li et al. (2018) proposed
a new posterior-based misspecification test (denoted as BMT) by using the power enhancement
technique of Fan et al. (2015).

Power enhancement technique

Fan et al. (2015) considered the hypothesis testing problem of Hy : & = 0 where 0 is a high-
dimensional vector. The alternative hypothesis H is sparse so that the null hypothesis is violated
by only a few components. They showed that traditional tests, such as the Wald test, have low
power. To enhance the power, they introduced a power enhancement component which is zero
under the null hypothesis with high probability and diverges quickly under sparse alternatives.
The new test statistic (call it J) has the form of

J = Jo+ Ji,

where J; is an asymptotically pivotal test statistic, such as Wald test, and Jy is a power enhance-
ment component. .Jy needs to satisfy three properties: (a) Jy > 0 almost surely; (b) under Hy,
Pr(Jo = 0|Hy) — 1; (c) Jy diverges in probability under some specific regions of H;. Clearly,
property (a) ensures that .J is at least as powerful as .J; ; property (b) guarantees that the asymptotic
distribution of .J under Hy is determined by J; and hence the size of .J is asymptotically equivalent
to that of .J;; property (c) guarantees that the power of .J improves that of .J;.

Posterior-based specification test with power enhancement

Similar to Fan et al. (2015), BMT has two components, J; and Jy. To construct Jy, Li et al. (2018)

expand p(y|@), the original model, to a larger model denoted by p (y|@;,) where 8, = (9,, 9%)

with O being a Pg-dimensional vector. So the expanded model p (y|€7,) nests the original model
p (y|@), if the specification p (y|@) is correct, then the true value of O is zero. Let
Olnp(y|6r)

S(Y& OL) = T? C(yveL) = S(YaeL)S(Y7 OL)la

V(0 = E [(aL—éL) (aL_gL)',y] :/(9L_9‘L) (01, —61) p(6L]y)dér,

where 6 is the posterior mean of 6}, in the expanded model. Then the .J; component is con-
structed as

Ji=tr{Cy (y,(0,602:=0)) Ve (6.)}, (11.2.6)

where C; (y, (8,0 = 0)) is the submatrix of C (y, 6,) corresponding to 6 ; evaluated at (8,6 = 0)
and Vg (9 L) is the submatrix of V' (8},) corresponding to @ evaluated at 8. As shown in Li
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et al. (2015), J; is a posterior-version of LM test (Breusch and Pagan (1980)) designed to test the

point null hypothesis 8 = 0. They showed that J; A x?2 (qr) when @ = 0. Typically, J; has
good size property as it is designed to test the point null hypothesis.

If J; rejects the hypothesis O = 0, it suggests that the original model p (y|@) is misspecified
and indicates the source of model misspecification in p (y|@). Unfortunately, if .J; fails to reject
the hypothesis 8;; = 0, no conclusion can be drawn about the validity of the original model
p(y|0). This is because, in practice, there are many different avenues for expanding the model.
While J; may have sufficient power in some cases, it may have low power in others. This problem
is similar to that of the Wald statistic in the context of testing a high-dimensional vector against
sparse alternatives, as well explained in Fan et al. (2015). To deal with this problem of low power,
they used BIMT to construct Jy, that is,

Jo = v/n(BIMT/P — 1)2. (11.2.7)

Then from (11.2.6) and (11.2.7), the power enhancement posterior-based test for model misspeci-
fication is

BMT = J; + Jo=tr {Cg (y,(0,05 =0)) Vg (0L)} + Vn(BIMT/P —1)>.  (11.2.8)

Under some mild regularity conditions, when the model is correctly specified, Li et al. (2018)
showed that

q d
J1 5 X2 (Pr), Jo = 0,(1), BMT 5 ¥ (Pg) .

If the model is misspecified with P* # P, the order of .Jy takes the form
Jo = Vn[P*/P =1)* +2y/n(P*/P — 1) 0,(1) + Op(n V%) = 0, (Vn),

where P* := tr |-H (62)'J (9{1)} Then the order of the power of BMT is no less than

Op(V).

BMT has several nice properties. First, compared with IM, I0S, and 10S 4, BMT is based
on the MCMC output. When the optimization of the likelihood function is difficult but the
MCMC draws are available, BMT is easier to compute than IM, 10S, and IOS 4. Second, when
V/n(BIMT/q — 1)? does not have the size distortion problem, it is likely that BMT will not suffer
from size distortion. As a result, we do not need to use bootstrap method, then avoid intensive
computational effort. In addition, by incorporating BIMT into Jy, there is no need to get the
asymptotic variance of BIMT which is complicated and difficult to calculate.

11.3 Posterior-based Model Selection Criteria

Model selection is a highly important statistical inference in practice. Many penalty-based infor-
mation criteria have been proposed to select from candidate models in the literature. A famous
example is AIC which requires that MLE is available. The most well-known model selection cri-
terion in the Bayesian framework is DIC of Spiegelhalter et al. (2002), which is constructed based
on the posterior distribution of the deviance. It has several desirable features. Firstly, DIC is easy
to calculate from the posterior output, such as MCMC output, when the likelihood function has a
closed form. Secondly, DIC is applicable to a wide range of statistical models. Third, unlike BFs,
DIC is immune to Jeffreys-Lindley-Bartlett’s paradox and well defined under improper priors.

In this section, we will review the DIC for Bayesian model selection, especially the frequentist
justification of DIC.
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11.3.1 DIC for Bayesian model selection

A useful measure of how well the model fits the data, based on both the frequentist and Bayesian
approach, is the deviance
D(6) = —2Inp(y|6).

A small value of D(8) corresponds to a large value of the log-likelihood, indicating the model fits
the data well. Deviance measures the in-sample predictive performance of the model and a more
complex model will always yield smaller values than a simple model. Deviance itself is not a good
choice for model selection because it does not penalize overfitting, meaning that the most complex
model will always be selected. But complex models are not always better since their estimates can
be highly variable, for instance, the standard errors of the model parameter can be very large from
the frequentist viewpoint and the posterior distributions of parameters may be highly diffuse from
the Bayesian viewpoint. For the out-of-sample predictive performance, meaning how well the
model predicts future data, simple models often perform better.

The most well-known frequentist approximation to the out-of-sample prediction is the Akaike
Information Criterion (AIC):

AIC = —21np (y10(y) ) +2P,

where 9(y) is the MLE estimator of the parameters, P the number of parameters. The smaller
AIC is, the better the model. The first term is deviance evaluated at 9(y), which decreases as
the fit of the model improves. 2P is called the ”penalty” term or the degrees of freedom, which
increases as the complexity of the model grows. Thus, in AIC, there is a trade off between model
fit and model complexity.

Spiegelhalter et al. (2002) proposed the DIC for Bayesian model comparison. The criterion
takes the form of

DIC = D(0) +2Pp, (11.3.1)

where Pp, used to measure the model complexity and also known as “effective number of param-
eters”, is defined as the difference between the posterior mean of the deviance and the deviance
evaluated at the posterior mean of the parameters:

Pp = D) - D(B) = 2 / (np(y|6) — In p(y|8)]p(6]y)de, (1132)

with @ being the posterior mean of #. Note that D(8) is a function of @ thus has a posterior
distribution.

Decision-theoretic justification for DIC

Let g(y) be the data generating process of ¥, Yrep = (Yi,reps - - > Yn,rep) denote the future repli-
cate data with y, and 6% be the pseudo-true value that minimizes the KL loss between the DGP
and the candidate model

1 9(y)
0" = ar mln—/ln dy,
T geon p(.VIG)g(y) Y

where {67} is the sequence of minimizers that are interior to @ uniformly in n. The quantity that
measures how well a candidate model predicts the replicate data is the KL divergence between

9(y) and p(yreply):

KL1g ($rep) o0 (reply)] = Ey,., [ln ]%} -/ [m ]%] 9 (Yoey) A

= /1n9(yrep)9(yrep)d)’rep - /lnp(yrep’wg(yrep)d)’rep: (11.3.3)
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where p (y,ep|y) denote a generic predictive distribution. The smaller this KL divergence, the
better the candidate model in predicting g(y,cp)-

If we choose p (yrep|y) to be the plug-in distribution p <yrep|é (y)) where 0(y) is the MLE

estimator of 6% under the data y, then (11.3.3) can be rewritten as

In g (Y're_p) ]
p (yTeple(y))

= Ey,., [ng(yrep) + EBy,., [— Inp <y renlO(y ))] ’

KL [g (Yrep) , P (}’rep|én(3’))} =Ey,.,

where the expectation Ey and Ey, ., are related to g (y) and g (y,ep), respectively. Since g(yiep)
is the true DGP and Ey, ., (Ing(y,ep)) is the same across all candidate models, it can be dropped
from the above equation.

Assumption 10: H,, (6?) + B,, (6°) = o(1).

Assumption 10 is a generalization of the definition of “information matrix equality”; see White
(1996). It was used as an indicator of no model misspecification. Under Assumptions 1-8 and 10,

it is well-known that
By By,., | =20 (yrepl0n(¥)) | = By [AIC + 0,(1)] = By [AIC] + o(1),

which means that AIC is an unbiased estimator of Ey Ey, [—2 Inp <ymp\é(y))] asymptotically,
for details, see Burnham and Anderson (2002).

Recently, under Assumption 1-10, Li et al. (2020b) provided a frequentist justification of DIC
similar to that of AIC. If the plug-in predictive distribution based on replicate data is p (yep|0(y))
where O(y) is the posterior mean of 62 conditional on the data y, consider the following KL
divergence

KL [g (yrep) P (y“ip|é(3’)>:| = Eyrep

1 9 rep) ]
p(yrep‘e(y))

= EYTep [ng (YTep)] + Eyrep [_ Inp (YTep|§(Y))] .

Under Assumptions 1-8 and 10, Li et al. (2020b) showed that
EyEYTep [—2lnp (YTGPW_(Y))] = Ey [DIC + Op(l)] = Ey [DIC] + o(1),

which means that DIC is an unbiased estimator of Ey Ey, . [~2Inp (y,ep|0(y))] asymptotically.
The decision-theoretic justification to DIC shows that DIC selects a model that asymptotically
minimizes the expected KL divergence between the DGP and the plug-in predictive distribution
P (yrep\ﬂ_ (y)) where the expectation is taken with respect to the DGP.

The conditions under which AIC is asymptotically unbiased are: the candidate models provide
a good approximation of the true DGP (Assumption 10), the consistency and asymptotic normality
of MLE (Assumption 1-8), and the expression for the asymptotic variance of MLE (Assumption
9). For details, see Li et al. (2020b). A key difference between AIC and DIC is that the plug-in
predictive distribution is based on different estimators of 2. In AIC, the ML estimate, 6(y),
is used while in DIC, the Bayesian posterior mean, 0(y), is used. That is why DIC is called a
Bayesian version of AIC. Under Assumptions 1-9, Li et al. (2020b) proved that

6 = 6+0,(n1), (11.3.4)
H,(0) = Hy(0)+0,(1). (113.5)
From (11.3.4), the Bayesian posterior mean has the same asymptotic distribution as the MLE and

(11.3.5) ensures the validity of the expression for its asymptotic variance. That is why we can
obtain the asymptotic unbiasedness of DIC under Assumptions 1-10.
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The effect of prior information on Pp

A useful contribution of DIC is that it provides a way to measure the model complexity when
the prior information is incorporated, see Brooks (2002). For AIC, the number of degrees of
freedom, P, is used to measure the model complexity. In the Bayesian framework, the prior
information often imposes additional restrictions on the parameter space, the degrees of freedom
may be reduced using a prior, so Pp may not be close to P for a finite n.

Li et al. (2020b) proposed high order approximation for Pp and DIC to see the effect of
prior information. For convenience, we let iy @ = 2y, l,gj ) (0) for j = 3,4,5. Let
7(0) =Inp(0), p9) (), 719) (8) be the jth order derivatives of p (8), 7 (@) for j = 1,2. When
there is no ambiguity, we write é(y) as 6. Under some regularity conditions, Li et al. (2020b)
proved that

1 1
Pp = P+-Ci+-Cr+0, (n7?), (11.3.6)
1 1
DIC = AIC+ —D;+—Dy+0,(n?), (11.3.7)
n n
where . )
Cl = Ztr [AQ] - gtr [Ag], 02 = —022,
1 1 1
Dy = —ZAl + 5131' [AQ] — gt[‘ [Ag] R

Dy = (91 —2C3 — (s,

O = () 81, (0) B (6,) vee (1, (6) ).
Co = tr |11, (6) ' (8) ] oo = () B, (6) ' (8).

where vec is the column-wise vectorization. From (11.3.7), the difference between DIC and AIC
is Op(n~1), then DIC can be regarded as a Bayesian version of AIC. The effect of the prior

AN | A _ /a
information on Pp can be approximated by Cy = —tr [H77 (9) 72 (9)] where H,, (9) and

m(2) (é) represent the information from the model and prior, respectively.

The above analysis can be illustrated by the following simple example
yi = 0+ u; (11.3.8)

where u; ~iiq N(O, A1+ Ti_l) fori =1, ..., n. The likelihood function is

- 1 A
p(yl0) = 1];[1\/27”#A p( sy Wi 6’)) (11.3.9)
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Let the prior of § be N (o, 7, 1). Then the posterior, based on the likelihood function (11.3.9) and
the prior of 6, is given by

N N
POY) = T oy1o)p@)d8 \/;e"p (_? - )2) |

Hence, the posterior mean is

3 N B n Ti/\
0=Efly)=p= () 1(Z—T.+/\yi+70“0)’TO:ZT.+>\+TO’
— T ; 2

and the posterior variance is (7°) 1. Then we have

DO = -2 [ lnp(ylo)p(6ly)a
n n
B TiA TiA _ o2
= nln2r ;thl—i_)\ - TZ+A((y7, ,U,) + O)’
D(0) = —2Inp(y|f) = nln2 anln LS ) ( 0y2
- - - ™ — - [ )
Y = TitA i:lTH_/\y 8
— I QY
b ) () 70 ; i+ A
" T, T0 o " T
- ;TZ—FA_‘_X) Z;Tl—i—/\7
and
DIC = D(f)+2Pp (11.3.10)

T

z>\ o\2
+/\(yz 1)
Ti

A

T

= nln27r—zn:ln T —Zn:
i—1 Ti+ A i—1
n . - -1 5

1
2($£:25+3) 5

i=1

1
T

The log-likelihood function is

n 1 — TiA e T 9
| =——1In2 — 1 - = P — 11.3.11
np(y|6) 2nﬂ+2;nn+x 2;Ti+A(y’ 0), (11.3.11)

the MLE estimator of 4 is

—1
~ n Ti)\ " Ti)\
0= (Z p— A) Zmyz’- (11.3.12)

i=1 =1

From (11.3.11) and (11.3.12), we have

-1
a2 (9) — (z: anA> _ (11.3.13)
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It can be shown that C; = 0 since the third and fourth derivatives are both zero. Note that the
logarithm of the prior density function is

n 1 1o
Inp(yld) = —51n27r + 51117'0 ~3 ZT() (0 — o).
i=1

Then we have
e (9) — 7. (11.3.14)

From (11.3.13) and (11.3.14),

Cy = —tr [I_{n <9)_1 72 (

D>
~
| I

I

|
N
S|

3
Ty
ik
pd
~__—
L
3

Hence we can show that

-1
1 TiA - TiA - TiA
_P = —_— =
b 7O Ti+ A (lln—l—)\—i—m ;Ti—F)\
A

1 1 _
= P—i—acl—i-ECQ-i—Op(n 2)

with C7 = 0 and the number of parameters P = 1.

For the models that W and Pp do not have a closed form expression, such as the normal
model with unknown sampling precision, equation (11.3.6) provides a generalized method for
measuring the effect of the prior on Pp. Spiegelhalter et al. (2002) used some specific tricks to
derive the relationship between Pp and P for this kind of model, but these tricks are difficult to

use for other models. For more details, see Li et al. (2020b).

11.3.2 DIC for Latent Variable Models and Misspecified Models

In this section, we first discuss how to obtain DIC when the model includes latent variables.
Second, we introduce a new version of DIC for misspecified models.

DIC with data augmentation

Lety = (y1,-..,yn) denote the observed data generated from a probability measure Py on the
probability space (€2, F, Py) and z = (21,22, - ,2,) be the latent variables. The latent variable
model is indexed by the some P-dimensional parameter vector, 8. Furthermore, p(y|0) is used
to denote the observed-data likelihood function, and p(y, z|0) is denoted as the complete-data
likelihood function. The relationship between these two likelihood functions is given by

p(y]0) = /p(y,zw)dz- (11.3.15)
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The integral in (11.3.15) usually does not have an analytical form. For many latent variable mod-
els, the dimension of z is as high as the sample size of the observed data, making it very difficult
to accurately approximate the integral numerically. Consequently, the ML method and hence, AIC
are difficult to use because doing so requires the calculation of p(y|@) for each value of 8 during
numerical optimizations.

For the Bayesian analysis based on the observed-data likelihood function p(y|@), one would
end up with the same problems as in ML and DIC is also difficult to calculate since In p(y|@) does
not have a closed form either. To facilitate the posterior analysis, the data-augmentation strategy
of Tanner and Wong (1987) is often used to augment the parameter space to (0,z), changing
the likelihood function to p(y|@,z) which typically has a closed-form expression. Denote the
posterior mean of z, @ by Z, 8, obtained from the joint posterior distribution p(8, z|y). Applying
DIC developed earlier to the data-augmented MCMC output leads to

DICPA = D(z,0) + 2PB4, (11.3.16)
PR = D(2,0) - D(#.6) = -2 [ Inp(y]2.6) - 1n ply2.8)lp(z. Oly)dad#1.3.17)

where D(z,0) = —2Inp(y|z, ) which is typically available in closed-form. This way of cal-
culating DIC is the default choice in WinBUGS, following the suggestion of Spiegelhalter et al.
(2002). Clearly, the use of data augmentation not only facilitates MCMC sampling, but also makes
DIC easier to calculate from the MCMC output. As acknowledged in Spiegelhalter et al. (2014),
this default method for calculating DIC from p(y|@, z) for latent variable models is implemented
“only to make the technique computationally feasible”.

However, from a theoretical viewpoint, DIC” 4 has a few problems. Firstly, the dimension
of the parameter space is much larger, increasing from P to n + P for some models, includ-
ing stochastic volatility models. It leads to the well-known incidental problem in econometrics
where the information about the incidental parameters stops accumulating after a finite number of
observations when the dimension of the parameter space grows proportionally to the number of
observations, see Neyman and Scott (1948) and Lancaster (2000). In this case, the MLE estimator
and posterior mean are both inconsistent and the Bernstein-von Mises theorem also becomes in-
valid. Then DICP”# may not provide an asymptotically unbiased estimator of the KL divergence
up to a constant.

To understand this problem, let us consider the following random effect model from Celeux
et al. (2006),

Y = 2; + &4 (11.3.18)

where z; ~ N (0, /\_1) ande; ~; ;.4 N(0, Ti_l) fori =1, ..., n, z; and £; are mutually independent
for all 4. For simplicity, let A and 7; be known. Different from Celeux et al. (2003) where an
improper prior is used for 6, we assume the prior for 6 is N (119, 7, 1). If we treat z; as parameters,
then the complete-likelihood function is

n

n - 1
p(yl0,2) = [[p(x10,2) =] ‘/2% exp <—§n- (yi — zi)2> : (11.3.19)

i=1 i=1

and the prior of 0, z is
p(0,2) = p(zl0)p (0) = | [ p(z:10)p (0)

The posterior density is
p(y10,2)p(0, 2)
p0,zly) =
(®.2ly) p(y)

where
p(y) = /p(y\@,z)p(&,z)d@dz.
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Then, the joint posterior density of 0, z is
p(0,zly)

x lH \/:exp (s — 20)°) \/;exp (—g (2 — 9)2>] \/%exp (-3 0 —m),

and the posterior densities are

Oy ~ N (u° ()",
yiTi + A0 1
) ~ N
Zz|97y ( A ’Ti+>\)

where

_ oA
/’LO: (7-0) 1 <ZT +)\yl—|—7'0,uo

Hence, the posterior mean of 0, z are

i=

0 = u°,
YiTi + Ap?

zi = E[E(z0,y)] = P fori =1,2,...,n

Since {z;};._, are treated as parameters, they are incidental in the sense of Neyman and Scott
(1948). From (11.3.19), the MLE of z; is 2; = y; = 2; + €;. While it is correctly centered at z;,
it is inconsistent because 2; — z; does not go to zero in probability as n goes to infinity. For the

posterior mean z;, we have

_ T ‘ A o_ A o
e Ay Ut Z,Jr)\(yz 1),
and
B A . T n o
Zi— 2 — % €
! ! 7'@'—1-/\Z Ti—l-)\l Ti—l-)\'u
A o T
B 7'z‘-|-/\(zZ M)+Ti+>\gl'

Therefore, the posterior mean Z; is neither centered at the MLE nor consistent. Clearly, both the
standard ML large sample theory and the Bernstein-von Mises theorem fail to hold. These results
are not surprising since only one observation (i.e., y;) contains information about z;.

To compute Pg 4 we use

D(z,0) =

nIHZW—ZlnTi—I—/
i=1

n n T

= nln2r— ) Inx -

nln2m ;nn—kizzln_i_/\
n -1 n

Ti>\ Ti>\2

- tr| +Y ———

I P R e

i=1

n
Son [ - 2 p (al6.y) ds | p OlyXa320)
i=1

(yi — 1°)?.

D(z,0) =

VA
w) (11.3.21)

T+ A

n n
nln2m — Zlnn + ET’i <yi _
i=1 i=1
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= nln?ﬂ'—ZlnTz—kZ +/\ MO)Q'
Tz

Then

PE4 = D(z,6) — D(z,0)
n n -1 n )\
_ T T E T
B ;Ti+>\+<ZTi+>\+)\> ;n+>\n+>\'

i=1
Hence, DICP4 takes the form

pICPY = D(z,0)+ 2,54 (11.3.22)

= nIHQF—ZIHTL—FZ — p°)?
1=1

T,—I—)\

n
+2
(i_lTi—F ZTZ—F)\ )

The KL divergence is

2KL [9 (YTep) y P (YTep|z(Y)a é(Y))] =C+ EyEY'rep [_211119 (YTeplz(Y)v é(Y))] )

where

EyEy.., [—21np(yrep\i( ),6(y))] (11.3.23)

T3 )\ 2
= nln27r—Zlnn+Z <yi,rep_7_i+>\yi_7_i+>\luo> ”
n

= nln2w—;lnri+2;n:\i_)\ T+/\ ( [(yi—uo)ﬂ).

It can be shown that DICP4 takes the form

Tl YTep

n

Ey (DICP4) = rLanW—ZlnTZ—I—Z +A ( (g = n2)?]) (11.3.24)
Tz

(S ety )

i=1

From (11.3.23) and (11.3.24),

By (DICPY) = EyBy,., [-2Inp (yrepl2(y), 0(y))]

n Ti Ti-l—)\ oN— Ti)\
+2<Z(n+)\_ B )HT) 1;@“)2)'

=1

Thus, DICP4 is not an asymptotically unbiased estimator of Ey Ey, ., [—21Inp (yrep|Z(y), 0(y))]
in this case. For illustration, let 7;, = A = 1 and 79 = 0. Then

n
Ti T+ A
- - 15
() <

=1
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As a result, the difference between Ey, (DICP4) and EyEy,., [-2Inp (yrep|Z(y),6(y))] has
order O (n). See the appendix for a detailed proof.

Second, sometimes a statistical model without latent variables can be represented by another
model with latent variables. For example, the model (11.3.8) can be rewritten as (11.3.18) with
latent variables since the observed-likelihood function of (11.3.18) can be obtained by integrating
z from the joint density of y, z conditional on 6, p(y, z|0)

/p(y,z|9)dz :H/p(y¢7zi|9)dzi (11.3.25)
i=1

n
— qu exo (1 Tid (yi — 0)
27r7'1+)\ P 27T+ A Ji

i=1

p(y10)

which is just the likelihood function given by (11.3.8). Obviously, (11.3.22) is different from
(11.3.10) even if the marginal densities, p(y) from these two models are the same. In practice, it is
well-known that the Student ¢ distribution can be rewritten as a normal-inverse-gamma distribution
where the variance is assumed to follow an inverse-gamma distribution and hence, is treated as a
latent variable. For example, the asset pricing model

=B F,+e,2 ~t[0,3, ] (11.3.26)

where R; is the excess return of portfolio at period ¢ with N x 1 dimension, F'; a K x 1 vector
of factor portfolio excess returns, 3 a N x K vector of scaled covariances, ¢; the random error,
t=1,2,---,n, X adiagonal matrix and v = 3, the degree of freedom of ¢ distribution. It can be
shown that (11.3.26) can be rewritten as the normal-inverse-gamma distribution form

= B'F, +e.e0~ N(0,3/w), wwr(’; g) (11.3.27)
where wy is a latent variable. Models given by (11.3.26) and (11.3.27) are identical. If we apply
DIC to the ¢ distribution model and DICP# to the normal-inverse-gamma distribution model, it
often leads to different values even under the same priors, one can refer to Li et al. (2020a) for a
detailed illustration.

Third, DICP4 is usually sensitive to transformations of latent variables since the dimension of
the parameter space is much larger due to data augmentation. Consider the following alternative
model to model (11.3.18)

yi =1nmn; +¢; (11.3.28)

where 7; ~ LN (6, )\_1), gi ~iid IN(0, Ti_l) for i = 1,...,n, n; and &; are mutually independent
for all 7, LN denotes the log-normal distribution. It is clearly that the two models given by
(11.3.18) and (11.3.28) are identical as the logarithm of the log-normal distribution is the normal
distribution. The complete-likelihood function of (11.3.28) is

p(y0,n) = H (y10,m) H\/:eXp< lnm)>-

If the prior of 6 is also N (yi0, 7 1), then the posterior density of 8, 7 is

p(6,1]y)

~ [H \/7 - lnm)2> mj% exp <—% (In7; — 9)2>] \/gexp (—% - uO)Q) .

Hence, we have

Oy ~ N (u° (v°)7"),
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'r]'\Hy - LN(y,;T,;+)\9 1 >

i+ X T4+ A

where

n n
o — (791 _TA o_ Til
p’=(r°) (Zn_i_)\yz+7‘o,uo>,7 —Zn+>\+7‘o

i=1
For i = 1,2, ..., n, the posterior means of 6 and 7); are

7= Bly)=
Bo= Bl =ew (5 ) [ (w0 )|

where )
*0 __ YiTq A *0—1 _ A o\—1
H 7_1_1_)\"1' )\Ma _<TZ—|—>\) (T) .
To compute Pg 4, we have

D(n,0) (11.3.29)

= nln27r—271+z7_+)\
2

i=1

-1

T LS >
+ tro| ) s i
ZTl+/\ <;Ti+/\ 0) z’:l(' 2(1/ M)

=1

= D(z,90).

D(7, 0) can be expressed as ~ ~
D(7,0) = D(z,0) + Cy, (11.3.30)

n n 2 n 4
L Ti A o\—1 1 L o\ —2
St ey () 0 i () o0

i=1

Let P5 and DICY4 be P and DICP for model (11.3.18). Let PS4 and DIC4 be PR,
DIC{?A for model (11.5.6). From (11.3.29) and (11.3.30), we have

PD,n = D(n,0) — D(#},0) = D(z,0) — D(z,0) — Cy4
= PPl -Ca

DICP* = D(i,0) +2PF4 = D(z,0) + Cq+ 2PR4 — 20y

= DICPA — ¢y
For illustration, let 7, = 7, p = #, 70 = 0. Then p° = ¥, 7° = nAp. It can be shown that
1 A 7(1—p)?
Cqy= -
YR R

Clearly, the difference in both Pg 4 and DICP4 is very large (with the order O (n)) between
models (11.3.18) and (11.5.6) although they represent identical models. See the appendix for a
detailed proof.
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DIC;, for latent variable models

For latent variable models, while DICP4 is easier to calculate, it suffers from several theoretical
and practical problems. DIC has rigorous theoretical justification, but it is difficult to compute for
latent variable models since the observed likelihood function cannot be expressed in closed form.
Li et al. (2020a) introduced a new version of DIC (DIC,) for latent variable models which has a
valid justification and is feasible to compute. DICy, is given by

DIC,, = D(8) + 2Py, (11.3.31)
where
P =tr{I(0)V(0)}, (11.3.32)
and
_Plnp(yl®) ., 5

1(6) = V(@) =E [(9—5) (9—0_)/\y}.

0000’
Li et al (2020b) showed that under some regularity conditions, DIC, is an asymptotically unbiased
estimator of EyEy_ [~2Inp (y,ep|0(y))].

Under some regularity conditions, Li et al. (2020a) proved that

1 1 1
PL=P+—=Cip+—-Chp+0, <—2> , (11.3.33)
n n n

1 1 1
DIC;, = AIC+ =Dy 1+ —Dyf, + O, (—2> : (11.3.34)
n n n

where

1 1
Cir = §O11,L - 5012,L, Cyr = —Cop,

5
Dy =Cur+ 1012,L, Dy, = Co1,1, — 202 1, — Ca3 1,

—_— ~ — ~ / — ~
Crup =t | (71,1 (8) o vee (1,1 (9)) ) F10 (6)] .
_ A\ = 2y (A = A\ = oy /AN _ R
Ci2,1 = vec (H;l (0)) H) <9) H,' (0) H) <9) vec (H,:l (0)) ,
A\ = A\ N/ _ ~
Corg =7V (9) ! ( ) ae®) (9) vec (Hgl (9)) :
_ . . A\ — N N
Conp = tr [H,;l (9) e (0)} . Coyp=aD (9) it (9) a0 (9) .
From (11.3.33) and (11.3.34), DIC, can also be regarded as a Bayesian version of AIC and the
effect of the prior on P7, is Cy 1, = —tr [I_{gl (é) (2 <é>]

In the context of latent variable models, while DICP4 is trivial to calculate but cannot be justi-
fied, DIC is justified but difficult to compute. DIC}, solves this dilemma because it is justified and
straightforward to compute. The corresponding deviance is based on the observed-data likelihood
function and the latent variables are not treated as parameters.

To illustrate this idea, let us first consider models given by (11.3.18) and (11.3.28). It can be

shown that
n

-1
~ TiA - " TN
I(0) = —Zm7v(9) = <g PR -I-To) )

1=1

for both models since they share the same observed-data likelihood. Then we have

n

A (= T o
T3 T

=1 =1
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—1
11 A _
= 1_E(EZTZ;—>\) T()"‘Op(” 2).

=1

These two values are close to 1 (the number of parameters in the model) if 79 goes to zero which
means that the prior is vague.

It is important to point out that DIC;, can be computed from MCMC output. While DIC;,
does not treat latent variables as parameters, MCMC output may be obtained based on the data
augmentation technique without affecting the asymptotic justification of DICy,.

DIC for misspecified models

Both DIC and DICy, require that all candidate models be good approximations to DGP (Assump-
tion 10). In many applications, this requirement is too strong. Li et al. (2020a) relaxed this
requirement and proposed a new version of DIC (namely DIC ;) to compare misspecified models.

If a candidate model is misspecified, the expected KL divergence between the DGP and

D (YTep’é(y)) can be expressed as

Ey {2 x KL [g (Yrep) » P (yreplé(y))} } =2C + EyEy,,, [—21np (Y'rep|é(3’))}

= 20+ E, {—21np <yyé(y)> — 2tr {B,, (67) H;! (9;:;)}} +o(1), (11.3.35)

where é(y) denotes the MLE of 62 in the misspecified model and C' is a constant across all
candidate models. As before, we write 6(y) as 6. Based on (11.3.35), Takeuchi information
criterion (TIC) is defined as

TIC = —2Inp (y|é> + 2Py, (11.3.36)

where Py is a consistent estimator of —tr {By, (6%)H, ' (6%)}, see Takeuchi (1976). TIC is

an asymptotically unbiased estimator of the expected KL divergence minus 2C when a candidate
model is misspecified. The penalty term Pr which is a consistent estimator of —tr {B,, (6%) H,! (6%)}
takes the form

Pr = —tr {Qn <é) ! (é)} , (11.3.37)

where H ;! (é) is a consistent estimator for H,,;* (6%), and a heteroskedasticity and autocorrela-
tion consistent (HAC) estimator of B,, (6?) is defined by

a, (8) - 1;; ()5 (8)' s (=7).

where k() is a kernel function and +,, is the bandwidth (Newey and West (1987)). We require

three more assumptions to ensure the consistency and positive semidefiniteness of €2,, (é) and

the consistency of Pr, for more details, see De Jong and Davidson (2000).
Assumption 11: Assume the kernel function k (-) € H, where

E():R—[-1,1],k(x) = k(—z),forany x € R,
H= J23 Nk (@) da < 00, [ 4 (6) dE < oo, ,
k (-) is continuous at 0 and at all but a finite number of points in R

where
—+o00

V(&) = (27T)_1/ k() e®%d.

—00
Assumption 12: The bandwidth parameter v, is an increasing function of sample size n and
_ 1/2
o = 0 (n1/?).
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Assumption 13: The expectation of the score function E (s, (6%)) = 0 for any ¢.
Assumption 11 and 12 ensure that €, (é) is positive semidefinite with probability 1 (An-

drews, 1991), and together with Assumption 10, P = P + o, (1). The Assumptions 1-8 and
11-13 imply that

Q, (é) ~B,(6?) %0

which in turn imply that
Pr+tr{B, (62)H," (o2)} 5 0.

If the model is estimated by a Bayesian method, Li et al. (2020a) proved that nV (5) and
2, (9) are consistent estimators of H,,! (67) and B, (6%), respectively. Hence, DIC is defined
as

DICy = D (0) + 2Py with Py = tr {n€2, (6) V (0)}, (11.3.38)
where 0 is the posterior mean of 0. Li et al. (2020a) proved that DIC,, is an asymptotically
unbiased estimator of EyEy, . [—2Inp (yrep|0(y))] when a candidate model is misspecified.
Under Assumptions 1-9 and 11-12, DIC,; and TIC are asymptotically equivalent, that is

n

1 1
Py = Pr+o, <ﬁ> ,DIC;; = TIC + 0, ( > : (11.3.39)

and

Thus, DICj; can be regarded as a Bayesian version of TIC.

The conditions to obtain the asymptotic unbiasedness of TIC include that the consistency and
asymptotic normality of MLE (Assumption 1-8), and the consistent estimator of —tr {B,, (87) H,! (6%)}
based on MLE (Assumption 11-13). From (11.3.4), the Bayesian posterior mean estimator is con-
sistent and asymptotic normal under Assumption 1-9. And (11.3.39) shows that P, is a consistent
estimator of —tr {B,, (67) H, (6%) } under Assumption 11-13. That is the intuition why DIC);
is an asymptotically unbiased estimator of Ey Ey, . [—2Inp (y,ep|0(y))].

Since DIC); applies to both correctly specified and misspecified models while DICy, applies
only to correctly specified models, it may be attempting to use DIC,, rather than DIC, to select a
model. However, DIC,; requires the Fisher information matrix, while is usually easier to compute
than the Hessian information matrix required by DIC; ..

11.4 Concluding Remarks

In this chapter, we provided an overview of some approaches developed in recent years for speci-
fication testing and model selection. For specification testing, we summarized two posterior-based
tests proposed by Li, et al. (2018) and their asymptotic properties; the first method is the posterior-
based version of 10S 4 test and the second method was motivated by the power enhancement tech-
nique. For model selection, we provided an overview of the well-known DIC and its extensions,
such as DICy, for latent variable models and DIC ; for misspecified models. We showed that these
approaches not only have good theoretical properties, but also are reasonably simple to compute
from posterior output. Hence, with the advance of MCMC and SMC techniques and expanding
computing capabilities, these approaches can be applied for a variety of complex models, espe-
cially latent variable models. We also illustrated the problem with the commonly used calculation
of DIC in practice based on the random effect model.
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11.5 Appendix

11.5.1 DICP for the random effect model (11.3.18)

The joint posterior density of 6, z is

TiYi + A0 2 TiY; + A0 2 7',-yz2 + \0?
24— — -
i+ A T+ A T+ A

(6, zly) (11.5.1)
i=1
o (<22 (0 w?)

75 A A T

oS [ \ s ex p )2) \ 5. exp <—§(Z¢—9)2)] g—;exp <—50(9—uo)2)
1 n

— exp{—§Z(Ti+/\)
i=1 1

o exp{ 22[(7'14-/\)2 —2(lel+/\9)zz+ﬂyl+)\92]}exp (—%(ﬁ—po)z)
i=1
2 i+ A — ’Tl—l—)\

}

X exp (—% (0 - uo)Q)

— e i_n—i—/\ Z‘_Tiyi—kx\@ 2 _l TiA 0)°
pot 2 ' Ti + A 27+

xexp (= (0= m)’).

<
S

Then the density of z; conditional on 6,y is

(11.5.2)

i + A0 1
Zi‘evyNN<Ty+ )

Ti+XN T4 A

The posterior density of € conditional on y can be obtained by integrating out z from (11.5.1)

p(0ly) o exp{—il;TﬁA(yz—@) }eXp (—2 (0 — po) )

T
x exp{—§ (ZTi+)\+TO>H _2<;Ti+)\yZ+TOHO>9]}’

that is,
Oly ~ N (u°, (7°)71), (11.5.3)
where
" LY
o __ oy—1 . _ ?
p’ = (7°) (; )\yﬂrTo#o) - TL+/\+ 0
From (11.5.2) and (11.5.3), we have
0 = u,

_ Tiy; + A0 TiYi + Au’
= E|—| ==
T+ A T+ A
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To compute DICP4, we have

n
D(z,0) = nanW—Zlnn—i—/

= nln2r— Zlnﬂ

iyl

= RIHQW—ZlnTZ‘
iTi + A0 2
2.7 <y_y:T> Z )

o
i=1

= nln27r—Zlnn—|—Z

n

i=1

T+ A i+ A

n

p(0ly) do

=1

ZTZ/(% - Zi)QP(Ziw?}’) dzi] p(Oly)do

YiTi +)\9
T+/\+Z < ) p(0)y)de

e) p (Oly) d6

A
= n]nQW—ZlnT,—i—ZTl_’_)\-l—ZTz/( lez—:z)\ —

iTi + A0 4\ 2
Zn/ < YiTi + 4 YT T A0 zi> p(zl0,y) dzi] p(0]y) do

2
_ nln27r—Zlnn+Z7_+>\+Z /( S —0) plo)as

= nanW—Zlnﬂ—l—Zﬂ_'_)\ Z T@—i-/\ / i—9)2p(9|3’)d6'

=1

T N2
SR I g +Z’—)2/<yi O~ 07 p(Oly) o
=1 =1

(Ti—|—>\

i=1

n n
T
= nhn2r— ) In7 :
nln2m ZDTH-ZTH_)\
=1 1=1
n n

TiA2 o1 Tid\2 o2
+Z(—2(7) +Zm(yz’—ﬂ) ;

— (7 —i—)\) i1

0 = " T A 2
D(z,0) = nlnzw—ZmTﬁEn(%_%)
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= nln27T—Zln7‘l+Z T—I—)\ ,UO)Qa

PRA = D(z,0) — D(z,0)

(11.5.4)
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= nln27T— 1n7'—|— — p°)?

(n + A Zr,JrA )

Note that
EyEyrep [_2lnp (yreplz( ) g( ))] (1155)
Ti A o ?
= "1112”—21“71*2 Tiky Byrer (ym@p_Ti—i-Ayi_Ti-l-)\M)]
T /\ 2
= nanﬂ'—;lnTi‘l‘;Ti Ey | Ey,,, (yi’rep_Ti-i-)\yi_Ti-i-)\MO)
n n " Y 2
= nln2r— Inr; + T | By | E n )
Z 7 Z 7 Yrep < _I_e_#‘r_)\yi_ﬁluo
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n n
= nln27r—ZlnTi—l—Zle\_/\
i=1 i=1
n T by 2
iE 9— Ly — e
#3025
A
= nln27T—ZlnTL+ZT+ +Z7'iEy
i=1
= nanW—ZlnT—FZTH_)\
= A 5 2 3
n TA2
+ ~E |:9 1]_|_ 1—E[i_02:|
Z Y ;(Ti+)\)2y(y ue)

= HIHQW—ZIHTL+ZTZ+)\

i+ A & Ti)\Q o
+Z Engy [(yi—uﬂ,

(9 yﬁ%( '—u")>2]

where we have used the fact that y; ~ N (9, Ti_l + /\_1) and y; rep ~ N (9, Ti_l + /\_1).
From (11.5.4) and (11.5.5), we have

Ey (DICDA) = EyEBy., [~2Inp (yreplZ (v),0 ()] + QZ (7'7——!- A . A )
i=1 !
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11.5.2 DICP“ for the random effect model with the log-normal distribution (11.3.28)

The complete-likelihood function is

n n p 1
i) = T[pt316.0) =TT 32 00 (57 - am)?)
=1 =1

Since the prior of 6 is N (uo, 7, 1), the posterior density of 8, 7 is

p(6,1ly) (11.5.6)

N 1_[1\/:6 T —177@)>\/T p<_é (s — 6) )]\/>exp ™ (-

. \/;\/; D =) = 2 (- 0)? )]\/7 p (<200 - w0y

- \/; \/; — n—i—z\)(lnm)Q—2(n~yi+/\9)lnm+nyi2+>\92]>]
\/:exp(——e u))

\/Q:exp(——w uo))

- [H n22r 27; (

In Tyt A0 2_ Tiyi + A0 2+Tiy12—|—)\92
’ Ti + A Ti + A Ti + A

ﬁ (——9 o) )

p(Oly) = /p(ﬁ,nly)dﬁ (11.5.7)

n
L A 2\ [Ho 0 2
> ,HeXp( S 9)>\/ 27reXp( > "/0))'

From (11.5.6) and (11.5.7), the posterior densities of ¢ and 7; can be written as
Oy ~ N(u(r)"),

ym—i—/\ﬁ 1
10,y ~ LN
milf,y ( TiEA T

Ho) )

)
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where
o on—1 " omA o “omA
p’ = (7 Z +)\7/1+T0/t0 :i:ZITi+)\+TO7
and 0
YiTi + 1
E(n|0,y) =
1 YT + A0 1
Var (n;6, = |ex — 1] exp | 2- +
(716, y) [ p(n—l—k) ] p< Ti + A (i + )
oo (55) = oo (g oo (2550)
= J|ex —1]|ex ex .
PAm+a PAEN) P Um0
The posterior mean of § is § = E(f|y) = u°. The mean of 7; conditional on 6,y is
YiTi + A0 1
E(n|0,y) = .
Then the posterior mean of 7; can be expressed as
_ 1 YiTi + A0
= F[E (n;]6 = — | F - , 11.5.8
i = E[E (1:]0,y)] = exp (2(Ti+)\)) [exp( e (11.5.8)
fori =1,2,...,n. Note that
yiti+ M i A 0
Ti+ A Ti+AN TN
Then 0
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Ti + )\ |y (/"L 9 T ) 9y
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xo _  YiTi A o _xo—1 _ A o\—1
S S U (n+A> )
since O]y ~ N (p2, (7°)~1). Hence we have
YiTi + A0 x0 _x0—1
e ~ LN .
p ( Y ) ly (w0, 77t
Then, from (11.5.8), we have
i = exp o exp | ™+ 17'*0_1 ) (11.5.9)
2 (Ti + )\) 2
To compute P24, we have
D(n, )
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nln27r—21n7‘i +/
nln 2w — Zlnﬂ
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(11.5.10)
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nln27r—21n7‘1—1—27'1/
nln27r—Zlnn+ZTi/(yi—
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TZ—FA

which is the same as D(z, 0). And D(7, 0) is
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Then, by (11.5.11), we have
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_Zn: Ti A 2(7_0)—1 _ 12":7_ A 4(7_0)—2
i:12(7—i+)\) T+ A 4i:1 ! T+ A ’
DICP4 = D(#,0) 4+ 2P5A.
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