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Fractional Brownian motion is a continuous-time zero mean Gaussian process with stationary
increments. It has gained much attention in empirical finance and asset pricing. For example,
it has been used to model the time series of volatility and interest rates. This chapter first
introduces the basic properties of fractional Brownian motions and then reviews the statistical
models driven by the fractional Brownian motions that have been used in financial economet-
rics such as the fractional Ornstein-Uhlenbeck model and the fractional stochastic volatility
models. We also review the parameter estimation methods proposed in the literature. These
methods are based on either continuous-time observations or discrete-time observations.
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166 7. FRACTIONAL BROWNIAN MOTIONS

7.1 Introduction

Continuous-time processes driven by the standard Brownian motion are widely used to describe
the price dynamics of financial assets or portfolios since the celebrated works of Black and Scholes
(1973); Merton (1973). Even though the option pricing model from Black and Scholes (1973)
remains one of the most successful methods for pricing European options, the assumptions of the
independence of asset returns (e.g., Greene and Fielitz (1977); Willinger et al. (1999)) and the
constant volatility of stock returns (e.g., Comte and Renault (1998); Corlay et al. (2014)) are too
strong to be true.

To explain the dependence properties of asset returns, Mandelbrot and Van Ness (1968) intro-
duced fractional Brownian motion (fBm) that models the dynamics of stock prices. If the standard
Brownian motion is replaced with the fBm in the Black-Scholes model, the resulting model is a
geometric fractional Brownian motion (gfBm) that was shown to be more in line with the behav-
ior of stock markets in Cont (2001). Unfortunately, fBm is considered inadequate for modeling
stock returns because it is not a semimartingale when the Hurst parameter H # % Consequently,
the arbitrage opportunity in the fBm-driven Black-Scholes model and approaches to remove arbi-
trage in the context of fBm have been extensively investigated in the literature, including Rogers
(1997); Sottinen (2001); Cheridito et al. (2003); Elliott and Van Der Hoek (2003); Bjork and Hult
(2005); Rostek (2009). Additionally, when using the fBm in financial modeling, one must define
an Itd-type formula and a risk-neutral measure, which is also true for Brownian motion.

Dedicated to fBm, Duncan et al. (2000) is the first study that proposed the Wick product ap-
proach to defining fractional stochastic integrals with respect to fBm, called the Wick-It6 integral.
Hu and @ksendal (2003); Elliott and Van Der Hoek (2003); Hu et al. (2003) extended the idea of
the Wick product and developed a fractional white noise calculus that is applied to option pric-
ing and portfolio optimization. However, at the same time, severe critiques arose concerning the
economic meaning of Wick products (e.g., Bjork and Hult (2005)).

To explain the stylized facts in the implied volatility surface (e.g., volatility smile and skew),
many stochastic volatility models have been developed in the literature, including Hull and White
(1987); Scott (1987); Stein and Stein (1991); Heston (1993); Bates (1996); Duffie et al. (2000);
Schobel and Zhu (1999). More details regarding these stochastic volatility models can be found
in Fouque et al. (2000). Both academics and practitioners have recognized the importance of the
stochastic volatility models mentioned above for pricing options; see Bakshi et al. (1997) for an
example. Nevertheless, none of these stochastic volatility models are problem-free. One of the
key disadvantages among all the aforementioned stochastic volatility models is that the volatility
process is driven by the standard Brownian motion. Therefore, the autocorrelation function of
the volatility exponentially decays. However, many empirical studies argue that the decay in the
autocorrelation function is better modelled by a power function. Unsurprisingly, in the discrete-
time volatility literature, Baillie (1996); Baillie et al. (1996); Andersen et al. (2003); Shi and Yu
(2022) proposed the autoregressive fractionally integrated moving average model for volatility.
In the continuous-time volatility literature, Comte and Renault (1998); Ait-Sahalia and Mancini
(2008); Comte et al. (2012); Bayer et al. (2016); Gatheral et al. (2018); Bennedsen et al. (2021);
Liu et al. (2020) proposed models based on the fBm for volatility.

As a non-stationary process, the fBm is not suitable for modeling stationary time series. Con-
sequently, the fractional Ornstein—Uhlenbeck process (fOUp) and the fractional Vasicek model
(fVm) were developed to model stationary financial time series such as volatility and interest rates
(see, for example, Comte and Renault (1998); Fink et al. (2013); Ait-Sahalia and Mancini (2008);
Comte et al. (2012); Bayer et al. (2016); Gatheral et al. (2018); Bennedsen et al. (2021); Bolko
et al. (2022)). Recently, an econometric analysis of the fOUp and fVm has received considerable
attentions, including parameter estimation and asymptotic theory.

This chapter first introduces the basic properties of fractional Brownian motion and then re-
views the fOUp, fVm, and stochastic volatility models driven by the fBm. We also review the
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parameter estimation methods proposed in the literature and the associated asymptotic theory.
The estimation methods are based on either continuous-time observations or discrete-time obser-
vations.

The remainder of the chapter is organized as follows: Section 7.2 reviews some basic prop-
erties of the fBm, fOUp, and fVm and discusses their application when modeling financial time
series. Section 7.3 summarizes some well-known stochastic volatility models driven by Brownian
motion and by the fBm. Section 7.4 reviews alternative estimators of the drift parameters in the
fVm based on continuous-time observations. Section 7.5 reviews the generalized method of mo-
ments (GMM) for the fVm based on discrete-time observations. Section 9.5 provides conclusions.

7.2 Fractional Brownian Motion and Related Stochastic Processes

7.2.1 Fractional Brownian Motion

It is well known that standard Brownian motion has independent increments that are normally
distributed. As a generalization of standard Brownian motion, the fBm is self-similar and its
increments are normally distributed and stationarity.! In this section, we present the definition
of the fBm and introduce some of its basic properties by comparing it with standard Brownian
motion.

The fBm was first introduced by Kolmogorov (1940) in 1940, and then Mandelbrot and
Van Ness (1968) provided its stochastic integral (moving average) representation and obtained
many of its properties. The definition of the fBm is as follows:

Definition 7.2.1 Consider probability space (Q, F,P) and let BY be an fBm in this space. Then,
a standard fBm is a centered and continuous Gaussian process with the Hurst parameter H €
(0, 1), which has stationary increments and the following covariance function

1
E (BIBY) = Ry(s,t) = 5 ([ + s — [t — s (7.2.1)
witht, s > 0.

From Samorodnitsky and Tagqqu (1994), we can see that the variance-covariance matrix im-
plied by Equation (7.2.1) is non-negative definite, and hence, Equation (7.2.1) is a proper co-
variance function. In Equation (7.2.1), the coefficient H is known as the Hurst parameter and
is named for British climatologist H.E. Hurst, who proposed the classical test to detect the long
memory phenomenon of reservoir control near the Nile River Dam (see Hurst (1951)). We can
obtain the standard Brownian motion by setting H = %, and in this case, the covariance function
becomes min{¢, s}, which is the covariance function of the standard Brownian motion. Some
important properties of the fBm are provided by the following proposition.

Proposition 7.2.1 The fBm has the following properties:
(i) B ~N(0,t2H).
(i) E (B — BE)? = |t — s|*" fort,s > 0;

(iii) For any s,t > 0 we have E | B} — B ’2 = |t — s|*. In particular, the fBm has 6-Holder
continuous paths for any § < H.>

'A process X = (Xf,)t>0 has stationary increments if we have X, — X 4 Xpn — Xo forevery h,t > 0.

*For a process X : [0,+00) x Q — Rif for all T > 0, there exist o, 3, C' > 0 such that E [| X; — X,|*] <
Clt — s|1+’6 ,V0 < t, s < T, then there exists a version of X, which is Holder continuous of order v € [0, g) almost
surely.



168 7. FRACTIONAL BROWNIAN MOTIONS

. . _13
(iv) The fBm is not a Markov process except that H = 5.
(v) The fBm exhibits long-range dependence if H > % and is a short-memory process if H < %.4

(vi) Let m, = {tk = 2% :k=0,..., 2"} be a partition of [0, 1] and n € N. Then, we have

n » 00, if pH<1,
. H H _ H|P . _
lim :‘Btk ~ Bl BB, if pH=1, (12.2)
k=1 09 lf pH > 17

in probability.

(vii) The fBm is not a semimartingale.

H bés
B, —B;
t—s

:oo>:

(viii) The fBm is nowhere differentiable. That is, for every s € [0, 00|, we have P (lim SUD;_y s
1.

Using the properties provided in Proposition 7.2.1, the fBm can be represented as an integral
of a deterministic kernel with respect to standard Brownian motion. In the literature, there exist
several representations of the fBm as a Wiener integral, which can be described as follows:

(i) Mandelbrot and Van Ness (1968):
o0 _1 _1
B :/ {(t—u)f 2 (—u)! 2}dBu

—0o0

= % {/0 (6= )75 — (—w) T | B, + /0t<t - u)H‘%dBu} :

—0o0

1
2

2
where (z)1 = max(z,0), cg = [% + [ ((1 S sH_%) ds] and B, is a
standard Brownian motion.

(ii) Samorodnitsky and Taqqu (1994):

1 et —1 1
Bl — ( / i H-3)gB ) .
t Cy(H) Jp iz 2] r teR

where i = /—1, Cy(H) = AT s ad T (+) denote the gamma function.

(iii) Norros et al. (1999):
¢
Bﬁ:/ 2p(t, s)dBs,
0

where B; is a standard Brownian motion and the deterministic kernel is

aH< - (H-3) s3—H fst utl=3 (u— s)H_%du

+

zult,s) = ()72 (t—5)"2 | for H e (0,1)

Wl

2HIT'(3—H) )

and ay = (F(H+%)F(2—2H)

R(s,t)R(t,u) for

A Gaussian process X with covariance function R(s,t) is Markovian if and only if R(s,u) = yTE0)

every s <t < wu.
*A process X exhibits long-range dependence (or it is a long-memory process) if > onsopH(N) = 00, Where
pu(n) =E (X1 — Xo) (Xnt1 — Xn). Otherwise, if > rn < 0o, we can say that X is a short-memory process.
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A more detailed description of the representations can be found in Nourdin (2012). It is
well known that the Hurst parameter H determines the main properties of the fBm such as self-
similarity, regularity of sample paths, and long memory. Therefore, the fBm has been employed in
different fields exhibiting long-range dependence and anti-persistence, including hydrology, biol-
ogy, medicine, traffic networks, economics, and finance, among others. In financial mathematics,
the fBm was first introduced to model stock price since a large number of empirical studies of fi-
nancial time series have found long-range dependence properties in asset returns ( e.g., Greene and
Fielitz (1977); Lo and MacKinlay (1988); Willinger et al. (1999); Cont (2005)). It has been sug-
gested as a replacement for Brownian motion in the geometric Brownian motion model for stock
prices. Consequently, some option pricing models have been proposed to extend the classical
Black-Scholes model, such as Hu and @ksendal (2003); Elliott and Van Der Hoek (2003); Elliott
and Chan (2004); Mishura (2008); Rostek (2009). However, since the fBm is not a semimartin-
gale when the Hurst parameter H # %, there exists an arbitrage opportunity in the fractional
Black-Scholes model. In the literature, Rogers (1997) first stated that the fBm is an unsuitable
candidate for usage in financial models. In fact, for all Hurst parameters H # %, Rogers (1997)
derived the existence of arbitrage possibilities in a fractional Bachelier type model. Then, Sottinen
(2001); Cheridito (2001); Bender and Elliott (2004); Bjork and Hult (2005) demonstrated that the
Black-Scholes model driven by the fBm allows arbitrage in a number of ways.

To exclude arbitrage, a new stochastic integral of the fBm, namely the Wick integral, can
be used (see Duncan et al. (2000); Hu and @ksendal (2003); Hu et al. (2003)). From a purely
mathematical point of view, the Wick integral, which was proposed by Hu and @ksendal (2003);
Hu et al. (2003), is formally correct and accurate. However, until now, no reasonable economic
interpretation for the Wick integral has been provided.

Fractional Gaussian noise (fGn), which is the stationary increment of the fBm with mean zero,
can be defined as Gf7 = B}T, — B} witht € Z*. Using (7.2.1), we can easily obtain that the
covariance of G}’ and Gﬁ_ i 18

1
Cov (G, GI,) = a(k) = 5 (| + 127 + |k — 12" —2]k*"), kez, (7.2.3)

where H € (0, 1) is referred to as the Hurst exponent and is a measure of the long-term correla-
tion between the discrete time points. Using the Taylor expansion, we can obtain the asymptotic
behavior of v (k). Let yg(k) = k2" g (k7') with g(z) = (1 +2)*" =2+ (1 — 2)?. If
0< H<1land H # %, then the first non-zero term in the Taylor expansion of g(z), expanded
at the origin, is equal to 2H (2H — 1)x?. Therefore, as k tends to infinity, vo(k) is equivalent
to H(2H — 1)k*=2, which implies that the covariance function of the fGn has a power-law de-
cay. The result of (7.2.3) implies that the fGn reduces to uncorrelated white noise when H = %
When H > % the fGn has a positive correlation reflecting a persistent autocorrelation structure.
Similarly, the covariance is negative when H < %, and the resulting process is then referred to
as being anti-persistent. Note that, for H = 1, (7.2.3) implies g (k) = 1. Thus, all correlations
are equal to 1 no matter how far apart in time the observations are. This case is hardly of any
practical importance. For H > 1, we can see that g (k‘l) diverges to infinity. This behavior con-
tradicts the fact that p(k) must be between —1 and 1. As a consequence, if covariances exist and
limg 00 7a(k) = 0, then 0 < H < 1. For % < H < 1, the process has long-range dependence;
for H = %, the observations are uncorrelated; and for 0 < H < %, the process has short-range
dependence and the correlations sum to zero. Some important properties of the fGn are provided

by the following proposition, whose proofs can be found in Beran (1994).

Proposition 7.2.2 The fGn has the following properties:
(i) The spectral density is

fo (0 H) = sin(mH)I' (2H 4+ 1) (1 — cos (N)) Z A 2| 21
m JEZ
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which has a pole at A = 0 and asymptotic behavior
faNH)~O (N2 as A—0.

In particular, if H € (0,1/2), then f¢(\;H) — 0as X — 0and if H € (%,1),
fa (M H) = ooas A — 0.

(ii) For large lags k, the behavior of the autocorrelation function (7.2.3) is
va(k) ~ H (2H — 1) k*!'2 (7.2.4)

as k — oo, which implies that

Z”/G(k) = 00

keZ
for H € (3,1).

(iii) Forall H € (0, 1), we have GI' ~ N(0,1) and
G — GE ~ N (0,2 — [t — 122 — [t + 127 4 2)¢[*)

Moreover, we have G — GIT = N(0,2) as t — oc.

7.2.2 The Fractional Ornstein—Uhlenbeck Process and the Fractional Vasicek Model

Based on the discussion in the subsection above, we can see that difficulties arise when using the
fBm to model financial asset returns. However, using the fBm to model the time series of volatility
or interest rates is fruitful. In fact, a popular statistical model is the fVm, which extends the fOUp.
Both the fOUp and fVm are driven by the fBm.

As a solution to the Langevin stochastic differential equation with the fBm, the fOUp was
proposed by Cheridito et al. (2003) and can be defined as follows:

dX; = —kXdt + odBl, (7.2.5)

where x, 0 > 0.
Using the path-wise Riemann-Stieltjes integral, Cheridito et al. (2003) obtained a unique path-
wise solution to Model (7.2.5) as

t
X, =e " Xy+o / e~ t=)qBH (7.2.6)
0

where f(f e*“(t*S)dBf is a Wiener integral with respect to the fBm. One can also rewrite the
unique solution to (7.2.5) as

t
X, = Xoe "+ Une_”t/ e“stdS + O’Bg{. (7.2.7)
0

The representation is obtained via integration by parts, that is, f(f e"dBl = —x Ot e Bl ds +
e BH,

Here, we review some important properties of the fOUp using the following proposition:
Proposition 7.2.3 The fOUp has the following properties:

(i) X, is H'older continuous with H’older exponents v € (0, H).

(ii) Let 3 be the class of nonnegative random variables (. Then there exists C' > 0 indepen-
dent of M such that Eexp {wCQ} < oo for any 0 < x < C such that supgs<;|Xs| <
(C’e"‘s + st 1og? s) ¢
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(iii) The random variable X; has a normal distribution with mean Xoe™ "' and variance Var X; =
Hf(f 21 (e_”‘s + e"‘(Qt_S)) ds. Moreover, if k < 0, then Var X; ~ ’{_ng}’}e—m ast — oo.

If kK > 0, then Var X; — HES{H) ast — oo. When k = 0, Var X; = t2H fort > 0.

(iv) For k <0, e X, — Xo — & [}° *Bds ~ N (Xo, ?_F—gir)) a.s. ast — oo. For k > 0,

T fOT X2dt — HE%H) a.s. as T — oo.

(v) Let k > 0. Then, for any p > 1, there exist positive constants ¢, and Cy, such that E | X;|V < ¢,
fort > 0and E|X; — Xs|P < Cplt — s|PH for |t — s| < 1. Moreover; for any s,t € [0,T), we
have EX; X, < Ot — s|?H~2,

(vi) Let H € (0,1) andt > s > 0. Then, the covariance function of the fOUp is

Ho? t—s " t "
Cov (Xt7 Xs) — 5 < _ e—nt—l—ns / emzzQ _ldz + ent—/{s / 6_&22’2 _1dz
0 t—s

ot "5
_e—Krt—HS / enzZZH—le + e—ﬁt—&—ns / e—erZQH—ldz
s 0

t
+2e—ﬁjt—K,S/ eKZZQH—le) .
0

(vii) For H # %, N =1,2...and s > 0, the asymptotic relation for the covariance function is
provided by

N
Cov(Xg, Xott) = — Z

Now, we consider the stationary fOUp. When x > 0, under the assumption of the initial
condition o "
~ ~ B for s >0
— KS H . H __ s =
Xo—,u—i-a/ e™dB;" with By _{WH for s <0

—oo |s|

(7.2.8)

where I/V‘ﬁ is another fBm that is independent of B!, and B H is a two-sided fBm. In this situation,
we obtain

t
Y= p+ a/ e~M=)aBH = X — (1—e7™) i — Xoe ™™ + 7MYy (7.2.9)

—0o0

A standard but tedious calculation yields

2 t—s
Cov (Yt7Y'S) = H_U (F (31{’{) e_K(t_S) _ 6—#6(15—8) / e, 2H-1 1
2 K 0
‘+OO
+en(t—s) / e—m:ZZH—ldz 7 (7.2.10)
t—s

which implies the stationarity of the process Y;.

Let 7 = ¢t — s. To show the ergodicity of the Gaussian stationary process Y3, it suffices to show
that its covariance function Cov (Y3, Y) vanishes as 7 tends to infinity. According to (7.2.10), the
change of variables, and integration by parts, we have

HUQ —KT —KT . y, 2H—1 KT e -y, 2H—1
Cov (Y3,Ys) = 52H [(2H)e "™ —e ey dy + e e Yy dy
0 KT
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H(2H—1)o—2(—m KT
< = (% +(

2H—2
S 7) 1 (m_)QH—2> L0 (e—rm')

which converges to zero as 7 — oo and implies the ergodicity of the Gaussian stationary process
Y;.

In fact, when x > 0, Cheridito et al. (2003) have shown that when H # %, Y; in Model (7.2.9)
is an ergodic stationary Gaussian process where the autocorrelation function is

N 2n—1
Cov (Y}, Yips) = %02 > ke ( 1 2H - k)) s L O (2H72N=2) 1 (7.2.11)
k=0

for fixedt € R, s > oo, and N =1,2,....

From Equation (7.2.11), we can see that the decay of the covariance function of a stationary
fOUp when H # % is like that of a power function. Equation (7.2.11) also shows that for H €
(0,3)U(5,1] ,, the decay of the stationary fOUp is very similar to the decay of the fGn defined by
(7.2.4). In particular, (Y;),p is ergodic, and for H € (%, 1], it exhibits long-range dependence.

Since a stationary fOUp has a mean of zero, to construct a good candidate model for volatility
and interest rates, a natural extension of the fOUp is the fVm, which adds the long term mean to

the fOUp.
dX; = (pn— X;) dt + 0dBl, (7.2.12)

where 0 € R*, k € R, u € R, the initial condition is set at X, and Bf[ is an fBm with Hurst
parameter H € (0, 1).

The key difference between Model (7.2.12) and Model (7.2.5) is that y is assumed to be zero
and known in Model (7.2.5), while p is unknown in Model (7.2.12). The fVm inherits all the
important properties of the fOUp reviewed in Proposition 7.2.3.

7.3 Fractional Stochastic Volatility Models

Model (7.2.12) has been used to model realized volatility (RV) in the literature (e.g., Gatheral et al.
(2018); Wang et al. (2021)). However, when the volatility is latent, Model (7.2.12) alone cannot
be a complete model and an observation equation is needed. This modelling strategy leads to a
class of fractional stochastic volatility models.

This class of fractional stochastic volatility models extends the class of standard stochastic
volatility models driven by standard Brownian motion in the volatility equation. Before discussing
the fractional stochastic volatility models, we first review some famous stochastic volatility models
driven by Brownian motion.

A general representation of the continuous-time stochastic volatility model driven by standard
Brownian motion may be written as

{ dSy/ Sy = pdt + S) f(Vi)[V/1 — p2dW, + pdZ), 73.1)
dVi/ Vi = B(Vi)dt + g(Vi)dZy, -

with independent standard Brownian motions W, and Z,. The probability space is denoted as
before by (€2, F,P). Here, S; > 0 denotes the price of the (traded) asset and V; > 0 is the
(non-traded) stochastic local return variance. Model (7.3.1) allows for level (also known as scale)
dependence (v = 0) and correlation between returns and variance (p = 0). As shown in Table
7.1, Model (7.3.1) is the generalization of the most of commonly used models (without the jump
component) in research as well as in practice.

One of the key assumptions among all the aforementioned stochastic volatility models is that
the drivers are standard Brownian motions. As irregular as the paths might look, Brownian motion
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Author(s) (year) Specification Remarks
f(v) = v, (U) = 0, Instantaneous variance:
Hull and White (1987) gv) = o,p =0,y = Geometric Brownian motion.
0. . Options priced by mixing.
fv) = 6(29’_11) Instantaneous  volatility:
Wiggins (1987) Blv) = =5, The Ornstein-Uhlenbeck
g(v) =op=07= j logarithms.
) = [:ée’_v) The instantaneous volatil-
Stein and Stein (1991)  B(0) =~ ity: Reflected Ornstein-
g(v) = G.p = 0,7 = Uhlenbeck.
(}(U) V0, Instantaneous .Volatlhty:
B(v) = k(0—v) CIR process. First model
Heston (1993) g(v) = = v with correlation. Options
- Vo’ priced by the Fourier

pe [_171]77 =0.

inversion

Romano and Touzi (1997)

f, B and g free,
pE [_17 1]77 = 0.

Extension of mixing to
correlation

Schobel and Zhu (1999)

Fo)=1ol,
Blv) = "0,
g(v) =7,

pE [_171]77 =0.

Stein and Stein model
with correlation. Options
priced by the Fourier in-
version.

Hagan et al. (2002)

fw) = v, Bv) =0,
g(v) =0,

p € [_1)1]7’7 €
[—1,1].

Level dependence in re-
turns. Options priced
by the perturbation tech-
nique.

Table 7.1: Specification of stochastic volatility models for Model (7.3.1)
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has independent increments. As a result, the ACF of V; decays at an exponential rate. To gener-
ate the power function for the ACF that is not absolutely summable, Comte and Renault (1998)
proposed the first fractional stochastic volatility model in continuous-time

{ dSt = ’I"Stdt + UtStth s (7 3 2)

dln(o;) = K (p—1In(0y)) dt + od B},

where B! is an fBm with the Hurst parameter H. To ensure the ACF of In (Uf) is not absolutely
summable, Comte and Renault (1998) assumed H € (3,1).

Comte and Renault (1998) considered the option pricing problem in the long memory volatility
environment of Model (7.3.2). Since the closed-form solution for option pricing does not exist,
Comte and Renault (1998) provided discrete approximation to fVm Model (7.3.2) and computed
option prices based on Monte-Carlo simulation. Comte et al. (2012) investigated the option pricing
model by introducing a long-memory extension of the Heston model via the fractional integration
of a usual square root volatility process, which has the power decay feature in the large-time limit
for the autocovariance function of the volatility process. Both models in Comte and Renault (1998)
and Comte et al. (2012) assume that the return process is independent of the volatility process. Due
to the complex structures of long memory stochastic processes, Comte and Renault (1998); Comte
et al. (2012) cannot derive the analytical formulae for pricing standard options but introduce some
discretization schemes and price options using Monte-Carlo simulations.

Moreover, Chronopoulou and Viens (2012a,b) introduced the following fractional stochastic
models:

{ dSt/St =rdt+o (Xt) dW,,
(7.3.3)

dX, = o (m — X;) dt + BdBH

where 0 (X;) = VXy, 0 (Xy) = |Xy|, 0 (X;) = €', and H > 1. In the long memory volatil-
ity framework, Chronopoulou and Viens (2012a) used an interacting particle stochastic filtering
algorithm to estimate the fractional stochastic volatility model of Comte and Renault (1998) and
constructed a multinomial recombining tree to price options. Chronopoulou and Viens (2012b)
implemented a particle filtering algorithm to estimate the fractional stochastic volatility model of
Comte and Renault (1998) and constructed a multinomial recombining tree to price options.
Recent empirical studies have documented the roughness of volatility both in realized volatil-
ity and implied volatility (e.g., Bayer et al. (2016); Gatheral et al. (2018); Livieri et al. (2018);
El Euch and Rosenbaum (2019); Bennedsen et al. (2021)). More precisely, Gatheral et al. (2018)
calibrated the parameters in the fVm using the implied volatility surface of options based on the
S&P 500, showing that the Hurst parameter of the volatility is close to 0.1. This result indicates
extremely rough paths for the volatility process; these paths are much more irregular than those of
the standard stochastic volatility models driven by Brownian motion. Livieri et al. (2018) found
that at-the-money short term volatility from the S&P 500 options is also rough. More empirical
studies confirmed that the roughness of the log-volatility for thousands of stocks was investigated
by Bennedsen et al. (2021). Therefore, both the realized volatility and the option-implied volatility
have recently been shown to be rough. Thus, modeling rough volatility is becoming increasingly
popular and has important applications in finance because rough volatility models can describe
the volatility skew, which is defined as the derivative of the implied volatility surface under the
Black—Scholes—Merton model with respect to the log-strike price evaluated at-the-money.
Model (7.2.12) can describe both the mean reverting property and the roughness of the volatil-
ity. Consequently, the fVm has become the usual candidate for capturing some phenomena of
the volatility of financial assets (e.g., Comte and Renault (1998); Ait-Sahalia and Mancini (2008);
Comte et al. (2012); Bayer et al. (2016); Gatheral et al. (2018); Bennedsen et al. (2021); Bolko
et al. (2022)). The fVm is an extension of the Vasicek process with the fBm driving term. In
finance, it has been used as a one-factor short-term interest rate model (e.g., Fink et al. (2013))
or financial asset volatility model (e.g., Comte and Renault (1998)) for more than two decades.
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In Model (7.2.12), k (1 — X;) is the drift function and contains two unknown parameters, ; and
k. Parameter x determines the persistence in X;. Depending on the sign of x, the model can
capture stationary, explosive, and null recurrent behavior. The fVm has been used to describe the
dynamics of volatility in a large set. The development of the application for the fVm naturally led
to statistical inference for this model. Consequently, estimating the drift parameter in the fVm has
been of great interest in the past decade, and it is a challenging theoretical problem. In the follow-
ing two sections, we consider parameter estimation for the fVm based on continuous observations
and discrete-time observations individually.

7.4 Estimation Methods based on Continuous-Time Observations

Despite the many applications of the fVm in practice, the statistic inference for the fVm has
received little attention. For the special case of the fVm, the so-called fOUp provided by Model
(7.2.5), we try to summarize the techniques proposed to estimate ~ during the past two decades
based on the continuous record of observations, which are listed as follows:

(i) The maximum likelihood estimator (MLE) was originally proposed by Kleptsyna and Le Bre-
ton (2002) for x > 0 with H € (% 1), in which the estimator of the drift parameter in the
fOUp was constructed based on the Girsanov transforms for an fBm, and the strong con-
sistency of the MLE was also established. Tudor and Viens (2007) addressed the problem
of estimating the drift parameter in nonlinear stochastic differential equations driven by the
fBm with a Hurst parameter range of H € (0, 1). The strong consistency of the MLE was
investigated, but the asymptotic distribution was not investigated. Then, the asymptotic law
of MLE was proposed by Tanaka (2013) with H € (%, 1). In fact, the asymptotic law is
also valid for H € (0, %) For k = 0, Kleptsyna and Le Breton (2002) investigated the bias
of the MLE. For x < 0, the asymptotic theory was investigated by Tanaka (2015) with a
Hurst parameter range of H € (0, 1). In particular, the MLE has three celebrated features
that are clearly attractive: consistency, asymptotic normality, and the absence of stochastic
integration with respect to the fBm. However, the MLE depends on the properties of the de-
terministic fractional operators (determined by the Hurst parameter) related to the fBm and
relies on its ability to compute stochastic integrals with respect to fBm. Moreover, approx-
imating pathwise integrals with respect to the fBm, if they exist, is challenging. Therefore,
an actual implementation of the MLE is not easily computable.

(i) The least squares estimator (LSE) was proposed by Hu and Nualart (2010) for x > 0 with
H € (3,1) and by Hu et al. (2019) with H € (0, 3). For x < 0, the LSE was investigated
by Belfadli et al. (2011) in the case of H € (0, %) and by El Machkouri et al. (2016) for a
Hurst parameter range of H € (0, 1).

(iii) The method of moment estimator (MME) for x > 0 was proposed by Hu and Nualart (2010)
with H € (%, 1) and by Hu et al. (2019) with H € (0, %) for practical purposes. It is worth
emphasizing that the MLE involves deterministic fractional operators and that the LSE relies
on an unobservable Skorohod integral. Therefore, an actual implementation of the MLE or
the LSE is problematic. For the sake of practice, Hu and Nualart (2010); Hu et al. (2019)
proposed the MME and studied asymptotical properties for the MME.

(iv) The minimum contrast estimator (MCE) was developed by Bishwal (2011) for x > 0 with
H € (3,1) and by Tanaka (2013) for a Hurst parameter range of H € (0,1). Note that
the MCE does not involve stochastic integrals, unlike the MLE. Bishwal (2011) studied the
accuracy of normal approximation for the MCE based on uniform equally spaced sampling
of the fOUp. When x = 0, the MCE was also considered by Tanaka (2013).
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Prakasa Rao (2010) proposed some alternative methods and the asymptotic theory for the
fOUp. A survey of parametric estimation and inference procedures for statistical models driven
by the fBm has been provided in a recent monograph Kubilius et al. (2017).

In most of the empirically relevant cases, parameter y in the drift function of Model (7.2.12)
is unknown. Thus, it is important to estimate both « and p in the fVm. When a continuous record
of observations is available for X; with ¢t € [0, T, there are three general methods of parameter
estimation: the MLE, LSE and MME. For a general Hurst parameter H € (0, 1), the asymptotic
theory of the MLE and LSE is provided for x € R while the asymptotic theory of the MME
is considered for x > 0. The three estimators of « and p are reviewed and their asymptotic
distributions are developed under the scheme of T — c0.’

74.1 MLE

The MLE perhaps is the most popular method for estimating a parametric model because it has
many desirable properties: sufficiency (complete information about the parameter of interest is
contained in its MLE estimator), consistency ( the true parameter value that generated the data is
recovered asymptotically , i.e., for data of sufficiently large samples), efficiency (lowest-possible
variance of parameter estimates achieved asymptotically), and parameterization invariance (the
same MLE solution is obtained independent of the parametrization used).
For illustration purposes, we extend Model (7.2.12) to be a slightly more general form as
follows:
dX; = (o — kX;)dt + odB} . (7.4.1)

From Model (7.4.1), even when x = 0, the drift term does not vanish and is adt. This
alternative specification for the drift term was used in Chan et al. (1992); Yu and Phillips (2001).
When « in Model (7.4.1) is known (without loss of generality, it is assumed to be zero), Model
(7.4.1) terms to the fOUp. A unique path-wise solution to the stochastic differential equation in
Model (7.4.1) is t

X, =e " Xo+ % (1—e")+o / e =) pH, (7.4.2)
0
where the stochastic integral, fg e‘“(t_s)dBf , is the path-wise Riemann-Stieltjes integral, and
the solution is unique (Proposition A.1 in Cheridito et al. (2003)).

When H € (%, 1), the MLEs of  and « have been investigated by Lohvinenko and Ralchenko
(2017) with k£ > 0 and Lohvinenko and Ralchenko (2019) with k < 0. Consequently, we aim to
develop the asymptotic distributions for the MLE of x and « under the following scenarios: (i) xk >
Oand H € (0,1], (ii) = 0 and H € (0, 1), and (iii) K < 0 and H € (0, 1). Therefore, together
with Lohvinenko and Ralchenko (2017, 2019), a complete coverage of asymptotic theory for all
possible cases is provided for the MLE with x and «. Although the assumption of a continuous-
time record is practically too strong, it allows us to obtain the MLE in a closed form. Moreover,
the results obtained here will serve as the benchmark for those based on discrete-time data.

Following Kleptsyna et al. (2000), by applying the Girsanov theorem for the fBm developed
in Norros et al. (1999), the continuous-record log-likelihood function for Model (7.4.1) can be
expressed as follows:

T T
o) = [ Quary +3 [ Qutt)auf’

where

1 d
t) = —
Qu (1) adw{{

t
/ Fat (1, 5) (@ — £Xs) ds (7.4.3)
0

SWhen a continuous record of observations is available, the unknown parameters of both H and o can be recovered
without estimation errors.



7.4. ESTIMATION METHODS BASED ON CONTINUOUS-TIME OBSERVATIONS 177

ki (t,s) = % (s (t— s))1 . kg =2HT <— — H) <H + %) , (7.4.4)
wh = L p2n ) (7.4.5)
Ao
2HT (3—2H)I' (H + &
Ay = ( 5 JL(H +3) , (7.4.6)
I'(;-H)

t
Ml = / ku(t,s)dBI . (7.4.7)

0

Taking the derivatives of the log-likelihood function with respect to x and « and setting them
to zero, Lohvinenko and Ralchenko (2017) provided the following MLE estimators for o and &:

P2 (1) dw!! Py (t)dS; [ Py (t) dwl
Gy = STfo i fo H ( Stfo H 3 Wy o, (74.8)
WH 3 PR () duft = (J P (1) duof!)

Sy [T Py () dw! — Py (t)dS
Ry = v Jy Pir (8) e’ = il i P L (7.4.9)

fo P2 (t) dwf! — (fo Py (t) dw] )2

where
1 t
Sy = —/ kg (t,s)dXs, (7.4.10)
g Jo
Py (t) = l d /tk (t,s) Xsds (74.11)
H\l _O_dwg{O‘H‘w sts LT

Combining Model (7.4.1) with Equations (7.4.4) and (7.4.11), we have

1 3
PH<t>=;%+ (Xo=2) Vi () + Pu (1), (7.4.12)
where
d t
Vir (t) = de/o ki (t,s)e "¥ds, (7.4.13)
t
Py (t) = T /kH (t,s) Ugds, (7.4.14)
t
t
U = / e =g (7.4.15)
0

Using the idea from Kleptsyna and Le Breton (2002), Lohvinenko and Ralchenko (2017)
proposed the following results:
«
Qu (t) = ; — kPy (t) , (7.4.16)

t t
S, = / Qu (s) dw!! + M = Sl — f-c/ Py (s) dwl’ + M{",  (14.17)
0 o 0

S, = Zdwf — kPy (t) dw! + dMF . (74.18)
(o2

The process M 1 called the fundamental martingale, is a Gaussian martingale where the vari-
ance function is w/?. Moreover, the natural filtration of the martingale M coincides with the
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1/2<HKL1 H=1/2 0<H<1/2
T H (67 — a) = N (0, \go?) VT (& —a) = N (0,02) TI=H (Gp — o) = N (0, \go?)
£ <0 —rT X+/sin(mH) e—HT - Noo e rT X+/sin(mH)
o Ry — ) = (Fr — 1) = st o (R — w) = 2R
o THH (ap —a) = N (0,02%pp) \/T(aT—a :J\/’(0402 TH=H (Gp —a) = N (0,02%py)

2= H(,{T—H):wv(o 2¢H) T3/2(KT—H):>N(0 120) 172-H (% T—H):wv(o, 2¢H)

f(aT—a):N(O,AHU) f(aT—a):N(O,a +2i ) Tl_H(ozT—oz):>./\f(0,2?‘€ )

k>0
g VT (R — k) = N (0,2k) VT (R — k) = N (0,2k) VT (Rp — k) = N (0, 25)

Table 7.2: The asymptotic laws of & and s for different ranges of H and k.

natural filtration of the fBm. Based on Models (7.4.17) and (7.4.18), the MLE of « and  can be
represented as

Ml [y PR (t) dewt! Py (t) dMT [ Py (t) d

ar = a4+ 7 Jo Ph — Jo Pur(tydbf! [y H2 ot o, (74.19)
H o PR () duft = (J P (1) duof!)

ME [T Py () dwf’ — Wl [T Py (t) dM}!

fo P2 (t) dwf — (fo Py (t) dw] )2

When a continuous record of observations of X is available, Lohvinenko and Ralchenko
(2017) studied the consistency and the asymptotic normality of the MLE as defined by Equations
(7.4.8) and (7.4.9) when H > % and k > 0. From Tanaka et al. (2020), we can obtain the asymp-
totic theory for the MLE of « and « for all other cases, including H < % and k > 0, H € (0,1)
and x = 0, and H € (0,1) and x < 0. Table 7.2 summarizes the asymptotic distributions of ar

Fr o= K+ , (7.4.20)

_ 1
and Ry for different ranges of H and «, where \fy = 2HF(3F(2§T23H+2), pr = g (3— 2H)2,
: _H)(2— _ 1
b = 32H(1-H)(2 F?Eg) 2H)F(H+2), €o0s Moo are two independent N'(0, —02/(2k)) random

variables, and X and Y are two independent A/(0, 1) random variables. Moreover, we assume
Xo=a/kfork <0and H € (0,3) U (3,1).

74.2 LSE

The LSE, unlike the MLE, which requires no or minimal distributional assumptions, is useful for
obtaining a descriptive measure for the purpose of summarizing observed data. However, there
is no basis for testing hypotheses or constructing confidence intervals. Based on Model (7.2.12)
and motivated by the work of Hu and Nualart (2010); Belfadli et al. (2011); El Machkouri et al.
(2016), we denote the LSE of x and u to be the minimizers of the following (formal) quadratic
Function:

T .
L, ) = /0 (Xt - Xt)>2dt, (7.4.21)

where X; denotes the differentiation of X; with respect to ¢, although [ Xtht does not exist.
Consequently, we obtain the following analytical expressions for the LSE of « and u, denoted by
krs and [irs, respectively.

X — Xo) [F Xpdt — T (¥ X,dX
hrg = 0) Jo X Jo Xi L (7.4.22)

T fy xpar— (f) Xtdt>2

. (X7 — Xo) Jy X2dt — [ XidX, [ Xodt (7423)
(Xp — Xo) fy Xedt — T [} XsdX,




7.4. ESTIMATION METHODS BASED ON CONTINUOUS-TIME OBSERVATIONS 179

When H = %, it is well known that we can interpret the stochastic integral fOT XidXy as an
It6 integral. When H € (%, 1), X, is no longer a semimartingale. In this case, for A5 and firs

to consistently estimate « and p, we have to interpret the stochastic integral fOT Xd X, carefully.
In fact, we interpret it differently when the sign of « is different. If £ > 0, we interpret it as an
Itd6-Skorohod integral; if x < 0, we interpret it as a Young integral; and if x = 0, we can interpret
it as either an It6-Skorohod integral or a Young integral. In the case of a Brownian motion-driven
or a Lévy process-driven Vasicek model, it is known that the asymptotic theory for x depends on
the sign of « (see, Wang and Yu (2016)).

In the case of the fVm, here, we review the idea that the asymptotic theory for x continues
to depend on the sign of x. The asymptotic distributions of kg are different across these three
cases. From Xiao and Yu (2019a,b), we can obtain the following asymptotic distributions of K1g
and jirg, which are provided in Table 7.3. Here, Ff = BI — fol Bldt, 624 = (4H — 1) +

P (2—4H)T(4H P(3—4H)T(AH—1
—F((QH)F(l)—(ZH))’ Cp=“H-1)(1+ —(F(ZH)F)(Q(—QH))

normal variables, and R(H) is the Rosenblatt random variable whose characteristic function is
expressed as

), v and w are two independent standard

c(s) = exp (% i (2v/=Tso(H))" %> , (7.4.24)

k
k=2

with o(H) = \/H(H — ) and

1 1
ak—/ / ’f]:l—$2‘H_1"'|$k_1—$k’H_l ]a:k—xllH_lda:l---da:k.
0 0

From Table 7.3, we can see that the LSEs of y and « are strongly consistent regardless of
the sign of the persistence parameter x. Moreover, the asymptotic distribution of the LSE of y is
asymptotically normal regardless of the sign of x, while the asymptotic distribution of the LSE of
K critically depends on the sign of . In particular, when x > 0 and H € (0,3/4), we can see
that the asymptotic distribution of the LSE of « is a normal distribution with a rate of convergence
of vVT. When > 0 and H = 3 /4, we obtain that the asymptotic distribution of the LSE of
is also a normal distribution with a rate of convergence of 1/1"/log(T"). However, a non-central
limit theorem for the LSE of « is established for H € (3/4,1). In this situation, we obtain
the asymptotic law as a Rosenblatt random variable. When x < 0, we can see that the limiting
distribution is a Cauchy type with a rate of convergence of e **'. If ;1 equals the initial condition,
it becomes the standard Cauchy distribution. When x = 0, the asymptotic distribution is neither
normal nor a mixture of normals but a Dickey-Fuller-Phillips type of distribution. The rate of
convergence is 7.

743 MME

In this subsection, we consider an alternative estimation technique by exploiting the ergodic prop-
erty of the fVm when x > 0. Borrowing the idea from Xiao and Yu (2019a,b), the asymptotic
properties of the MME are compared.

Using the initial condition of (7.2.8), we can show that X; in Model (7.2.12) is covariance
stationary with

lim E(X;) =4 and  lim Var (X;) = o’k HT (2H). (7.4.25)

Moreover, X, can be identically represented as

t ~
X,=p+o / e rt=)gBH (7.4.26)

—00
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Table 7.3: The asymptotic laws of ~; and fi for different ranges of H and x.
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If £ > 0, under a general initial condition Xg = O, (1), X; is asymptotically covariance
stationary. In this situation, motivated by Hu and Nualart (2010), we can consider alternative
estimators of x and p (denoted by ~xx and fifr, respectively). The strong solution for the fVm
in Model (7.2.12) is expressed as

t
X, = p+ (Xo — p) exp(—kt) + 0/ e~ t=s)qBH (7.4.27)

—00

Moreover, when x > 0, we can easily obtain

1 T

T / Xidt  —as. (7.4.28)
0

1 T

7 / X2t =4, o’k HD (2H) + 1. (7.4.29)
0

According to the ergodic theorem and using Equations (7.4.28) and (7.4.29), the MME of 1
and x > 0 was introduced by Xiao and Yu (2019a,b)

1 T
iy = —/ X,dt. (7.4.30)
T 0
1
L
T fy xpae— (Jy xeat) \

S . 7.4.31
HN T202HT (2H) (7.4.31)

Compared with the LSE in Equations (7.4.22) and (7.4.23), which involve the stochastic inte-
gral fOT XidXy, the MME [ign and kg in Equations (7.4.30) and (7.4.31) do not contain any
stochastic integrals with respect to the fBm but only involve quadratic integral functionals. There-
fore, they are conceptually easier to understand and numerically easier to compute than the LSE
and MLE.

From Xiao and Yu (2019a,b), we can obtain the consistency of 4z and fif7x, which is shown
by the following theorem:

Theorem 7.4.1 Let H € (0,1), Xo/V/T = 04..(1) and . > 0 in Model (7.2.12). Then, we have
RHN —as. kand lgN —ra.s. -

Using the asymptotic distributions of A1g and ji1.5, the asymptotic distributions of ~rn and
iy can be developed as follows:

Theorem 7.4.2 Let Xo/'T = 0,(1) and r > 0 in (7.2.12). Then, we have
o2
T (agny —p) = N (o, —2> : (7.4.32)
K
Moreover, let X/ VT = op(l) and k > 0 in Model (7.2.12). Then, the following convergence
results hold true:
(i) For H € (0,3/4), we have

VT (kpy — ) = N (0, kpp) (7.4.33)

_ AH-1 IN'3—4H)I'4H-1)\ _ C
where py = <7z (1 + m) = &

(ii) For H = 3/4, we have

VT

. 16K
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(iii) For H € (3/4,1), we have

_2H-1

2—2H [ _
T (HHN H):> HF(QH—I—l)R(H)’

(7.4.35)

where R(H) is the Rosenblatt random variable defined in (7.4.24).

7.5 Estimation Method based on Discrete-Time Observations

In the previous section, the estimators &, k1, k13, fiLs, iy and &g n were developed based on
continuous-time observations. In practice, observations of X; are available only at discrete-time
points, for example, at n(:= T//A) equally spaced points {iA}!" , over time interval [0, 7] where
A is the sampling interval and 7" denotes the time span. When X} is annualized and observed
daily (weekly or monthly), then A = 1/252 (1/52 or 1/12). We now consider Model (7.2.12),
where k € RT,0 € RT, p € R, and H € (0,1) are constants. Let {X;A};"_, denote the discrete-
time observations of X;. From Equation (7.4.27), the exact discrete-time model of {X;a }?:0 is
obtained as

Xin = 6_HAX(i_1)A + (1 — e_KA) u+gin, (7.5.1)
where g;a = 0 f(ﬁl)A e "A=s)qBH,

We now review the two-stage approach of Wang et al. (2021) for estimating the four parameters
in Model (7.2.12) based on discrete-time observations of X;. In the first stage, following Lang and
Roueff (2001) and Barndorff-Nielsen et al. (2013), H is estimated based on the ratio of the squared
summations of the second-order differences of X, obtained at different frequencies. In the second
stage, the estimators of the other parameters in Model (7.2.12) are constructed based on a set of
moment conditions in which the true value of H is replaced with the estimated H obtained during
the first stage. Closed-form expressions are established for all the proposed estimators and are
denoted by H , K, i, and . We next review a large sample theory for the proposed estimators.
In particular, we review two asymptotic schemes: (i) the in-fill scheme under which the sampling
interval A goes to zero with a fixed time span " and (ii) the double scheme in which A — 0 and
T — oo simultaneously. Under both schemes, the consistency and asymptotic normality of H
and o are introduced for all H € (0, 1) and regardless of the stationarity property of the model.
In addition, an explicit formula is introduced for the asymptotic variance of H, which depends
only on the value of H. This feature greatly facilitates statistical inference about H. Under the
double scheme, the consistency and the asymptotic distributions of ¥ and ji are introduced. The
convergence rate of jz is a function of H. Both the convergence rate and the asymptotic distribution
of % depend crucially on H.

7.5.1 The Two-Stage Approach

To estimate the parameters in Model (7.2.12) based on discrete-time data, it is difficult to apply the
MLE to estimate all the parameters simultaneously because the errors {e;a } in Equation (7.5.1)
have a complicated dependent structure when H # % Following Phillips and Yu (2009), we re-
view the two-stage estimation approach introduced by Wang et al. (2021), which is straightforward
to implement.

In the first stage, following Lang and Roueff (2001) and Barndorff-Nielsen et al. (2013), Wang
et al. (2021) estimated the Hurst parameter H by using the change-of-frequency (COF) estimator
based on the second-order differences of X.

n—4
> (X(iraa —2X(iro)a + Xm)Q

=

H= %logQ (7.5.2)

3
N

2
'21 (X(ie2a — 2X(i+1)a + Xin)
1=
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n—4
i1 and
{X (i+2)a — 2X(irna + Xia }?:_12 are second-order differences of {X; A}?:l taken at two differ-
ent frequencies.

In the second stage, Wang et al. (2021) estimated the other parameters, o, u, and «, in Model

(7.2.12) using the following method-of-moments estimators:

where log, () is the base-2 logarithm, {X(i+4)A —2X(i1o)a + Xin}

n—2
2
> (Xr2)a = 2X(p1a + Xia)
;= | SR , (7.5.3)
n (4 — 22H> A2H

PO
= _Z;Xm, (7.5.4)
1=

" " 9 —1/(2}7)
R=| = =l . (7.5.5)
n262HT (2H>

Note that & depends on H, which is obtained in the first Stage, and x depends on both & and H.

The estimators 1t and k can be regarded as the discrete-time versions of the ergodic-type es-
timators of x and p of Xiao and Yu (2019a,b). However, since Xiao and Yu (2019a,b) assumed
that 02 and H are known and a continuous record of {X;} is observed, we have to modify their
estimators by (i) replacing o and H with ¢ and H and (ii) replacing the Riemann integrals with
the summations. When discrete-time observations of {X;} are available, the MLE, MCE, LSE,
and MME have previously been studied by Tudor and Viens (2007); Ludefia (2004); Hu et al.
(2019), respectively. A critical difference from these studies is that the estimator reviewed in this
section does not assume f is known when estimating . The asymptotic distribution of the LSE
of x has been derived in the O-U model (H is assumed to be %). For example, assuming x > 0,
Tang and Chen (2009) obtained the long-span and double asymptotic distributions of the MLE of
k. Assuming x < 0, Wang and Yu (2016) obtained the double asymptotic distribution of the LSE
of k. We review the asymptotics of « from the O-U model to the fVm.

7.5.2 Asymptotic Theory

In this subsection, we first review the consistency of H and & as longas TA — Oandn = T/A —
00, a condition that is satisfied under either (i) the in-fill asymptotic scheme where A — 0 with a
fixed T or (ii) the double asymptotic scheme where A — 0 and T" — oo simultaneously while T’
diverges at a lower rate than that of 1/A.® Then, we review the results from Wang et al. (2021).
Thus, 7" — oo is a necessary condition for the consistency of jz and k as defined in Equations
(7.5.4) and (7.5.5). We also review the double asymptotic theory from i and % using the results
from Wang et al. (2021).

Theorem 7.5.1 Let H and G denote the MME defined in Equations (7.5.2) and (7.5.3) for Model
(7.2.12). Then, if TA — 0 andn =T /A — oo, forall H € (0,1), we have
(a) H—p H, and

-~ Y11+ Yoo — 2¥19
H-H 0 : 7.5.6
ﬁ( >§N<’ (21og 2)? > (7.2.6

The consistency of H only requires A — 0. In other words, even when T diverges faster than 1/A, violating the
condition TA — 0, H is still consistent as long as A — 0.
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(b) 0 =, 0, and

pM Y9 — 2%
vn G—0)=N (0, 1+ 222 —— 02> , (7.5.7)
log (A) (2log2)
where
> 2
Sy =24224 Z (pjva +4pjs1 +6pj +4pj_1 +pjja) (7.5.8)
j=1
o0
Sio =2 [ 4o +1)° 42 (pjr2 + 2001 +0)° | (7.5.9)
j=0
o
Sop =244 p?, (7.5.10)
j=1
with
P — J 4277 + 415 +1] I A4l = =2 (75.11)

2 (4 — 22H)

Remark 7.5.2 The asymptotics of H and  hold forall H € (0,1). It is clear that the asymptotics
of H and & can apply to all k, including k > 0, k = 0, and k < 0.

Remark 7.5.3 Let us observe that the asymptotic variance of H only depends on H, while the
asymptotic variance of ¢ depends on both H and o. Neither depends on k and p. This feature
plays an important role in statistical inference about H and o because, when T’ is fixed, we can
obtain consistent estimators for both H and o, while we cannot estimate k and | consistently. If
we use an alternative estimator for H, which has a rate of convergence +/n, then we can see that

vn (PAI — H) and \/n (o — o) / (o log (A)) should share the same limiting distribution.

It is worth mentioning that, for all H € (0, 1) and all &, including k > 0, K = 0, and k < 0,
the asymptotics of Hand always hold. When H = %, Model (7.2.12) becomes the standard
O-U model and enjoys the Markov property, whereas Model (7.2.12) does not have the Markov
property once H # % To test of the hypothesis H = %, the following Corollary 7.5.4 provides
the asymptotic variance of \/n (ﬁ — %) By substituting H = % into the formulae provided in
Theorem 7.5.1, we obtain that pg = 1, p1 = —1/2, pj = 0forj > 2, %11 = 7/2, ¥12 = 3/2, and
Y99 = 3. Consequently, we can obtain Corollary 7.5.4 directly.

Corollary 7.5.4 Let H = 1, TA — 0, and n = T/A — occ. Then, we obtain

~ 1 7
\/E<H——> :>N<0,—> .
2 8 (log 2)?
The asymptotic theory of 1 and x defined in Equations (7.5.4) and (7.5.5) can be obtained
under the double asymptotic scheme where T — oo and A — 0. Under the condition of k > 0,

Wang et al. (2021) proposed a condition that governs the relative divergence/convergence rates of
T and A.

Theorem 7.5.5 Let i be the estimator of u defined in Equation (7.5.4). Then, when T — oo and
A — 0, we can obtain ji —, pi for all H € (0,1). Moreover, if T*~H AH — 0, then we have

T (G — p) = N (0,0%/K7). (7.5.12)
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Theorem 7.5.6 Let k be the estimator of k defined in Equation (7.5.5). Then, when T' — oo and
A — 0, we have k —, k. Moreover, (a) for H € (0,3/4) andy/TAH — 0, then

VT (k — k) = (0,5651) (7.5.13)

with

b =

oI (2—4H)T(4H .
4;12 |:(4H - 1) + W] if He (O’ %)
AH— IFB—4H)T(4H-1) . . )
e [1+F(QT>F(2H)] if Held?)
(b) for H = 3/4 and VT A" [ log (T) — 0, then

%(E—n)@N(O,?—:) ;

(c)for H € (3/4,1) and T*> 2HAH — 0, then

—K,QH_l

T2-2H (5 _ ) —
(=% = Frem+1

R(H),
where R(H) is the Rosenblatt random variable defined by (7.4.24).

Let us observe that the double asymptotic distribution of the MLE of & is known to be
N (0,2k)if H = % (see, for example, Tang and Chen (2009)). Obviously, ¢y = 2 when H = %
Therefore, the MME & has the same limiting distribution as the MLE for H = %, and & is asymp-
totically efficient when H = %

7.6 Conclusions

Stochastic models have played a key role in the development of financial markets. The first mathe-
matical model in finance was introduced by Bachelier (1900), who used the normal distribution to
describe the behavior of asset prices. An obvious deficiency in Bachelier’s model Bachelier (1900)
is that stock prices can lead to negative prices at any time ¢ € ([0,7]). To overcome this problem,
Osborne (1959) introduced geometric Brownian motion to describe stock prices. In parallel, 1t6
(1951) developed the stochastic integral method with respect to Brownian motion and a stochas-
tic differential equation driven by Brownian motion. In 1973, Black and Scholes (1973); Merton
(1973) derived the celebrated Black—Scholes option pricing formula in two separate papers, which
were awarded the Nobel Prize for Economics in 1997. To date, previous work has addressed pric-
ing equity options, but little attention has been paid to interest rates. Vasicek (1977) developed a
framework for pricing interest rate options. This model was the first to use geometric Brownian
motion for short-term interest rates. Similar to the well-known Black—Scholes model, the bond
pricing equation was postulated as a parabolic partial differential equation in Vasicek (1977). Har-
rison and Pliska (1981) introduced the risk-neutral pricing formula by using martingale theory,
which is an essential tool of stochastic calculus.

From an empirical point of view, a basic requirement for any good model is its ability to
capture the main features in the observed prices. However, the assumption of the independence
of asset returns and the constant volatility in the Black—Scholes model is clearly contrary to the
empirical data, which reveal that there exists a strong dependence of asset returns and implied
volatility with respect to strike prices and time to maturity.

First, to consider the dependence of asset returns, the fBm, which allows for dependent incre-
ments and long memory, was introduced into finance. In fact, Delbaen and Schachermayer (1994)
showed that no-arbitrage pricing is only possible in semimartingale stochastic processes. There-
fore, the basic ideas of mathematical finance in Delbaen and Schachermayer (1994) already imply
that the fBm allows a certain kind of arbitrage since the fBm is not a semimartingale.
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Second, to exclude the constant volatility assumption, some stochastic volatility models driven
by Brownian motion that allow the volatility parameter to vary in a random fashion are provided
in finance (e.g., Gatheral (2006)). These stochastic volatility models are useful since they can
describe empirical observations, i.e., options with different strike prices and expirations have dif-
ferent values of implied volatility. However, the main drawback of stochastic volatility models
driven by Brownian motion is that they fail to produce decent results for short maturities. To per-
form well, some fractional stochastic volatility models with the long memory property were pro-
posed by Comte and Renault (1998). Gatheral et al. (2018) showed that the log RV is rough and
behaves as an fBm where H has a value of around 0.1 at any reasonable time scale. This observa-
tion motivated them to examine the performance of the fVm for modeling the RV relative to other
models. In fact, the fVm has been the subject of active research for the last two decades because
this model seems to be one of the most suitable tools for capturing the phenomenon of long-range
dependence (e.g., Comte and Renault (1998); Ait-Sahalia and Mancini (2008)) or the roughness
of the volatility (e.g., Bayer et al. (2016); Gatheral et al. (2018)) in financial asset volatility. The
development of the application for the fVm naturally led to its statistical inference. Consequently,
estimating the unknown parameters in the fVm has been the subject of active research for the last
decade and is a challenging theoretical problem.

This chapter considers the development and the application of the fBm in finance. First, we
discussed the advantages and disadvantages of using the fBm to describe the fluctuations in finan-
cial asset returns. Then, we considered the application of the fVm in stochastic volatility mod-
els and discussed the free arbitrage property of stochastic volatility models driven by the fBm.
Furthermore, we discussed the problem of estimating unknown parameters in the fVm based on
both continuous-time observations and discrete-time observations. Our study considered three
well-known methods for estimating the drift parameters in the fVm from a continuous record of
observations, including the MLE, LSE and MME. Our study also contributes to the literature by
developing an estimation method for all parameters in the fVm based on discrete-time observa-
tions for all ranges of the Hurst parameter. The application and statistic inference of the fVm with
jumps are important directions for future research.

7.7 Appendix

7.7.1 Appendix A: Proof of Proposition 7.2.1

Proof. From Definition 7.2.1, we can see that the fBm is centered. Moreover, using Model (7.2.1),
we can easily obtain Var (Bfl) =E <(BtH)2> =21,

For any ¢ > 0 and s,t > 0, the process Bg is a centered Gaussian process with covariance

1
E (Bng) = 3 [[ct\2H + ]03\2H — c2H]t — 3[2H}
= AME (B BY)
= E[("B/) ("B . (7.7.1)
Since all processes are centered and Gaussian, Equation (7.7.1) implies that (Bg ) 4 (|c|H Bl )

Then, we show that the fBm has stationary increments. Note that for & > 0, we have
E [(Bfl, - BY) (B, — Bi)]
E[(BX,B%,)] —E [(B,Bl")] (B, B{)] +E [(B1)"

((t+ )7 4 (s + )2 — |t — s|H) — ((t + h)2H + p2H — ¢2H)

N
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—((S+h)2H+h2H—S2H) —|—2h2H

— % [t2H +82H . |t _ S‘ZH]

~ E(BMBY),

H\ 4 pH
t+h_Bh)_Bt'
For s,1 > 0, we have

which implies (BH

E|Bf — BE|* = E|BI|’—2E[BI'B"] +E|B"|’
= t*" 2Ry (t,s) + s*1
|t — 5|2 .

Since for any s < ¢, the random variable BY — B! has the distribution |/ E ‘B{{ — BH |2

XZ = |t — s|H Z, where Z denotes a standard normal random variable, we obtain that, for any
p=>1
E|B/! - BI|" = E|zZ|P|t — s|""? . (7.7.2)

The Holder continuity follows from Equation (7.7.2) and the Kolmogorov continuity theorem.
We can see that if H # %, By does not satisfy the condition of Ry (s, u) Ry (t,t) = Ry (s, t) Ry (t, w).
Indeed, the covariance of its increments, also known as fractional Gaussian noise (fGn), is

given by

pr(n) = E((B - BL) (B, - BLi,))
= % (n+ 1" + (n —1)2H — 2n2H)
~ H2H—-1)n*"72 asn —oo. (7.7.3)

From Equation (7.7.3), we have pg(n) = 0 for H = %, suggesting that B/’ becomes a

standard Brownian motion with independent increments and is therefore uncorrelated. When H €
(%, 1), it can be seen that pg(n) > 0, which means That the increments of B/ are positiV?ly

correlated to each other, making Y o>, pr(n) = oo as n — oo. However, when H € (0, 3),

the increments of B! are negatively correlated to each other and have the short-range dependence
property, i.e., > o4 pr(n) < oo.
._ (on\pH-1 A H H p e
Set Y, :=(2") > k-1 |Biy — Bi,_,| - By self-similarity, we have

2n 271
Yo o @MY e — te P |BY - B[P =2 B - B[P
k=1 k=1

The sequence of one step increments of Bf — B,{,{_ | 1s a stationary, centered Gaussian with
covariance function py(n), which tends to zero. Therefore, the fGn is ergodic. According to
Birkhot’s Ergodic Theorem,’

2’)’1
27y " |Bf - B{',[" - E|B'|’ —»as C.
k=1

p

Therefore, Y,, —, C. Because ‘Bt}k[ — Btil,_l = (2*”)’7H_1 Y,,, we obtain Equation (7.2.2).

"Birkhof’s Ergodic Theorem: Let {£,} be a stationary (strict sense), ergodic random sequence with E |£;| < oo.
Then, limy 00 2 3°1_, &k (w) = E (&) almost surely and in L'.
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From Equation (7.2.2), we can see that the index of the p-variation of the fBm is % However,
for a semimartingale, the index must be either in [0, 1] or equal to 2, i.e., 7+ € [0,1] U {2}. Since
H € (0,1),H~! ¢ [0,1], the fBm is a semimartingale only for H = 1.

Using the self-similarity property, we have

Bf — Bl
Lo 4 ()1 I,
t—to
B -B[
Let us consider the event A(t) = {suptog s<t bsitot > d p. Then, for any sequence t,,

BH _
decreasing to ¢, we have A (t,) D A (ty+1) and A (1) D ”y

Thus, we have

#({ ) =2 ({18 - a}) 1o

Note that there is a stronger form since here we prove the assertion locally. m

Bl — By
tn - tO

7.7.2 Appendix A: Proof of Proposition 7.2.2

Proof. From Sinai (1976), we can easily obtain that the spectral density of the f{Gn can be written
as
fa (M H) =F (H) (1—cos)) Y |\ +2jn| 2771
jEZ
where F' (H) is a normalizing factor designated to ensure ffﬁ fa (M H)dN=1.
Consequently, we have

2
fo (N H) = T sin(rH)T(2H + 1)(1 —cos A) Y [A + 2jz| 721
T JET
The behavior of fg (\; H) near the origin is followed by a Taylor expansion of (1 — cos \) at
zero, and it can be shown that

faNH) ~O (M) as A—0.

The asymptotic behavior of v (k) is follows by the Taylor expansion . Let v (k) = %k:ZH g (k™)

with g(z) = (1 +2)*! =24 (1 —2)*. 1f0 < H < 1 and H # 3, then the first non-zero term
in the Taylor expansion of (), expanded at the origin, is equal to 2H (2H — 1)z2. Therefore, as
k tends to infinity, we have (7.2.4). For% < H < 1, the fGn has long memory. For H = %, all the
correlations at non-zero lags are zero, i.e., the observations are uncorrelated, and the process has
short memory. For 0 < H < %, it can be shown that

[e.e]

> rak)=0

k=—00

and therefore, the process is anti-persistent.
A standard calculation yields

E[G]" -Gi] = E[G]-E[Gy] =0
Var (G - G = E(Yu(n) - Yir(0))?
= 2— |t — 1 — e+ 1P 4 22
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as

E[GIGy] = E[(Gi—G) (G - GP)]

E
1
3 [t — 125 + |t + 12 —2¢21]

Moreover, (G{', G{T) has a bivariate Gaussian distribution with the correlation matrix given
by
1 [t — 1 |+ 120 — 2¢2H] (77.4)
=12 [t + 120 — 242H] 1 : o

Thus, Gf' — G¥! has a Gaussian distribution with zero mean and the variance 2 — [t — 1|2H —
[t + 1127 + 2|t|2H. Of course, for t = 0, we have a degenerated distribution with zero variance.
Moreover, using lim; o0 (|t — 1> + [t + 1> — 2¢>7) = 0, we have Var (G — G{') — 2
as t — oo. Therefore, GH — GL = N(0,2) ast — co. m
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