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This chapter discusses the nonstationary continuous-time models, including unit root and ex-
plosive regressors. The contents cover estimation methods, inferential theory, and empirical
examples demonstrating the use of these models. It starts with a univariate framework and
extends to multivariate cases for generality.
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6.1 Introduction

A covariance stationary process is a stochastic process whose mean, variance, and covariance do
not change when shifted in time. In contrast, a nonstationary process has a time-varying mean,
variance, or covariance. It may exhibit a trend, a structural break, cycles, or some combination
thereof. While stationarity makes the econometric analysis of time series simpler, many economic
and financial time series are nonstationary.

In finance, stock prices, earning-price ratios, and dividend-price ratios are commonly believed
to be integrated of order one (Alessi and Kerssenfischer, 2019; Stambaugh, 1999; Welch and
Goyal, 2008; Cai et al., 2015; Phillips, 2015). The time series properties of those data series
are fundamental to the efficient market hypothesis (Lo and MacKinlay (1988)) and have been of
significant interest. In the housing market, in addition to housing prices, some fundamentals such
as price-to-income ratios and rent-to-price ratios are generally found to be nonstationary (Case
and Shiller, 2003; McCarthy et al., 2004; Ambrose et al., 2013). In particular, house prices fol-
low an explosive process in the presence of speculative bubbles. Evidence of bubble presence has
been documented for many housing markets; see, for example, Greenaway-McGrevy and Phillips
(2016); Shi et al. (2016); Hu and Oxley (2018); Pan (2019); Chen et al. (2022). When analyzing
long-run purchasing power parity, the nonstationarity of exchange rates is studied. For exam-
ple, Boswijk and Zu (2022) investigated the cointegration hypothesis of exchanges rates for the
United Kingdom, Germany, and Japan relative to the United States. Furthermore, many macroeco-
nomic variables such as GDP, inflation, money demand and interest rates are commonly believed
to be nonstationary (Zivot and Andrews, 2002; Henry and Shields, 2004; Bae and De Jong, 2007).
Hence, it is of great importance to take nonstationarity into consideration in modeling.

We can model nonstationary time series in both discrete time and continuous time. While
discrete-time models are more popular in practical applications, there are several advantages of
using continuous-time models in econometric modelling.

First, continuous-time models enable us to sample discretely at any frequency; hence, param-
eters are not subject to the time-aggregation problem. Due to the cost of collecting and measuring
variables, data are usually collected at different frequencies (Ghysels and Miller, 2015). Hence,
the frequency of these nonstationary data can vary considerably. For example, the DGP is usually
collected at a quarterly frequency, and stock returns can be sampled yearly, quarterly, monthly,
daily and even every second. Second, the continuous-time model enables the convenient handling
of not only stock variables (CPI, population, and money supply) but also flow variables such as
GDP, income, and exports by simple time aggregation. Last, the continuous-time model enables
us to study the impact of the initial conditions on parameter estimation and inference, which is
one of focuses of this chapter. In particular, the initial value enters into the limiting distribution of
each estimated parameter. By taking into account the initial values, test statistics that are based on
the new limiting distributions are expected to result in better finite sample performance.

This chapter discusses nonstationary continuous-time models, including models with unit root
regressors and explosive regressors. Many empirical works in finance and economics have iden-
tified the I(1) property and explosiveness in time series data. Hence, the continuous-time models
that are introduced in this chapter provide basic econometric tools for modelling, inference, and
forecasting economic and finance time series. In particular, we aim to provide a selective review of
estimation methods and inferential theory and to present an empirical example that demonstrates
the usefulness of nonstationary continuous-time models. For both unit root and explosive pro-
cesses, we begin our discussions with the univariate analysis framework, followed by multivariate
models for generality.

The remainder of this chapter is organized as follows. Section 2 presents an overview. Sec-
tion 3 introduces univariate continuous-time models, including stationary, unit root and explosive
Ornstein-Uhlenbeck (OU hereafter) models, and discusses the estimation method and the limit
theory. Section 4 introduces multivariate continuous-time models and discusses the estimation
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method and the limit theory. Section 5 presents Monte Carlo simulations. Section 6 provides an
empirical study. Section 7 presents the conclusions of this study.

6.2 Overview

The random process that is studied in this chapter is the OU process. The OU process has a
wide range of empirical applications in the practice. Vasicek (1977) assumes the spot rate pro-
cess follows the OU process. Burgess (2014) provides an overview of the Vasicek model and its
advantages and extensions. Barndorff-Nielsen and Shephard (2001) considers the non-Gaussian
processes of OU type, where the deviation from Gaussianity allows for flexibility in modelling the
dependence structures in the data. The model has been applied to study the instantaneous volatility
of exchange rates (Barndorff-Nielsen and Shephard, 2003) and stock returns (Roberts et al., 2004).
The OU process is the solution of the following stochastic differential equation:

dz (t) = k (u—z (t)) dt + dB, (), (6.2.1)

with B, (t) = 0.2W, (t), where W, is a standard Brownian motion. In a more general case, we
allow B, (t) to be a Lévy process. The initial value is set to  (0) = zg = O, (1).

Parameter p is the drift of the process. Parameter x determines the level of persistence in
x(t). For k > 0, the process is stationary when the initial condition comes from the infinite past
(z(0) = ff)oo e"*dBy(s)). In this case, p is the unconditional mean of z(t). x determines the
speed of mean-reversion. In particular, the process x (t) is asymptotically stationary for x > 0.
x (t) is a Brownian motion for k = 0. x (¢) is explosive for k < 0. For data over a large time
span, several different regimes of x might be contemplated, possibly with break points separating
the regimes. In this chapter, we focus on when x = 0 and when x < 0.

6.2.1 Exact discrete-time representation

When only discrete observations are available, discretization of the continuous-time model is nec-
essary for estimating the parameters of interest, namely, the persistence parameter « (defined in
equation (6.2.1) ) and the co-movement parameters B (defined in equation (6.4.1) for cointegration
models) and /3 (defined in equation (6.4.8) for co-explosive models).

Suppose data are recorded at N equally spaced points over a time interval [0, 7']. Denote the
sampling interval by A such that we have N = 7'/A observations. In practical applications in
economics, 1" measures the number of years. Typical values for 1" are not very large (between 1
and 50). In some cases, even if T is large, a smaller value for 7' may be used to avoid possible
structural breaks (e.g., Zhou and Yu (2015)). In empirical studies, three sampling intervals are
often considered, namely, A= 1/12, 1/52,1/252, which correspond to monthly, weekly and
daily frequencies.

Following Phillips (1972), the exact discrete-time representation of (6.2.1) is as follows:

A = an (K) Tg—1)a + A + Uz ia, (6.2.2)
where

an(k) = exp(—rA),
ga = p(l—er?),

tA . o2
UgptA = am/ e—f-e(tA—S)de (s)=N <0, Tz (1 _ e—2m)> _
(

t—1)A 2K
The initial value is zoa = x9 = Op (1). The autoregressive parameter aa (+) depends directly
on the sampling frequency A and persistency parameter . Noted that A is related to the sample

size N. The standard error of u, A is Ap = \/% (1—e288) ~ g VA — 0as A — 0.
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Re-standardizing equation (6.2.2) by Aa, equation (6.2.2) becomes
Tia = an () T-1a + ga + Ugaa, (6.2.3)
where ZiA = 24A/AA, A = ga/Aa and Uy ta = Uz 1A /Aa. In addition, we have,

an (k) = 1—kA+0(A%) =1,
Grn ~ O (\/Z) :
Upin ~ 4aN (0,1),

as A — 0. The initial value then become Foa = woa/Aa = Op (A™V/2).

Figure 6.1 presents one typical simulated path of the data generating process (6.2.1) using the
exact discrete-time representation of (6.2.3). The parameter configuration is 7' = 6, A = 1/12,
u =1, and o5, = 1. It corresponds to monthly data for a six-year time span. From the left to the
right panel, the parameter  is set to —0.3, 0, and 3. These values correspond to a (k) = 1.0253,
1, and 0.7788, respectively. The initial value x is set to 0. Figure 6.1 shows that the explosive
series demonstrates a rapid escalation, the unit root process wanders around and demonstrates a
stochastic trend, and the stationary series exhibits a mean-reversion behavior.
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Figure 6.1: A typical realization of the data generating process (6.2.1).

6.2.2 Estimator and test statistic

For the OU process, the parameters of interest are ga and aa (k) (aa hereafter). The correspond-
ing least squares (LS) estimators are as follows:

-1
[gAH T 2>] [ VAN ] 62

= N N 2 N
an 2t T-1A > im1 L(t—1)A > oim1 TIAT(t—1)A

and hence,

~ _1 ~
[ ga —ga } _ [ T AR ] [ NZL“%’A ] . (625

—~ N ~ N ~9 ~ ~
an — aa Dot Z(t-1)A PO Li-1)A D1 T(t—1)AUztA

The LS estimator of , which is denoted by #, is —% In (@a).
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; 2 _ 15N =2
Defining s; = N7 > ;0 Uy 4o, we have

-1

N N 2
. 1 ~
San = 52 Z w%t—l)AJazrxA N (Z ﬂf(t—l)Aam\/Z>
=1 t=1

The t statistic for an is

; _ap—an a /A (@a — an)
an g o 1) 1/2°
aa _ON A9 =N ~2 9 1 ([ -N N ~ 2\
s2(ax" A2y TN A <aA A aj(t_l)AUm\/Z>
(6.2.6)
Similarly, given ap = exp (—kA), we have
Asy = S5 +0p (A),
and the t statistic for & is
= N (s .
=T aa (F =) . (627)

Sk 2\ —1 1/2
N N
{3% (—azANl/Az Zt:l x%t—l)A - % <¢1Xﬁ Zt:1 m(t—l)A) ) }

6.2.3 Asymptotics

Three sampling schemes are considered in this Chapter:

1. the long-span asymptotics: 7" — oo, A is fixed, and hence, N — o0;
2. the double asymptotics: T — oo, A — 0, and hence, N — oo;

3. the infill asymptotics: A — 0, 7" is fixed, and hence, N — oc.

The first scheme (the long-span asymptotics) assumes that the sampling interval A is fixed and
the time span 1" — oo and hence the sample size N goes to infinity as I' — oo. This is the usual
asymptotic scheme that is considered in the discrete-time literature. The limiting distribution is
not continuous in « (Tang and Chen (2009), Yu (2012), and Yu (20144a)), and hence, disjoint pieces
of the confidence interval are generated.

The third scheme (the infill asymptotics) enables the sample size to go to infinity by decreasing
the sampling interval but keeping the time span fixed. Perron (1991a) provides the infill asymp-
totics regarding the persistence parameter x for the OU process (6.2.1) without an intercept. The
limiting distribution is continuous in x for all values of x, and hence, it provides a unified frame-
work for making inferences regarding parameter . In addition, the limiting distribution of
depends on the initial values, and it provides a good approximation of the finite sample distribu-
tion. In addition, the infill asymptotic theory with a known intercept is presented in Yu (2014b),
and the infill asymptotic theory with a more general initial condition is provided in Perron (1991Db).

The second scheme (the double asymptotics) combines the long-span scheme and the infill
scheme and is referred to as the double asymptotics. There is a discontinuity of the limiting
distribution of the persistence parameter « (Zhou and Yu (2015)).
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6.3 Univariate continuous-time models

In this section, we discuss univariate continuous-time models. We start with the univariate OU
process with x > 0 under three sampling schemes. Among the three asymptotics, the infill asymp-
totics provide the best approximation to the finite sample distribution (Zhou and Yu (2015)). How-
ever, the infill distribution depends on unknown parameters that cannot be consistently estimated.
Lui et al. (2021) suggested using the new grid bootstrap for inference. Hence, we further discuss
the local-to-unity model under the infill scheme since the discretized model is closely related to
the local-to-unity model under the infill sampling scheme as A — 0. We also discuss the unit root
continuous-time model. Finally, we consider the univariate OU process with x < 0 (the explosive
case). The use of a continuous-time framework with double asymptotics readily accommodates
initial condition and drift effects, with a limit theory that is easy to implement in practice with
no nuisance parameters (Wang and Yu (2016) and Chen et al. (2017)). In contrast, discrete-time
models with local-to-unity and mildly integrated or mildly explosive autoregressive parameters
typically involve localizing coefficients that enter the limit theory as nuisance parameters and are
not generally consistently estimable, thereby complicating inference.

6.3.1 Univariate OU process with « > 0

When x > 0, x(t) as defined in (6.2.1) is a stationary process. Zhou and Yu (2015) summarized
the limiting distribution of the LS estimator of % under the three sampling schemes as follows.
The long-span asymptotics of x are

2kA
T@—myiN<Q37Ti), (6.3.1)

as T' goes to oo.
Under the double asymptotics, as 7" — oo and A — 0, the limiting result is

T (% —K) > N(0,2k),

asT"— ooand A — 0.
For model (6.2.1), if x < 0, the infill asymptotic distribution of  is

~ A c
T(H—K/)i) (o, ),
B (’7076)
where ¢ = —kT, ¢ = € — 1, cg = —ec—cg—l, c3 = —626_4§zj20+3, ¢y = ecc_l, Jo(r) =

for =AW (5), b = puv/—ck/ope, Y0 = Xo/ (am\/T> and

bl 1 1
A(yo,¢) = - / cdW (r) + / Jo (r)dW (r) + fyo/ e’ dw (r) —
0 0 0
1 1
(/ dw (7’)) (Cgb + / Jc (7‘) dr + C4")/0) s
0 0
5 2b ! ! 2 2
B (y0,¢) = c3b*+ - ade (r)dr + Je (r)" dr + cibyo +
0 0
1 o2 _ 1 1
270 / e Je (r)dr + 78—20 — <62b + / Je (r) dr + 64”/0) .
0 > 0

The infill asymptotics apply for all values of x. Zhou and Yu (2015) showed that the infill asymp-
totic distribution provides much more accurate approximations to the finite sample distribution
in a simulation study. In an empirical application, they applied the three alternative asymptotic
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theories to real monthly short-term interest rates from July 1954 to June 2002. The confidence in-
tervals using all three alternative sampling schemes suggested a unit root in both the 90% and 95%
confidence intervals. However, the confidence intervals that were implied by both the long-span
asymptotics and the double asymptotics suggested that there was no unit root in the series.

6.3.2 Local-to-unity model under the infill scheme

When k # 0, the autoregressive parameter in the exact discrete-time representation of (6.2.1) is
an = exp (—kA). We rewrite it as

—kT
apn = exp (—kA) = exp < ~ ) .

Under the infill asymptotic scheme (A — 0, T'is fixed, and hence, N — o0), the discretized model
has a root that is local-to-unity (Phillips (1987b)). Correspondingly, Phillips (1987b) studied a
near-integrated random process whose autoregressive parameter is defined by exp (¢/N), where
c is the local-to-unity parameter and measures the deviation from the unit root case and [V is the
sample size. When ¢ > 0, the process is said to be locally explosive, and when ¢ < 0, the process
is said to be locally stationary.

The asymptotics of the estimated autoregressive parameter in discrete time are provided in
Phillips (1987b). For continuous-time models, the infill asymptotic theory with a more general
initial condition is provided in Perron (1991b). The infill asymptotic theory with a known intercept
is presented in Yu (2014b). There is a discontinuity in the long-span asymptotics and the double
asymptotics of  as x passes through zero. However, the infill asymptotic distribution is continuous
in . Hence, it provides a unified framework for statistical inference about &.

Lui et al. (2021) considered the infill asymptotic distribution of k. Since there are unknown
parameters in the limiting result of X (Lemma 3.2 in Lui et al. (2021)), the CIs are infeasible. In
particular, Lui et al. (2021) studied the following Lévy-driven models:

dz(t) =k (u—x (t)) dt + 0dL(t),z (0) = 2o = O, (1), (6.3.2)

where L(t) is a Lévy process that is defined on a filtered probability space (€2, F, {Fi}iso> P)
with L (0) = 0 as.. F; = o {[z(s)]'_, } and satisfies the following three properties:

1. Independent increments: for every increasing sequence of times g, . . . .t v, the random vari-
ables L(ty), L(t1) — L(tg), - .., L(tn) — L(ty—1) are independent;

2. Stationary increments: the law of L(t + A) — L(t) is independent of ¢;

3. Stochastic continuity: for any ¢ > 0 and ¢ > 0, lima_,0 P (|L(t + A) — L(t)| > ¢) = 0.
The characteristic function of L(t) takes the form F (isL(t)) = exp {—t¢ (s)}, where i is
the imaginary unit and the function ¢ (-) R — C is the Lévy exponent of L(t).

The initial value x( is assumed to be independent of L (¢). The exact discrete-time represen-
tation of (6.3.2) is

TIA = AAT(—1)A T gA + Aaugin, Toa = 20 = Op (1), (6.3.3)
or
TiA = AAT(—1)A + A + Uzin, Toa = To/Aa, (6.3.4)
where
an = €Xp (_HA) )

gn = </1, + M) (1 — e—m) :
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M= o\ U (01— ) jon,
tA _ —KA
Up A = )\Zl <0/ e RA=S)qT, (s) — O‘id)/ (0) L) .
(

t—1)A at

Lemma 3.1 of Lui et al. (2021) provides the infill asymptotic theory that is stated below:

Lemma 6.3.1 For model (6.3.2), as A — 0,

N Ts— YW (1)
N (k — _— 6.3.5
(R—kK) = T o1 ( )
where
_ 1 1
Y, = exp(2c) 4eXP(C)+26+3b2+2_b (exp(rc)—l)Jc(r)dr—i—/ JCZ(T)dT‘
2C‘S c Jo 0
_ 1 _
fwm);mm”ﬂm+mjkmwmmm+ﬁﬁ%%i;
0
—c— 1 _
T, = Sp@—c-1 _ 1b+/ Jo(rydr + SPO =L
C 0 C
b o[l 1 1
T, = ! / (exp(re) — D)W (r) + / TP AW () + 70 / exp(re)dW (1),
> Jo 0 0
with
T
Lo 2 2 01
Jo(r) = exp(c(r — s))dW(s); vo = 05, =0 0);
) = [ epletr = D (e) 70 = s 0} = 0%0)
. —
b = (M+UZ¢ (0)) Cﬁ; c=—kN.
K o

The limiting result facilitates the inversion of the coefficient-based statistic and the construc-
tion of confidence intervals (CIs) for k. Since there are unknown parameters that cannot be con-
sistently estimated in the limiting result, the CIs are infeasible. Hence, Lui et al. (2021) suggested
using the new grid bootstrap for inference.

According to Lui et al. (2021), the following steps are needed to construct a grid bootstrap CI
for k:

1. Given the data {:cm}iio, the LS estimates of ga and aa are computed, and the residual
Up A = TyA — GAT(—1)A — JA,
and its variance estimator s> = N ! Zi\i 1 ﬂ?c,t A are obtained;
2. A grid of an, Ac = {aa1,an9,...,anc} that is centered at aa is constructed, with the

first and last grid points being calculated from ap + 7 X s.e. (aa). Lui et al. (2021) set
G = 50 in the simulation;

3. Given a point in the grid (aag € Ag), a second regression is performed:
TtA — AAGT(—1)A = A + Ut

where vy is the residual of the second regression. ga is a function of aa(;
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4. u} , o (independently drawn from the empirical distribution of {u,, A}i\io) is an ¢.7.d. ran-
N

dom variable fort = 1, ..., N. Bootstrap data {x; A}i\il are generated based on {u:’; ‘A }
= 2 ) =1

and the same initial condition as that of the observed data, namely,
*

T = AAGT(t—1)A +9a + Sfl?)‘Au;k:,tAa THA = T0;

B

N

5. B sets of bootstrap data of {{m’t" AB } t—O} are generated. For every set of bootstrap data,
=) p=1

the LS estimator of « (denoted by #*) is obtained, and the bootstrap coefficient-based statis-
tic 7' (k* — kg), where kg = —W, is calculated. The y** quantile of the bootstrap

statistic 7' (RK* — k() is determined, which is denoted by ¢}, (y|k¢). Lui et al. (2021) set
B = 399 in the simulation;

6. Following Hansen (1999), the quantile function ¢}, (y|x) is estimated by applying kernel
regression:

& (ylr) = Dot K (59) ek (ylno)
o K (559)

)

where K () is a kernel function and ¢ is the bandwidth. Lui et al. (2021) suggested using the
Epanechnokov kernel such that K (z) = 3 (1 — 2%1 (|z| < 1)) and choosing the bandwidth
by LS cross-validation;

7. The CI for k is obtained by inverting

CIP ={keR:cx(nlk) <T(R—ra) < cy(2lr)}.

Step 4 is critically different from that in Hansen (1999) as the initial condition in the bootstrap
samples is always set to x5 = To.

The grid bootstrap procedure that was proposed in Lui et al. (2021) is different from the stan-
dard grid bootstrap procedure that was proposed by Hansen (1999), which was developed for
the local-to-unity AR(1) model when the initial condition is Op(1). In the procedure of Hansen
(1999), the bootstrap initialization x{ is set to O when the AR coefficient is not smaller than one
and to the fitted value of x( that is based on the LS estimates when the AR coefficient is smaller
than one. This choice of initialization is made to avoid dependence on the initialization. Since
under the infill scheme the initial condition explicitly enters the infill asymptotic distribution, the
initialization is needed when generating the bootstrapped samples. As a result, Lui et al. (2021)
modified the grid bootstrap procedure when generating bootstrap samples by setting z; = xo
regardless of the AR coefficient. The modified grid bootstrap leads to uniform inferences on the
persistence parameter. Simulation studies showed that this improves the infill asymptotics in terms
of empirical coverage.

6.3.3 Unit Root Models in Continuous Time

When x = 0, () as defined in (6.2.1) is an [ (1) process. Zhou and Yu (2015) summarized the
limiting distribution of the LS estimator of k¥ under the three sampling schemes as follows.
The long-span asymptotics of x are

1 1
W (r)dW (r) — W (1 W(r)d

T (/I% _ O) i) _ fO (T) (7’) ( ) fO (TQ) r
Sy W ) dr = (o W (r)ar)

as 1" goes to co. The result in (6.3.6) was developed in Phillips (1987a) and Phillips (1987b).

Under the double asymptotics, as 1" — oo and A — 0, the obtained limiting result is the same
as the long-span asymptotics, as stated in (6.3.6).

, (6.3.6)
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6.3.4 Explosive Continuous-Time Models

Explosive OU processes are able to capture market exuberance in financial time series. In empiri-
cal work, the value of the autoregressive coefficient is also often taken to depend on the frequency
of observation. This is because the use of higher-frequency data typically leads to a more persis-
tent autoregressive coefficient estimate and expectations do not change over short time horizons
as much as they do over long horizons. For these reasons, dependence of the autoregressive pa-
rameter on the sampling frequency often provides greater realism in empirical work where it is
necessary to model near-unit root phenomena in continuous time.

Link with the discrete-time models

When x < 0, model (6.2.1) is an explosive OU model. Its standardized discrete model (6.2.3) cor-
responds to the model of Phillips and Magdalinos (2007). In particular, Phillips and Magdalinos
(2007) analyzed the following triangular model:

2 = RNai1 + U, 20 = 0p(N/?), (6.3.7)

The autoregressive coefficient has the form Ry = IK—I—%, a € (0,1),and C' = diag (c1, .. . ck),
where N — oo when N — oo. x; hence is a moderately integrated time series as Ry involves
moderate deviations from a unit root in the sense of Phillips and Magdalinos (2007). Moreover,
since C' > 0, z; is a mildly explosive time series. The vector (u,;) is a sequence of random
variables with zero mean and a finite second moment.

Justification of the moderate deviations from a unit root from the double asymptotic scheme
in continuous-time systems is stated in Chen et al. (2017). First, the autoregressive setup with
Ry = Ik + %, a € (0, 1) corresponds to the scheme of A— 0 and 7" — co. In a similar way of
justification, Boswijk (2001) and Phillips et al. (2001) introduce the block-local-to-unity concept.
They formulate the block-local-to-unity model using 1 + ¢/m, where m denotes the number of
observations such that m = % for M blocks. When M is fixed and m — oo, the autoregressive
coefficient parameter corresponds to the standard local-to-unity model, where 1 + .= has the same
order of magnitude as the local-to-unity parameter. When m — oo and then M — oo, the
autoregressive coefficient parameter is further from unity compared with the standard local-to-
unity model. By setting m = N7 and M = N'=7, v € (0, 1), the latter case corresponds to the
standard local-to-unity model. In this case, both m and M are decided by IV and 7. By setting
A =%, and T' = M, the latter case corresponds to the model Wang and Yu (2016) and Chen et al.
(2017). However, unlike in Phillips et al. (2001) and Boswijk (2001), N is not predetermined in
Wang and Yu (2016) or Chen et al. (2017) because N is determined after A and 7" are chosen in
the setup.

By setting A :%, and 1" = M, links between the notations (m, M, N) in Boswijk (2001) and
those in Wang and Yu (2016) and Chen et al. (2017) (A, T, N ) are established. Clearly, the double
asymptotics (1" — oo and A— 0) correspond to case (2) in Phillips et al. (2001) and Boswijk
(2001). However, unlike in Phillips et al. (2001) and Boswijk (2001), N is not predetermined in
Wang and Yu (2016) or Chen et al. (2017) because N is determined after A and 7" are chosen in
our setup.

Asymptotics
Consider the following modified model of (6.3.7):
vt = p+ Rywi_y + g, 20 = O, (NO‘/2) =0, (N“’/Q) . (6.3.8)

The error u,; is an iid sequence with mean zero and variance o2,. Compared to the model in
Phillips and Magdalinos (2007), model of (6.3.7) allows for a larger initial condition and a local
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(to zero) drift. The limit distribution of zi, which is the LS estimator of the intercept parameter y,
follows simply as

VN (i —p)
(R%Na) Zt 1Ty (N Zt 1umt>
% {(R%Na)_l thl xt—l} { Rz]\\;]\[ai Zt:l xt—lumt}
(RNNC')i2 Ei\il 33%—1 - N {(R%Na) ' Zi\il 93t—1}2

= VN

= Z Ugt + 0p (1) 5 N (0,02,) . (6.3.9)

This result is useful in testing for ;1 = 0 in the model of (6.3.7).
We let 79 = 2gN~%/%2 = X*, i = N*/?y = p*and D = X* + £ The LS estimator of

Ry is denoted by R ~, and hence, ¢ = N¢ (ﬁ N — 1). The limit theory for R ~ follows from the
proof of Theorem 2.1 in Chen et al. (2017):
02eUs + (20)V/2 D

RYN® (}?N - RN) L (6.3.10)

where U, 4 N (0,1). Given¢ — ¢ = <§N — RN> N¢, the limit theory for ¢ is

022Uz

OealUs + (20012 D

RN (@—¢) 4 9c

Defining the regression residuals i, = x¢ — ﬁNxt 1 — p and considering that the residual

variance estimate satisfies s2 = N~1 SN 42, B the associated t statistic is as follows:

TT’

~ N R

. _ By-Ry _ RNNQ(RN_RN)

R p— N N 9\ —1 1/2
1 L(_L_

s2 (W D1 Ty — N <R%Na 2= $t_1> )
c%
1/2
q 22Us+(2¢)7°D =U, 2N (0,1).

—1/2

e { (1) (oust + 20 0)'}

Similarly, given Ry = 1 + ﬁ(a is known), we have s, = N%sg,, and the associated t test
statistic is

c—d ~ . J
te = :(RN—RN)ND‘N *Shx 4 U, LN(0,1).
Se
From the mappings
0%, = LRywray=e "D X5 S0y BEAV2 ey BT
Oxg T O
A 1/2~
Dy — DA_x()AAl/Z gA_)D*:ﬂ_ 'u7
K Ozx Ozx
with A= 1/N¢, it follows that
ax OzaUy

A~ d
98 (Gp - 2 . 6.3.11
Vo e ) = ) e P D (31D



144 6. NONSTATIONARY CONTINUOUS-TIME MODELS

and
022Uz

0rals + (—26)Y2 D

ag(ﬁ—ﬁ)iﬂe

Defining s2 = N~} Z,]il u2 , 5, which satisfies A~1s2 2 52, the t statistic for G is

an —an
taA = —
San

aN /A (@a — an)

9\ —1
{53: (GK2NA2 i m%t—l)AU:%xA - % <QZNA iy x(t—l)AUmc\/Z> ) }

1/2

_2K OI’IJJL'UQ: 7
d /Umem“!‘(_Qn)l 2D _ i
— 9 L 9 _1/2_U1‘_N(0?1)7
ree{ ()" (omallc + (-20)2 D)’
and the t statistic for & is
K=K al ( — k)
te = - 1/2
o 1 N 9 1 (1 N 2\ !
s3 (W 21T A T N (m >t l’(tfl)A) )
—2:% O’zzUl’ 73
- Zerlet(oi) B = U £N(0,1),

o {(%KY (Ux:va + (—2r)1/2 D)Q}_l/2

where As,, = 54, + 0p (A) given an = exp (—kA). Clearly, ¢, is a feasible statistic, in contrast
to the discrete-time case, where the test statistic relies on the unknown rate parameter «.. Notably,
if « is unknown, then both the estimate ¢ and the standard error s, = N®sp,, are unavailable, and
inference using this limit theory for ¢ is infeasible.

There are also important differences between the discrete-time model (6.2.3) and the MP
model (6.3.7). First, the autoregressive coefficient in (6.2.3) is determined by the sampling inter-
val A. However, the autoregressive coefficient in (6.3.7) is formulated as a function of the overall
sample size N. Second, the initial condition for x; is assumed to be o, (N a/2y = op (A‘l/ 2)
in (6.3.7). However, in (6.2.3), it has a larger order of magnitude of O, (A‘l/ 2). This result
corresponds to a distant past initialization introduced in Phillips and Magdalinos (2009). These
initializations do affect the limit theory due to its larger order property. Third, the presence of the
constant intercept in (6.3.7) dominates the asymptotics. However, the intercept in (6.2.3)

da = ga/da=p(l—e")/xa
p(l—e™?)

am\/(l — e 268) /2K
[T AAN

= {1+0(a)}=0(VA)

UrxAl/Q

is asymptotically negligible as A— 0; hence, it does not affect the double asymptotics for the
model.

Lévy-driven models

Wang and Yu (2016) studied Lévy-driven models (6.3.2) with x < 0. The LS estimator of aa (k)
and ga is presented in (6.2.4). Wang and Yu (2016) developed the simultaneous double asymp-
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totics for the estimator aa (k) and ga. The result is

N
an o~ d §

apn —apn) —

an (k)* — ( ) n+D

VTh(Ga—ga) 5 oy/v" (0)Z,

where D = /2 (kp + i) (0) — kxg) / (0’ — k)" (0)) and (&, 7, Z) are independent standard
normal random variables. They also considered two types of sequential double asymptotics: (i)
T — oo followed by A— 0 and (ii)) A— 0 followed by 7' — oo. The two sequential asymptotics
are the same as the simultaneous double asymptotics.

6.4 Multivariate Continuous-Time Models

This section is the multivariate counterpart of Section 3. In particular, we discuss both the cointe-
gration and co-explosive systems.

6.4.1 Cointegration system and error-correction models

One of the most researched relationships for empirical work is cointegration. The model mea-
sures the long-run relationship, namely, equilibrium, between underlying variables. When the
underlying variables deviate from the long-run relationship in the short term dynamics, we use
an error correction model to measure the deviation. In discrete time, Granger (1981) and Engle
and Granger (1987) studied the connection between cointegration systems and error correction
models. Later, Phillips (1991) showed how to formulate a cointegration system and error correc-
tion models in continuous time and proposed an inferential procedure for such systems based on
frequency-domain techniques.

Let y (t) be an m x 1 I (1) process in continuous time and u (¢) be an m x 1 stationary time
series. y () is further partitioned into two subvectors: an m; x 1 vector y; (¢) and an mqy X 1 vector
y2 (t). w (t) is further partitioned into two subvectors: an m; x 1 vector u; (¢) and an mg x 1 vector
ug (t). We let D = d/dt represent the mean square differential operator with respect to continuous
time. The model that Phillips (1991) studied is as follows:

y1(t) = Bya(t) +ui(t), (6.4.1)
Dy (1) = w2(t), (6.4.2)

where B is an m; X mg matrix of unknown coefficients. Equation (6.4.1) expresses the long-
run equilibrium relationship between variables y; (¢) and yo (¢). This long-run relationship is
perturbed by a stationary deviation uy (¢). The error-correction model (ECM hereafter) of the
system (6.4.1)-(6.4.2) is of the form

Dy, (t) = = [I,=Bly (t) +u1 (t) + Bug (t) + Duy (t) . (6.4.3)

Combining equations (6.4.2) and (6.4.3), the error correction model (6.4.4) is obtained for the
cointegration system (6.4.1)-(6.4.2):

Dy (t) = —FEAy (t) +w(t), (6.4.4)

where

Uq (t) + Bugo (t) + Duq (t)

Im m
E= |: 1 :|aA:[ITn1><Tn17_B],w(t): UQ(t)

Om1 Xma2
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The exact discrete model of (6.4.4) is
y(n) = exp(=EA)y(n—1)+e(n), (6.4.5)

1
e(n) = /Oexp(—sEA)w(n—s)ds.

Since AE = I andexp (—FEA) =1— %EA, (6.4.5) can be rewritten in the following triangular
system ECM format:

Ay(n) = —FAy(n—1)+z(n), (6.4.6)
z(n) = e(n)+(1/e) EAy(n—1),

where x (n) = I (0).

The coefficient matrix B, which is a submatrix of A, is to be estimated. Phillips (1991)
suggested the Hannan efficient and band spectral estimators for estimating the coefficient matrix
B under the following assumptions:

1. The residual process z (n) is stationary with spectral matrix f2, (\) > 0 that is continuous
at the origin A = 0.

2. We set Q = 27 f4 (), decompose the long-run covariance matrix as = ¥ + A + A/,

where ¥ = E (2 (0)2 (0)") and A = Y32, E (2 (0) x (k)'), and define A = X + A.
O Oy
Qa1 Q2
mo X my, and mo X Mo, respectively. We define Q1.0 = Q11 — 9’2192_21921.

is partitioned as [ ], and the dimensions of €211, {297 and o are mq X mq,

In addition, we define

T
g () = (1 (), Aga (n)')  wa (N = 20T) 72D g (n) €™,

n=1

T
wy () = (27T)" Y2 Z Yz (n) €™ for A € [—, 7).

We let BB denote the LS estimator of B and let wj=mnj/Mforj=—-M+1,..., M, where M is
an integer (this requires M = o (Tl/ 2)). The smoothed periodogram estimate is

- M _ .
foo i) = >0 [w* (\s) — EBuwy (/\S)] [w* (\s) — EBuwy (/\S)]
/\SEB]'
with
As = 2ms/T,
Bj = (w]- —7T/2M< >\<Wj+7T/2M).

Hence, the Hannan efficient estimator of B is

- -1

M
- 1 ~ ~
vec <B> = |3 E E fre (wj)_1 E ® fa (wj) X (6.4.7)
j=—M+1

2M Z (E frz (wj) ®Im2) vec (ﬁg (wj)) ,

j=—M+1
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where

Foa(wy) = 17> Jwa (M) wa (A",
B;

ez wy) = U1 we (Ba) wa (A)",

B;

for | = [T'/M]. The band spectral estimator By is similarly defined but based on the spectral
estimates at the origin.
Phillips (1991) also considered the subsystem band spectral estimator of B, which is expressed
as follows:
-1

Bf = |£i2(0) = fia (0) fan (07 Faz (0)] [ Fo2 (0) = foa (0) Fan (0) ™" faz (0)]

where faa (0) denotes the estimated spectral matrix of Ays (n) and fi2 (0), fia (0) and foa (0)
denote the estimated cross spectral matrices of (y1 (n),y2 (1)), (y1 (n), Ayz (n)) and (y2 (n) , Ays (n)),
respectively.

Following the approach in Phillips and Perron (1988), the three estimators B, EO, and Bar are
asymptotically equivalent, and the following limiting result is obtained:

-1

T<§—B>I(Eriﬂﬂ%Bg—Byi(A%ﬁw$>(Aﬁ%%) :
e )

The finite sample performance of the Hannan efficient estimator (6.4.7) was evaluated in
Chambers (2001). Simulation studies in Chambers (2001) showed that the choices of bandwidth
parameter and kernel function impact the finite sample performance. In particular, in terms of
mean squared error, they found that the band spectral estimator By with the Parzen kernel per-
formed the best in the studied cases.

where

6.4.2 Explosive Continuous-Time Systems

Chen et al. (2017) studied the following scalar continuous-time model in two variates, y (¢) and
x (t). Here, x (t) follows an Ornstein—Uhlenbeck process, and the stochastic process y (t) co-
moves with z (t) as

y(t) = Ba(t) +uo(t), (6.4.8)
de(t) = k(p—o(t))dt+dBy(t),z(0) =29=0,(1), k<0, (6.4.9)

where ug(t) is Gaussian pure noise — a generalized stochastic process in continuous time (see
Hannan (1970) and Phillips (1991)). and B, (t) = 0., W, (t) with W, being a standard Brownian
motion that may be correlated with Wy. The parameter of central interest for inference is the
coefficient 3, which captures the co-movement between y(¢) and x(¢).

Let ug (t) = DBy (t), where By (t) = oooWy (¢) with W} being the standard Brownian mo-
tion, and D = d/dt is the mean square differential operator. Consider the case where ug (t)
is unrealizable as a covariance stationary stochastic proces, the corresponding discrete-time pro-
cess of y () is realizable. In particular, y (¢) takes the form of a pure noise process of independent
identically distributed (¢id) N(O, 080) errors. This formulation is extensively used in modeling mi-
crostructure noise effects in the measurement of efficient financial asset prices. This formulation
corresponds to the discrete-time system (6.4.12). Phillips and Yu (2006) discussed such models
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with standard formulation of an efficient price subject to unobserved microstructure noise. Alter-
nate specifications is to set ug (£) = 0 a.s.. This corresponds to the limit form of a discrete-time
cointegrated system, as discussed in Remark 12 of Chen et al. (2017).

The continuous-time system (6.4.8)-(6.4.9) is related to the market microstructure literature.
For example, Zhang et al. (2005), Ait-Sahalia et al. (2005)(AMZ, hereafter) and Bandi and Russell
(2006) assume that the observed transaction price is equal to the sum of the efficient price and an
1id noise component. In particular, AMZ assumes that the observed logarithmic price of a security
follows

X (tA) = X (tA) + U (tA), (6.4.10)
where the logarithmic efficient price X (¢) is
dX(t) = p(X(t))dt + o (X(t))dW(t), (6.4.11)

and the iid error {U (tA)} has a zero mean and a finite variance o2. U (tA) is independent of
X (tA). Formulating of systems (6.4.10)-(6.4.11) in continuous time have been discussed in the

market microstructure noise literature, see Hansen and Lunde (2006) and Phillips and Yu (2006).

The exact discrete-time representation

Following Phillips (1972), the exact discrete time representation of (6.4.8)-(6.4.9) is

yian = Bra +uoea, (6.4.12)
Tian = aa(R)Tp_1a +9a + Uzia, Toa = z0 = Op (1), (6.4.13)
where
an (k) = exp(—rA),
ga = p(l—er),
A —k(tA—s) d 0‘72777 —2KkA
UgtA = Ozg e dB, (s) =N (0, 2 (1 e ) 7

(t—1)A K

Ug tA 4 /\/(0,080).

The autoregressive parameter aa (x) is determined by the sampling frequency A, and hence both
A and ap (k) are related to the sample size V. The standard error of Up tA 1S AA ~ Um\/Z — 0.
But the variance of up A does not depend on the sampling interval A. wug A in discrete time
corresponds to the generalized stochastic process ug (t) in continuous time. Gaussianity follows
from the Brownian motion driver processes in (6.4.8)-(6.4.9).

Standardizing the equation (6.4.13) by Aa gives

Yyin = Bra + uoga, (6.4.14)
Tin = aa (R)Ty_na + A + Uzia, Ugea ~ia N (0,1), (6.4.15)

where Tya = 2iA /A (Toa = Toa/AA), Ga = ga/Aa as A— 0. Clearly, we have ﬁ = % —
0,and aa (k) =1 — kA + O (A?) — 1 when T' — oo and A— 0.

Since k < 0, T in (6.4.15) is a mildly explosive process, as defined in Phillips and Mag-
dalinos (2007). Further as A— 0, it follows that oo = zoa/Aa = Op (A_I/Q). Thus, in the
standardized discrete system (6.4.14)-(6.4.15), the initial condition is zga ~ O, (A_l/ 2), while
in the original system (6.4.8)-(6.4.9), it is o ~ Op(1). In addition, the order of magnitude of the
drift is O (\/Z) in model (6.4.15) but is O, (1) in (6.4.9).

The standardized discrete system (6.4.14)-(6.4.15) corresponds to the modified MP model

Y = A:Et+U0t, (6416)
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w1 = pk Rnae g w0 = aox = Op (N/2) = 0, (N792) . (64.17)

g 80 00z ]
00z 092:x
This model extends systems in MP by allowing for a larger initial condition and a (local to zero)
drift.

/. .. . .
where the error u; = [ugy, ug] is an iid sequence with mean zero and covariance [

Double asymptotics for the co-explosive system

The LS estimator 3 of the slope coefficient in the continuous-time model (6.4.8) is

R N -1/ N 1 (X -1/ N
B—pB= <Z $%A) (Z IL’tAUO,tA) = x (Z f?A) (Z Et&AUO,tA> . (6.4.18)
t=1 t=1 t=1 t=1
Chen et al. (2017) presents the associated limit theory, according to which

a00Uo
OualUs + (—26) Y2 (20 — p)

N
n
VA

under the condition that A'=®T% — 1 as T — co. The limit result can be extended to the case
where ug(t) is weakly dependent.

, (6.4.19)

(-5) % (-2n)

Next, we let the residual variance estimate be sg = N1 Zi 1 ﬂg +A» Which satisfies sg N
080. The usual t statistic is

B-8 (3— ﬁ) aX /vVA
tﬁ - 85 - —1 1/2
(3o as miota) )
K

(~20) —
4 GeeUrt (—20) (w010 —Up 2N (0,1),

00 {(%2,{>2 <Ux +(—2r)"2 D*)2‘7§x}_

where D* = X* — p/* with Ty = zoyN~*/? = X* and ji = N*/?;, = p*. This result leads to
feasible inference concerning the slope coefficient £ in continuous time.

When the errors are weakly dependent such that ug A is a sequence of zero mean and weakly
dependent errors, the limiting results of (6.4.19) holds. In particular, we assume ug ;A satisfying
Assumption LP as defined in MP, such that

ag00Uo

N
NS ud a = N (0,wg) -
t=1

where the long-run variance w3, can be decomposed as
UJSO = O‘%O + 200,
with variance component 03, and one-sided long-run variance
o)
Aoo = Z E (uoatg (t—ia) -
i=1

Then we obtain
wooUo

OpaUsp + (_2/{)1/2 (xO - :u).

(B-5) % (~2n)
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follows the limit results from Theorem 4.1 in MP and (6.4.19),

Alternatively, we set ug(t) 2" 0 in (6.4.8). This formulation corresponds to a discrete system
(6.4.14) with ug A ~jig N (0, agoA). Hence, the relationship between xz(t) and y(t) is exact in
the limit, which is analogous to the relationship of limit Brownian motion processes (B,,, B;) of
cointegrated discrete series (y;, x;) where x; = x;_1 + uy and y, = By + ugr with (uoyr, Ugt)
stationary and limiting linear relation By (t) = (3B, (t). In this case, it follows that the limit

distribution of 3 is

a00Uo
OxaUy + (—2&)1/2 (o — 1)

E>|t>:z

(ﬁ 6) (—2k) : (6.4.20)

when A— 0 and 7" — oo. In view of the scaling effect in the discrete time error, there is a faster
rate of convergence in the estimation of (.

Double asymptotics for the cointegration system When x = 0, the model (6.4.8)-(6.4.9) cor-
responds to the cointegration system in continuous time. Its discretized system corresponds to the
following cointegration model:

y = Az + ug, (6.4.21)
©r = Rui_1+uer, 10 = 0, (N1/2) . (6.4.22)
2
where the error u; = [ug, um]' is an iid sequence with mean zero and covariance [ ZOO ng ] .
Oz xx

We have assumed that 2y /N -3 = X*.
We have the following asymptotics.

Theorem 6.4.1 For the discrete time system (6.4.21)-(6.4.22) with R = 1, when N — oo,
(i)

w(2-1)= Xt W, (1) +am SEW, (r) AW, (r )
X2 402, fo 2dr 4 2X*0 s fo r)dr
(ii)
X*o00Wo (1 )+0m000 fO Wy () dWo (1)
X2 402, [ W, (1) dr + 2X0us [ Wo (r)dr

N(A-4)=

Corollary 6.4.2 provides the asymptotics for the LS estimates of 5 for the continuous-time
system (6.4.8)-(6.4.9) with k = 0.

Corollary 6.4.2 We let A = N~°, where oo € (0,1). For the continuous-time system (6.4.8)-
(6.4.9) with k = 0, we assume that there exists o € (0,1) such that ' =T — 1 as T — oo.
Then, we have

(i)
)+ f(} 2 (r) W (1) |
Oaa ((ioz) +f0 dr—l—2$° fo dr)

NVA (Gp —1) =

(ii)
2 (am D)+ fy W (r) dWo (1))

)= ((Jﬂ) + W (1) dr 220 W dr>.
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Multivariate co-explosive systems in continuous time

In continuous-time systems with more than one mildly explosive regressor, two cases are examined
in Chen et al. (2017): (i) when all the regressors have distinct explosive roots and (ii) when all the
regressors share the same explosive root. The limit behavior is different for these two cases.

The multivariate continuous-time system is

y(t) = Br(t) +uo(t), (6.4.23)
de(t) = k(p—a(t)dt+QY2dB, (1), 2(0) =20 = 0, (1), k <0, (6.4.24)

where ug(t) ~ N (0, $) is Gaussian noise. The driver process z(¢) is a multivariate Ornstein—
Uhlenbeck process with persistence matrix «, where x = diag (k1, k2, . .. £ ) is a K x K diago-
nal matrix and x; < 0 for¢ = 1,..., K. In addition, B,(t) = Q%EWQ; (t), where W, is standard
vector Brownian motion that may be correlated with W;. Our interest is the co-movement coeffi-
cient mtrix 3, which is an m x K matrix.

The exact discrete time representation of (6.4.23)-(6.4.24) is (see Phillips (1972))

YA = Bria + uora, (6.4.25)
rin = ap (K)T_1)a +9a + Uz, Toa = z0 = Oy (1),
where
an (k) = exp(—rA),
gan = K1 (IK — e_"“A) Kb,
tA J
UgtA = / e_n(tA_s)szdBm (5) =N (07 chA) 5
(t—-1)A
d
uotA = N(Oa Q00)7
since
14 A I %A
E (uw,mu;m) = / e 2(A=8)() ds = 5/«:_ (IK —e f ) Q.
(t—1)A

Re-standardized it by v/A, the system becomes

Yin = B+ uoa, (6.4.26)
Tin = an(K)Ty—1a +Ja + Uzia, Toa = ATY200, Upan ~iia N (0, Qe )6.4.27)

where Tia =A 712240, Ga =A71/2gA and Ug tA :A_l/quvtA 4 N (0,94:). The order of the
initial value Zga =A"1/2z(n is Op (A_I/Q), and the order of the drift term ga is O, (AI/Q).

Distinct explosive roots We let U, -~ N(0,Ix), Uy = (Jo° ei""””Q;,;ggep"‘alp)1/2 Uy, and D =
xo — . For the continuous-time system (6.4.26)-(6.4.27), the double asymptotic theory for the LS
estimator of the coefficient matrix 8 when & has distinct diagonal elements (x; # &, for i # j) is
expressed as follows:

1/2

0o -1
vec{L (B— ﬁ) ag} 4 [(/ eP” (D + ﬁx) (D + 5x>/ep”dp> ® 900] XN (0, Ik ),
VA 0
(6.4.28)

assuming that there exists a € (0, 1) such that A'=*T* — 1 as T — oc.

The LS estimator of « is consistent since A is known. We let Spo = N1 Zfil ﬂo,m%iA,
which satisfies

S0 = Qoo,
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and the corresponding estimate of the covariance matrix of (3; is

N 1
2
Sp;8; = (Z f”j,m) So0-
=1

Then, the Wald statistic for testing the full rank restrictions Hy : );3; = r;j is

—~ !/ / —1 ~ d 2
W, = {Qi (ﬁj - 5.7‘)} (stﬁjﬁij> {Qj (ﬁj - 57)} = Xg»
which leads to feasible inference about 3; in the continuous-time framework.
Let a; be the jth column of aa (k). The Wald statistic for testing the full rank restrictions
Hy : Q;a; = g; for given (@}, ¢;) has the following Chi-squared limit:
~ -1 ~ d
Wa, = {Q; (@5 — a;)} (Q)Sa;0,Q5) {Qj (@ — a5)} = x5,

-1
2

N 1 N . — N ~ ~

where Sy q; = (thl :B?(t_lm -~ (thl Jlj(t_l)A) > S With Spp = NTUN | Ty AT 40

satisfying A™1S,, EN Qya, Where Uy A = TyA — AAT(—1)A — A are regression residuals. We
let 7 denote the jth column of x. Given the matrix exponential relation, we have the covariance
matrix of %/, which satisfies A2S,;,; = Saja; +0(A). Thus,

. . 00 ~ \2 -1 9k.:Q)
(7 — w) e BN & MN (0, < / 2P (Dj + ij) dp> xzm> L pN | o, —L e
0 (Dj +U jx)
Then, the Wald statistic for testing the (full rank) restrictions Hp : Q; Kl = qj satisfies
i / N\t i d
Wo = {Q =4} (QiSm,@))  {QF — g} 512
Common explosive roots Now we consider the case where the localizing explosive coefficients

are identical, namely, x; = x fori = 1,..., K. Let H, be the K x (K — 1) random matrix that
is an orthogonal complement to

1/2

X.=(D+0.)/ {(D + Il,,)' (D+0.) } : (6.4.29)

satisfying H| H'| = I'x — X, X/ and with

_ o 1/2
Uy = ( / ef"mmefmdp> U, = QY2U,/ (202, U, £ N (0, 1), and D = 2 — pu.
0

The LS estimator of the coefficient matrix 5 when s has common diagonal elements (x; = & for
1=1,..., K.) is expressed as follows:

—~ 1 —1/2
vee (VN (8- 5)} 4 [HL {HL (uu’ + _—%Q) HL} @ Q| X N (0, k) .

(6.4.30)

assuming that there exists o € (0, 1), such that AT — 1 as T — oco.
Then, the Wald statistic for testing H : @ [vec (8)] = ¢ for full row rank (Q, q) is

W = {QE— q}/ (QS55Q) " {QB— q} 52
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which leads to feasible inference about the matrix coefficient 3 in the continuous-time framework.
Inference about the full matrix 3 is possible in this case because of the common factorization
convergence rate in (6.4.30). The Wald statistics for testing full rank restrictions on aa and x such
as Hy : Q[vec(aa)] = q and Hy : Q [vec (k)] = q are defined in a similar way and have the
following chi-squared limits:

Was = {Q [vec @a)] — a} (Q5aa@') " {Q [vec(@a)] — g} % 2,

and

Wi = {Qvec (R)] — 0}’ (QSwe@) " {Q [vec (R)] — ) > xj,
which again lead to feasible inference on aa and x because of the common factorization conver-
gence rate. When z; has a common explosive root, LS estimation by @a and k produces biased
estimates due to endogeneity in the regressor, as shown in Phillips and Magdalinos (2013). The
bias distorts the Wald test statistics, and the distortion will be demonstrated in the Monte Carlo
simulation below.

6.5 Monte Carlo studies

This section examines the performance of the double asymptotic limit theory for both cointegration
(k = 0) and co-explosive (k = —2) systems in simulations.

Data are generated from the model (6.4.12)-(6.4.13) with 0g9 = 0z = 1 and p = 0,
and three sampling intervals are considered, namely, A = 1/12, 1/52,1/252, which corre-
spond to monthly, weekly and daily frequencies, respectively. The initial value x( is set to
3.5, and time spans of T" = 4 and T' = 10 years are considered. The percentiles at levels
{1%, 2.5%, 10%, 90%, 97.5%,99%} are reported in the limit distribution (6.4.19) and the finite

sample distribution of the coefficient-based test (called the C test hereafter) for both the cointe-
N

gration (N VA (E — 5)) and co-explosive systems (_2‘; Tx (B — 6)). In addition, the densities
of the limit distributions and finite sample distributions of the C test statistic are compared. The
number of replications is 10,000.

Table 6.1 ! reports the percentiles when zy = 3.5 by using the true values of x and x. Both
the double asymptotic distribution and the finite sample distribution are sensitive to changes in the
initial condition for the C test. In all cases, the double asymptotic limit distribution provides a
good approximation to the finite sample distribution.

Figure 6.2 plots the densities of the C test statistic when 17" = 4.

The first row corresponds to the C test for cointegration cases. The second row corresponds to
the C test for co-explosive cases. These plots show that the limit distribution well approximates

the finite sample distribution for C tests.

6.6 Empirical illustrations

We conduct an empirical study of the relationship between the US nationwide real estate market
and metropolitan real estate markets during an explosive period and a normal period by applying
the limit theory for univariate co-moving systems (6.4.8)-(6.4.9) for k < 0 (coexplosive period)
and x = 0 (cointegration period) to real estate data using the S&P/Case-Shiller home price com-
posite 20-city index and metropolitan area indices. The S&P/Case-Shiller home price indices are
the leading measures of U.S. residential real estate prices and track changes in the value of resi-
dential real estate nationwide. Monthly data for the composite 20-city index and 20 metropolitan
area indices were downloaded from the St. Louis Fed.> We apply the logarithmic transformation
to all data. With monthly data, the sampling interval is set to A= 1/12.

!The result in Table 6.1 for the co-explosive system is from Chen et al. (2017).
Zhttp://research.stlouisfed.org/fred2/release rid=199
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Time Span T=4 T=10

K=-2 C test 1%  2.50% 10% 90% 97.50% 99% 1%  2.50% 10% 90% 97.50% 99%
Daily Double Asymptotics | -1.0810 -0.9316 -0.6634 0.6676 13653 1.8028 | -2.1942 -1.7964 -1.1937 0.5512 1.2872 1.7229
(h=1/252) | Finite Sample -1.0913  -0.9366 -0.6625 0.6609 1.3540 1.7802 | -2.1824 -1.7224 -1.1627 0.5783 1.3165 1.8168
Weekly Double Asymptotics | -1.1036 -0.9676 -0.6810 0.7114  1.4448 1.9358 | -2.0883 -1.7241 -1.1884 0.6124 1.3744 1.8624
(h=1/52) | Finite Sample -1.0913  -0.9366 -0.6625 0.6609 1.3540 1.7802 | -2.1824 -1.7224 -1.1627 0.5783 1.3165 1.8168
Monthly | Double Asymptotics | -1.1164 -0.9601 -0.6819 0.6699 13325 1.8141 | -2.1003 -1.7457 -1.2049 0.5910 1.3528 1.9057
(h=1/12) | Finite Sample -1.0913  -0.9366 -0.6625 0.6609 1.3540 1.7802 | -2.1824 -1.7224 -1.1627 0.5783 1.3165 1.8168
K=0 C test

Daily Double Asymptotics | -0.3537 -0.2943 -0.1874 0.1866 0.2952 0.3562 | -0.3537 -0.2943 -0.1874 0.1866 0.2952 0.3562
(h=1/252) | Finite Sample -0.3576  -0.2817 -0.1826 0.1818  0.2897 0.3558 | -0.3748 -0.3025 -0.1890 0.1865 0.2924 0.3485
Weekly Double Asymptotics | -0.3537 -0.2943 -0.1874 0.1866 0.2952 0.3562 | -0.3537 -0.2943 -0.1874 0.1866 0.2952 0.3562
(h=1/52) | Finite Sample -0.3498 -0.2870 -0.1833 0.1835 0.2920 0.3464 | -0.3385 -0.2864 -0.1859 0.1834 0.2858 0.3505
Monthly | Double Asymptotics | -0.3537 -0.2943 -0.1874 0.1866 0.2952 0.3562 | -0.3537 -0.2943 -0.1874 0.1866 0.2952 0.3562
(h=1/12) | Finite Sample -0.3317 -0.2828 -0.1766 0.1706  0.2668 0.3186 | -0.3157 -0.2595 -0.1686 0.1783  0.2738 0.3337

Table 6.1: Comparison of the finite sample and double asymptotic distributions of B when the
initial value is g = 3.5.
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Figure 6.2: Density comparison of the C test for both finite sample and limit distributions when

the initial value is o = 3.5.
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Co-explosive sample period:

The selected explosive sample period is from April 2000 and April 2006. In this case, N = 73,
A= 1/12, and hence, T = 5.25. The initial value in each equation of the system is set to the value
of the composite 20 index in January 2000, namely, xo = log (162.01) = 5.0877.

Cointegration sample period:

The selected cointegration sample period is from August 2008 and August 2014. In this case,
N = 73, A= 1/12, and hence, T' = 5.25. The initial value in each equation of the system is set
to the value of the composite 20 index in August 2008, namely, zg = log (104) = 4.6444.

A multi-equation continuous-time system (6.4.8)-(6.4.9) is estimated with x; as the logarith-
mic composite 20 index (called the countrywide index in the present paper) and each y; being one
of the logarithmic metropolitan area indices. The coefficient 5 then measures the co-movement of
each metropolitan area index with the countrywide index.

The steps for the empirical studies are as follows:
Step 1:
The occurrence of explosive/normal behavior in the market index (z;a) and in the individ-

ual area indices (y;a) is investigated by estimating x and k, and obtaining the 99% and 90%
confidence intervals based on the C test confidence intervals.

Step 2:
For the areas that exhibit explosive/normal behavior, the possible co-movement with the mar-

ket index is studied further. Allowing for possible weak dependence in wg;, the variance and
long-run variances of u,; are estimated by

| X

o N~ o~ A 12

oo = NZUOtUom @oo = Tgo + 2A00
A=1
M, N

3\\30 = % (1_MA+1> Z aOfi%)t—A?
A=1 n t=A+1

with truncation lag M,, = N'/3,

Results from Step 1 are reported in Table 6.2 3. First, in the explosive period, for the country-
wide index, the LS estimate of « is —0.1184. Its 90% confidence interval is [—0.1202, —0.1168]
based on the C test. The results confirm explosive behavior in x;a over this period. For all indi-
vidual area indices, explosive behavior is found based on both the 90% and the 99% confidence
intervals by the C test. Second, in the normal period, for the countrywide index, the LS estimate
of x is —0.0088. Its 90% confidence interval is [—0.0144, —0.0022] based on the C test. The
results confirm unit root behavior in z;a over this period. The unit root behavior is found for all
individual area indices based on both the 90% and the 99% confidence intervals by the C test.

Now we study the possible co-movement with the market index. Based on the C test, Table
6.3 reports the LS estimates of 8 and the 99% and 90% confidence intervals. The null hypothesis
Hy : 8 = 0 is comfortably rejected in all cases. The confidence intervals can also be used to
assess whether 6 = 1 versus 5 < lor 8 > 1. If 8 > 1 (respectively, 8 < 1), we claim
that the index of the associated metropolitan area moves faster (slower) than the national index,
which provides a useful perspective on the relationships of different metropolitan area indices to
the national index. The results show that cities such as LA, Miami, SanDiego, DC, Boston, and
NY have more “aggressive” real estate markets than the whole U.S. in both the explosive sample
period and in the normal sample period.

3The result in Table 6.2 for the co-explosive system is from Chen et al. (2017).
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Co-explosive Periods Cointegration Periods

Place K Or Ky C test 99% CI C test 90% CI K Or Ky C test 99% CI C test 90% CI

Market -0.1184 | -0.1212 -0.1159 | -0.1202 -0.1168 | -0.0088 | -0.0172 0.0025 | -0.0144 -0.0022
SF -0.0024 | -0.0044 -0.0017 | -0.0034 -0.0019 | -0.0011 | -0.0150 0.0213 | -0.0106  0.0112
LA -0.0036 | -0.0050 -0.0029 | -0.0043 -0.0031 | -0.0007 | -0.0115 0.0147 | -0.0080  0.0082
LasVegas -0.0031 | -0.0119 -0.0020 | -0.0056 -0.0023 | 0.0006 | -0.0135 0.0235 | -0.0090 0.0132
Miami -0.0040 | -0.0053 -0.0034 | -0.0047 -0.0036 | -0.0001 | -0.0109 0.0155 | -0.0074  0.0089
Phoenix -0.0036 | -0.0083 -0.0027 | -0.0054 -0.0029 | -0.0001 | -0.0142 0.0228 | -0.0097  0.0125
SanDiego -0.0027 | -0.0055 -0.0019 | -0.0040 -0.0021 | -0.0008 | -0.0114 0.0143 | -0.0080  0.0079
Denver -0.0009 | -0.0012 -0.0008 | -0.0011 -0.0008 | -0.0006 | -0.0064 0.0063 | -0.0045 0.0036
DC -0.0032 | -0.0044 -0.0025 | -0.0038 -0.0027 | -0.0003 | -0.0076 0.0090 | -0.0052  0.0053
Chicago -0.0017 | -0.0019 -0.0015 | -0.0018 -0.0016 | 0.0007 | -0.0077 0.0118 | -0.0049  0.0072
Boston -0.0016 | -0.0023 -0.0012 | -0.0020 -0.0013 | -0.0003 | -0.0061 0.0067 | -0.0041  0.0040
Charlotte -0.0007 | -0.0008 -0.0006 | -0.0008 -0.0006 | 0.0001 | -0.0078 0.0104 | -0.0051  0.0062
Portland -0.0022 | -0.0031 -0.0017 | -0.0027 -0.0019 | 0.0001 | -0.0085 0.0115 | -0.0057  0.0068
Dallas -0.0006 | -0.0007 -0.0005 | -0.0007 -0.0006 | -0.0006 | -0.0065 0.0066 | -0.0045  0.0038
Detroit -0.0007 | -0.0008 -0.0006 | -0.0008 -0.0007 | -0.0002 | -0.0125 0.0186 | -0.0086  0.0103
Atlanta -0.0009 | -0.0010 -0.0008 | -0.0009 -0.0009 | 0.0003 | -0.0110 0.0168 | -0.0074  0.0097
Seattle -0.0021 | -0.0027 -0.0017 | -0.0025 -0.0018 | 0.0002 | -0.0084 0.0116 | -0.0056  0.0069
Minneapolis | -0.0017 | -0.0020 -0.0015 | -0.0019 -0.0015 | 0.0001 | -0.0114 0.0170 | -0.0077  0.0096
Tampa -0.0035 | -0.0048 -0.0028 | -0.0042 -0.0030 | 0.0004 | -0.0094 0.0140 | -0.0062  0.0083
Cleveland -0.0006 | -0.0007 -0.0006 | -0.0007 -0.0006 | 0.0001 | -0.0058 0.0073 | -0.0038  0.0045
NY -0.0026 | -0.0029 -0.0023 | -0.0028 -0.0024 | 0.0004 | -0.0048 0.0065 | -0.0030  0.0042

Table 6.2: Estimated persistence parameter values in y;, and x4, and confidence intervals for the
persistence parameter in the U.S. logarithmic real estate market.

Co-explosive Periods Cointegration Periods

City 8 C test 99% CI Ctest90% CI | C test 99% CI C test 90% CI

SF 1.0697 | 1.0684 1.0710 | 1.0688 1.0705 | 0.9863 | 0.9856 0.9871 | 0.9858 0.9869
LA 1.1731 | 1.1683 1.1781 | 1.1700 1.1763 | 1.2134 | 1.2129 1.2139 | 1.2131 1.2138
LasVegas 1.0467 | 1.0420 1.0515 | 1.0436 1.0497 | 0.7354 | 0.7348 0.7360 | 0.7350 0.7358
Miami 1.1329 | 1.1284 1.1376 | 1.1300 1.1359 | 1.0371 | 1.0368 1.0374 | 1.0369 1.0373
Phoenix 0.9341 | 0.9304 0.9380 | 0.9317 0.9366 | 0.7993 | 0.7987 0.7999 | 0.7989 0.7996
SanDiego 1.2087 | 1.2048 1.2127 | 1.2062 1.2112 | 1.1099 | 1.1094 1.1104 | 1.1096 1.1102
Denver 0.8288 | 0.8237 0.8339 | 0.8255 0.8320 | 0.8856 | 0.8854 0.8859 | 0.8855 0.8858
DC 1.1350 | 1.1318 1.1383 | 1.1329 1.1371 | 1.2530 | 1.2526 1.2534 | 1.2527 1.2533
Chicago 0.8843 | 0.8818 0.8868 | 0.8826 0.8859 | 0.8129 | 0.8124 0.8134 | 0.8126 0.8132
Boston 1.0058 | 1.0029 1.0088 | 1.0039 1.0076 | 1.0510 | 1.0508 1.0513 | 1.0509 1.0512
Charlotte 0.7220 | 0.7174 0.7266 | 0.7190 0.7249 | 0.7905 | 0.7902 0.7908 | 0.7903 0.7907
Portland 0.8285 | 0.8263 0.8307 | 0.8271 0.8298 | 0.9888 | 0.9885 0.9891 | 0.9886 0.9889
Dallas 0.7481 | 0.7430 0.7533 | 0.7448 0.7514 | 0.8135 | 0.8133 0.8136 | 0.8134 0.8136
Detroit 0.7676 | 0.7629 0.7724 | 0.7646 0.7706 | 0.5244 | 0.5241 0.5247 | 0.5242 0.5246
Atlanta 0.7732 | 0.7688 0.7777 | 0.7704 0.7760 | 0.7014 | 0.7010 0.7018 | 0.7011 0.7016
Seattle 0.8450 | 0.8427 0.8474 | 0.8436 0.8465 | 0.9917 | 0.9914 0.9920 | 0.9915 0.9919
Minneapolis | 0.9437 | 0.9408 0.9468 | 0.9418 0.9456 | 0.8289 | 0.8287 0.8290 | 0.8288 0.8290
Tampa 1.0154 | 1.0131 1.0177 | 1.0139 1.0168 | 0.9442 | 0.9439 0.9446 | 0.9440 0.9444
Cleveland 0.7441 | 0.7396 0.7487 | 0.7412 0.7469 | 0.6867 | 0.6864 0.6871 | 0.6865 0.6870
NY 1.0483 | 1.0475 1.0492 | 1.0478 1.0489 | 1.1363 | 1.1357 1.1370 | 1.1359 1.1367

Table 6.3: Estimated ( coefficients and confidence intervals for 5 in the U.S. logarithmic real
estate market
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6.7 Conclusions

This chapter reviewed recent developments in nonstationary continuous-time models. For I(1)
continuous-time models, the main focus has been on the I(1) OU process, the associated coin-
tegrated system, and the error correction model. Several estimators have been introduced in the
literature, and their finite sample performance and the applications have been reported. For explo-
sive continuous-time systems, the focus has been on the explosive OU model and the co-explosive
model. The limit distributions of the parameters of interest depend explicitly on the initial condi-
tions. This dependence mimics a corresponding property in the finite sample distribution and, thus,
improves the quality of the double asymptotic limit theory as a finite sample approximation. The
localized coefficient c in a discrete time explosive model, whose counterpart in continuous time
is —k, is consistently estimable in continuous time using the LS estimator, thereby facilitating the
use of a coefficient-based test for mildly explosive behavior. The co-explosive model is useful
in studying the co-movement behavior in different financial markets. These constitute promis-
ing directions for future empirical research. For future theoretical research, the development of
nonstationary continuous-time models with mixed frequency data is a possible direction.
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6.8 Appendix

This Online Supplement provides proofs of the main results in this Chapter.

6.8.1 Proof of Theorem 6.4.2
Proof. (i) We start by expressing x; in (4.22) as

t
Ty =30+ Y Uy (6.8.1)
j=1

Then, the standardized numerator can be decomposed as

N N N t
N7t thum =N Zuwtmo + N1 Zu“ Zuxj . (6.8.2)
t=1 t=1 t=1 j=1

For the first term on the right-hand side of (6.8.2), since zg/N =2 = X*, we have

N
NS T ugiao = X 02 W (1), (6.8.3)
t=1

from Hamilton (2020) (Proposition 17.1 (a)). For the second term on the right hand side of (6.8.2),

N t 1
NS gy [ D ey | =02, / W (1) dW, (1), (6.8.4)
=1 j=1 0

from Hamilton (2020) (Proposition 17.1 (b)). Combining the results of (6.8.3) and (6.8.4) yields
N 1
N7t Z Tpugy = X 05 Wy (1) + oim / Wy (r) dW, (r) .
t=1 0

Next, we consider the standardized denominator

N N t 2 N t
N2 af =N g+ N2 D g | 42N 200> (D way | (6.8.5)
t=1 t=1 \j=1 t=1 \j=1

For the first term on the right-hand side of (6.8.5), since Ty = zony N /2 = X* , we have
N~1ad = X*2, (6.8.6)

For the second term on the right-hand side of (6.8.5), we then have

2

N t 1

N2 Z Uz | = 02, /0 W, (r)? dr, (6.8.7)
t=1 \j=1

from Hamilton (2020) (Proposition 17.1 (e)). For the third term on the right hand side of (6.8.5),

we have
t

1
2N 2z, Z Z uzj | = 2X*0m/ W, (r)dr, (6.8.8)
0

t=1 \j=1
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from Hamilton (2020) (Proposition 17.1 (d)). Combining the results of (6.8.6)-(6.8.8) yields

N 1 1
N2 Zx? = X*2 ¢ gfm/ We (7“)2 dr +2X*0.s / W, (r) dr.
=1 0 0

Hence, we obtain

N @ - 1) L X W (1) + ol o W (1) dWa ()
X2 402, [{ W, (1) dr + 2X*0uy [y W (r)dr

(ii) By the same argument, we obtain

N (j_ A) N X*o00Wo (1) 4+ 022000 fol W (1) dWy (1)
X*Q + Ui%iv fol Wl‘ (T)Q dT + 2X*Um: fol Wx (7’) dT ’
[ |

6.8.2 Proof of Corollary 6.4.2

The proof follows from Theorem 6.4.2 by considering the mappings

>t

2 2 2 *
00— 000: 0 — L, X™ —

Oxx
with A = N~¢,
For (i), it follows that
N
NS Faugsa = / W (r) dW, (),
—1 Ufm

N
N2 Z;}:?A = (a ) / W (
t=1 Txr

and hence,

NVA (@a (k) = 1)

\/ZN_I Zi\il TiaUzgA Nt Zi\il TiAUz A VA
N—2 Zig x%A N2y #y Aa

)+ fol () dWy ()

Um<<£;) —l—fo dr—|—2$ fo dr)'

=

For (ii), it follows that

(1) + 000 /01 W, (r)dWy (1),

Ogx

and hence,
NVA (B - /3)
AN_l Zi\il Tiaugen N7 Zi\;l Fiauoa VA

N_QZivll’tQA N_QZi\ilj?A Aa
ﬂ( 1)+ Jo Wa (r) dWo (1)

=

<<f) + WL ()P dr 422 [l dr>'
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