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Continuous-time models have broad applications in many core areas of economics and fi-
nance. This chapter first briefly introduces applications of continuous-time models in mod-
eling the dynamics of short-term interest rates. The short-term rate is a fundamental factor
in the valuation of necarly all of the derivatives in the financial markets. Over the past 40
years, many estimation methods have been proposed to estimate continuous-time models us-
ing discrete samples. However, almost all of those methods suffer from finite-sample bias.
The bias problem is particularly severe for the mean-reversion parameter, which measures
the persistence level of the interest-rate process. Moreover, this bias propagates and leads to
considerable bias in the price calculations of interest rate contingent claims, such as bonds
and bond options. The focus of this chapter is to conduct a detailed review of the bias issue.
Two bias-correction methods are also discussed, namely, the jackknife method and the indi-
rect inference method, which can effectively reduce the estimation bias of the mean-reversion
parameter and the bias in pricing contingent claims. Simulation results are provided to illus-
trate the characteristics of the bias and investigate the performance of the two bias-correction
methods
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4.1 Introduction

Let X (t) denote a stochastic process with ¢ taking values continuously over the period of [0, T,
where 7' is the time span of the process. Stochastic differential equations (SDEs) driven by Brow-
nian motion provide a convenient way to model the evolution of X (¢) over infinitesimal time
intervals. The use of SDEs to model variables in economics and finance has many advantages.
For example, SDEs can capture interactions among variables during the unit observation period
and make a clear distinction between the treatment of stock variables and the treatment of flow
variables. A detailed discussion can be found in Bergstrom (1966). Because of these advantages,
continuous-time models are widely applied in many core areas of economics and finance, includ-
ing neoclassical growth theory, capital accumulation, game theory, the asset pricing of financial
derivatives, volatility modeling, and term structure theory. Certain examples are summarized in
Bergstrom (1990), RC. (1992), Sundaresan (2000), and Piazzesi (2010).
This chapter focuses primarily on scalar, time-homogeneous SDEs that take the form of

dX (t) =a(X (t);0)dt + o (X (t);0)dW (t), (4.1.1)

where dX (t) denotes the change of X (¢) over an infinitesimal instant, a (-;0) and o (-;0) are
the drift and the diffusion functions, 6 is a vector of unknown parameters, and W (t) denotes
standard Brownian motion. The initial value of X (¢) at time ¢t = 0 is denoted as X (0) = O (1).
The model in (4.1.1) indicates that dX (¢) follows a conditional normal distribution with mean
a (X (t);0) dt and variance {o (X (t);0)}* dt. The term dW (1) represents shocks to the system,
whose effect on d.X (1) is scaled by the variance term o (X (t);6).

Although modeled in continuous time, observations of the process are typically available at
discrete time points, for example, at n = T'/A equally spaced points {¢tA};' |, where A is the
sampling interval. If an observation measures the value of X (¢) at a particular time point, it is
referred to as stock data. In contrast, if an observation represents the value of X () over a time
interval, it is referred to as flow data. In addition, many ultrahigh-frequency stock data in finance
are available at random and unequally spaced points (see, e.g., Ait-Sahalia et al. (2010)). The
interface between models formulated in continuous time and data collected at discrete points is
fundamental to the econometric treatment of continuous systems and leads to issues that are quite
different from those typically encountered in a discrete time-series analysis. In this chapter, we
only discuss the estimation issues for equally spaced stock data.

Under regular conditions, the maximum likelihood (ML) estimators of the parameters in the
diffusion process (4.1.1) are consistent, asymptotically normal, and asymptotically efficient. Due
to these optimal asymptotic properties, the ML approach is suitable for estimating the model
whenever it is available (e.g., Lo (1988)). The likelihood function is the product of the transition
densities. When the transition density is available in closed form, the ML estimation is easy to
implement. However, except for some exceptional cases, the transition densities of discrete-time
observations are unavailable in closed-form. Accordingly, various approximate ML methods have
been proposed. A partial list includes methods based on approximate discrete-time models such
as the Euler, trapezoidal, and Norman approximations proposed in Bergstrom (1966), Florens-
Zmirou (1989), and Nowman (1997), respectively, along with the Hermit approximation method
developed in Ait-Sahalia (1999, 2002, 2008), Ait-Sahalia and Kimmel (2007), and Li (2013), and
the in-fill simulation method attributable to Pedersen (1995), Santa-Clara (1997), and Durham and
Gallant (2002).

In addition to those approximate ML methods, a variety of moment-based estimation ap-
proaches have been developed, such as the generalized method of moments by Chan et al. (1992)
and Hansen and Scheinkman (1995), the efficient method of moments by Gallant and Tauchen
(1996), the empirical characteristic function method by Singleton (2001) and Knight and Yu
(2002), and the Bayesian Markov Chain Monte Carlo methods by Eraker (2001) and Elerian et al.
(2001).
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The above methods have achieved significant success in estimating the SDEs consistently
and efficiently in asymptotics. However, in virtually every one of these methods, the estimation
of certain critical parameters suffers from severe finite-sample bias. Moreover, that bias does
not disappear even when the sample size increases unboundedly under the asymptotic scheme of
A — 0 with a fixed 7. Thus, the availability of high-frequency data provides no help in reducing
the magnitude of the bias.

Take the Ornstein—Uhlenbeck (OU) process as an example:

dX (t) = k(1 — X (£)) dt + odW (¢), (4.1.2)

where k, i, and o are three constants. For this simple process, the exact transition density of
the discrete-time observations {X; } is available in closed form. Many studies in the literature
point out that the ML estimator of «, denoted by %7, has substantial finite-sample bias; see, e.g.,
Ball and Torous (1996), Chapman and Pearson (2000), Phillips and Yu (2005, 2009), and Yu and
Phillips (2001). In addition, Tang and Chen (2009) and Yu (2012) provide explicit expressions to
approximate the bias. Their formulae reveal that the leading term of the bias is a function of T’
and not A, implying that the bias disappears only when 7", the number of observation years, goes
to infinity. However, in most empirical applications, data are available only for a small value of
T'. It is not realistic to expect time-series data in the real world to last for many years without any
structural breaks.

Wang et al. (2011) argue that the quasi-ML estimator of x based on the Euler approximation
of the OU process outperforms %, and other estimators based on higher-order approximations
in terms of finite-sample bias. The bias of the quasi-ML estimator consists of two parts, namely,
the estimation bias and the discretization bias. Wang et al. (2011) prove that the two types of bias
have opposite directions. Therefore, the estimation bias is offset by the discretization bias, making
the total bias of the quasi-ML estimator smaller than that of the exact ML estimator. However, the
bias of the Euler quasi-ML estimator remains large.

In finance, SDEs are often applied to model the dynamics of asset prices, exchange rates,
volatility, and short-term interest rates. Thus, the prices of financial derivatives, such as bonds
and options, are developed as functions of SDEs’ parameters. These functions are often nonlinear
and can be sensitive to certain parameters in SDEs. Well-known examples include Black and
Scholes (1973), Merton (1973), and Hull and White (1987) for stock options, and Vasicek (1977),
Cox et al. (1985), Chan et al. (1992), Heston (1993), and Duffie et al. (2000) for interest rate
contingent claims. As a result, the finite-sample bias of the estimated parameters in SDEs will
propagate to and generate bias in the price calculations of financial derivatives.

Phillips and Yu (2005) comprehensively study the finite-sample bias problem in pricing interest-
rate contingent claims. Both univariate models and multivariate models are considered. Phillips
and Yu (2009) extend their study to the bias issue of price calculations of stock options for models
with and without stochastic volatility. These articles propose two alternative methods to reduce the
finite-sample pricing bias: the jackknife method and the indirect-inference method. They further
point out that due to the nonlinearity of pricing formulae, applying the bias-correction methods
directly to the contingent claims works better in reducing pricing bias than the method of obtain-
ing the bias-reduction estimates of the SDE parameters first and then plugging the estimates into
the pricing formulae of contingent claims. Simulations and empirical studies by Phillips and Yu
(2005, 2009) show that the two methods can achieve considerable bias reduction compared with
the ML estimation in pricing financial derivatives.

The purpose of this chapter is to provide a systematic introduction to the finite-sample bias
problem in estimating SDEs’ parameters and pricing financial derivatives. In Section 2, the appli-
cations of SDEs to modeling short-term interest rates are briefly introduced. Furthermore, the OU
process provides an example to show the connections between the prices of interest-rate contingent
claims and the SDE parameters. Section 3 gives the bias formulae of the ML and quasi-ML esti-
mators of the parameters in SDEs and discusses how the parameter bias translates into contingent
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claim pricing. The two bias-correction techniques are studied in detail in Section 4. Simulation
examples are provided in Sections 3 and 4 to show the gravity of the bias problem and the perfor-
mance of the bias-correction methods. Section 5 concludes.

4.2 Applications in Term Structure Modeling

As application examples in finance, this section introduces the use of diffusion processes in the
term structure literature. In Subsection 4.2.1, we briefly summarize the scalar diffusions applied
in modeling the short-term risk-free interest rates. For the case in which the dynamics of the short-
term rate follow the OU process defined in (4.1.2), the contingent claims based on interest rates
have closed-form pricing formulae. Subsection 4.2.2 displays these pricing formulae to show the
roles of SDE parameters in pricing contingent claims.

4.2.1 Modelling short-term interest rates

The short-term risk-free interest rate can be defined with the help of zero-coupon bonds. A bond
that makes a terminal payoff without the risk of default and without paying any intermediate
coupons is called a zero-coupon bond. Let us normalize the terminal payoff as $1 and use P (¢, )
to denote the price of the bond that is issued at time ¢ with maturity date s. Holding the bond until
its maturity generates a risk-free per-period return as

(s) _ logP (t,s)

=——""7 4.2.1
Yt st ( )

’yt(s) is often referred to as yield-to-maturity. The short-term risk-free interest rate is defined as the

limit of ﬁ/t(s) when s — t:

. s .
() =lmoi” =l -

The short-term rate is a fundamental factor in the valuation of nearly all of the derivatives
in the financial markets. In addition, interest-rate variability is a major source of risk for banks
and other financial institutions. Unsurprisingly, therefore, problems related to short-term interest
rates attract enormous attention in the economics and finance literature. One important branch of
inquiry on this topic is concerned with how best to model the short-term rate dynamics. Over the
past 50 years, many single-factor and multifactor interest-rate models specified by various SDEs
have been proposed. Table 1 displays some prominent single-factor models that have achieved
remarkable success in modeling and forecasting short-term rates.

Multifactor models assume that the short-term rate depends on a state vector Z (t), i.e., r (t) =
f(Z(t)), where f (-) is a real-valued function. Various multivariate diffusion processes have been
applied to model the dynamics of Z (¢). Examples of multifactor models can be found in Duffie
and Kan (1996), Gourieroux and Sufana (2006), and their references.

Another group of models for short-term interest rates is that of continuous-time models with
stochastic volatility. Many empirical studies show that the short-term rate exhibits properties
such as fat tails and persistent volatility patterns. Stochastic volatility models can better fit these
properties. An incomplete list of references includes Hull and White (1987), Andersen and Lund
(1997), Gallant and Tauchen (1998), Eraker (2001), Durham (2003), Trolle and Schwartz (2009).

4.2.2 Pricing formulae of contingent claims

The univariate OU process defined in (4.1.2) is identical to the Vasicek model in Table 1, with
the relationship between the parameters being oy = xu, as = —k, and 81 = 0. Assuming that
the short-term rate follows an OU process, Vasicek (1977) derives an explicit pricing formula for
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Table 4.1: Alternative model specifications for short-term interest rates. In this table, r := 7 (t)
denotes the interest rate at time t, W := W () is the standard Brownian motion, {a;}?_; and
{Bi}{_, are unknown parameters. Moreover, GBM, BS (1980), CIR VR (1980), and Ait (1996)
refers to Geometric Brownian motion, Brennan and Schwartz (1980), Cox et al. (1980), and Ait-
Sahalia (1996), respectively.

Merton (1973) | dr = aydt + $1dW
Vasicek (1977) | dr = (a1 + aor) dt + S1dW

CIR (1985) dr = (o + agr) dt + Bor/2dW
Dothan (1978) | dr = BordW

GBM dr = aordt + BordW

BS (1980) dr = (a1 + agr) dt + BordW

CIR VR (1980) | dr = Bor3/2dW

CKLS (1992) | dr = (aq + agr) dt + BsrPrdW

Tauchen (1995) | dr = (oq + agr + azr? + 044/7') dt + BgrPrdw

Ait (1996) dr = (a1 + agr + agr? + ag/r) dt + (81 + Por + P3rP) AW

the zero-coupon bond. Jamshidian (1989) obtains the pricing formula for European options, with
bonds as the underlying assets. To display these pricing formulae, we assume in this subsection
that the short-term rate follows the OU process defined in (4.1.2) and specify it here again by
letting r (¢) := X (¢) for convenience:

dr (t) =k (p—r())dt +odW (t). (4.2.2)

By holding a zero-coupon bond to its maturity date s, a risk-free return is possible. However,
the bond is tradable at random prices at any time before its maturity. Holding a bond from time ¢
to period ¢ + h < s generates a holding-period return defined as

log P (t + h,s) —log P (¢, s)

h 2
which is a random variable due to the uncertainty of the price P (¢ + h, s). Hence, zero-coupon
bonds are risky assets.

The bond price P (¢, s) depends on ¢ and the short-term rate r (¢). Hence, by using the Ito’s
lemma, the bond price has the dynamics

hprfrh =

1
dP(t;s) = Pdt+ Pudr+ 5Py (dr)?
1
= (Pt +r(pu—r(t) P+ 502PM> dt + o P.dW (t),
where P, denotes the first-order derivative of the bond price with respect to ¢, P, and P, are

the first- and second-order derivatives, respectively, with respect to the short-term rate r (¢). It is
further obtained that

dP (t,s) _ (Pt +r(p—r(t) P+ %0’2P7»7-) gt oP, AW (1)
P (t,s) P (t,s) P (t,s)
= ppdt + opdW (t).

where (1, represents the conditional expected return of the bond, and ag is the conditional vari-
ance. Define the market price of risk as the expected excess return per unit risk, that is A :=
(1tp — ) /op. This definition yields the equation of

Hp — T = Aop,
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which shows that the expected excess return of the bond equals the market price of risk multiplying
the standard deviation associated with the bond. Substituting for the representations of 1, and o),
gives a partial differential equation (PDE) of the bond price P:

A 1
Pi+k (u - ?U —r (t)> P, + 50* Py =P = 0. 4.2.3)

The solution of the PDE with the boundary condition of P (s,s) = 1 gives the bond pricing
formula derived in Vasicek (1977). We report this formula in Theorem 4.2.1.

Theorem 4.2.1 Assume the short-term rate r (t) follows the OU process given in (4.2.2). At time
period t, the price of the zero-coupon bond with the terminal payoff $1 and the maturity date s
follows the formula of

P(t,s)=A(t,s)e BEsIr®) (4.2.4)
where
2 2
A(t,s) = exp {( — )\?U — %) [B(t,s) —s+t] — Z_/@ [B (t, 3)]2} , (4.2.5)
and
B(ts) = - (1 - e_“(s_t)> . (4.2.6)
K

The pricing formula in (4.2.4) makes the yield-to-maturity defined in (4.2.1) an affine function
of the short-term rate:

log P (t, log A (1, « B (t,
715(8):_Og (79):_0g (7g)_|_ (7g)1”(t).

s—1 s—1 s—1

Hence, the Vasicek model is a special case of the affine term structure models.

Another way to price bonds is with the help of a risk-neutral probability measure. Imagine that
there is a probability measure, denoted by Q*, under which the short-term rate has the following
dynamics

dr(t) =k (p* —rt)dt+odW*(t),

where ;¥ = 1 — (A\o) /K, and W* (t) is a standard Brownian motion under Q*. The application
of Ito’s lemma gives the dynamics of the bond price under Q* as

1
dP (t,s) = (P,g F R =1 (1) P+ 502PTT> dt + o PudW* (t) |

From Equation (4.2.3), it is obtained that the expected excess return of the bond under the measure
Q* is zero, i.e.,

(P + K (p* —r (1) Pr + 30%P,,)

P(t,s)

In other words, under the probability measure (Q*, investors are risk-neutral in the sense that they
do not require excess returns for any risk they bear. This property gives the reason for ()* being
named as a risk-neutral probability measure. Furthermore, due to the risk-neutral attitude, the
bond price can be calculated as the expected values of its further payoff discounted at the short-

term rate, i.e.,
t+s
P(t s)=Ef [exp <—/ r(T) dT):| ,
t

where E} denotes the expectation under the measure (Q* and the information available at time t.
Providing a thorough discussion of the risk-neutral pricing theory and the connections between
physical probability measures and the associated risk-neutral measures is beyond the scope of this
chapter. Interested readers can find classic textbooks for more details, e.g., Shreve (2004).

—r=0.
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We end this subsection by introducing the pricing formulae of bond options developed in
Jamshidian (1989). A European option is a contract that gives the holders a right to buy or sell a
bond at a particular time (expiration date) for a predetermined price. This predetermined price is
called the strike price of the option. Consider a zero-coupon bond with a fixed maturity date s and
a terminal payoff (also called principal value) L. The current price of this bond is determined by

P(t,s)=Lx A(t,s)e BEsIr®, (4.2.7)

where A (¢, s) and B (t, s) are given in (4.2.5) and (4.2.6), respectively. Jamshidian (1989) derived
explicit pricing formulae for options written on this bond, which are reported in the following
Theorem 4.2.2.

Theorem 4.2.2 Consider a zero-coupon bond that gives a terminal payoff L at the maturity date s.
(a) A European call option written on this bond with strike price K and expiration date 7 (t < T < s)
has the pricing formula of

Cop (t,7,5,K) =LP (t,s)®(h) — KP (t,7)® (h—dp); (4.2.8)
(b) The price of a corresponding put option takes the form of
Pop (t,7,5,K) = KP (t,7)® (6, —h) — LP (t,s) ® (—h),

where P (t, s) is given in (4.2.7), @ (-) denotes the standard normal cumulative function,

(T —
A Loemrt)
K

2K

and Pls) L 5
_ 51 L s %
h =9, 1Og<P(t,T)K —1—2.

4.3 Estimation and Finite-sample Bias

4.3.1 Vasicek model with an unknown mean

Although modeled by a continuous-time diffusion process, the short-term rate r (¢) can only be
observed at discrete time points. Assume that observations of r (¢) are available at equally spaced
discrete time points from time zero to time 1" with the sampling interval A. This means that the
observations are collected at time points {tA};" , from ¢ = 0 to t = n, with n := T'/A being the
total number of observations. The short-term rate 7 (¢) is often taken as the normalized annual rate.
Thus, in the term structure literature, if r (¢) is observed at daily (weekly or monthly) frequency
over 10 years, it is often set as A = 1/252 (1/52 or 1/12), and T' = 10 represents the number of
observing years. T is referred to as the time span of the data. In the rest of this chapter, we use
{rya} to represent the observations of  (¢), and we write the term simply as {r;} when there is
no confusion.

To estimate the continuous-time diffusion processes, the ML estimators are asymptotically
optimal under regular conditions; accordingly, they are often adopted when available. The simple
Vasicek process in (4.2.2) has an equivalent discretization (see, e.g., Phillips (1972)):

re=e "Ar_q + 1 (1 — e_”A) + &4, 4.3.1)

where the errors

A
e = a/ eTRUIA=S) g (s),
(-1)A
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fort = 1,2,...,n, are a sequence of independent and identically distributed (i.i.d.) variables with
the normal distribution N (0,02 (1 — e=2#2) /(2x)). The transition density of the observations
is readily obtained as

re|re—1 ~ N (e_”A'rt_l +u (1 - e_“A) 02 (1 - e_ZKA) /(2,‘6)) .

Therefore, the log likelihood function

Zln f(rere—1)

has a simple, explicit expression, where f (7| r,—1) denotes the conditional density function of r;
given 7;_1. Tang and Chen (2009) provide explicit formulae of the ML estimators as

1 — — —
~ML __ ~ . ~ _ t=1 t=1 =1
R =X In(p1) with @1 = - - 5> (4.3.2)
> rig—n! (Z Tt—1>
=1 (=1
n
n~t > (ry— Pire—1)
SML _ o i oS =1
= th = ~ )
and
M 2kps . e . ~ ~
oML — ; _80@2 with g3 =n~! Z [re — G171 — P2 (1 — §1)]%
t=1

When x > 0, the Vasicek process in (4.2.2) is stationary. Under stationarity, Tang and Chen
(2009) prove the asymptotic normality of the ML estimators when T — oo with a fixed A. In
addition, they derive the bias formula for each ML estimator. Their results show that the biases of
ML and AT are negligible when the sample size 7 is reasonably large. However, the estimator

i\f L suffers from substantial finite-sample bias even when n — 0o, as long as the time span 7’ is
small. Theorem 4.3.1 reports the bias formula of x}” developed in Tang and Chen (2009).

Theorem 4.3.1 The ML estimator Efl“ given in (4.3.2) has the bias formula of

Bias (RY) = B (RIE) — = (g Lty %e%A) L0, (433)

To examine the performance of the bias formula in (4.3.3), Figure 4.1 compares the values
calculated from the bias formula with the simulated finite-sample bias. The range of « is (0, 3],
which covers the reasonable values found in empirical studies of short-term interest rates. We
simulate data from the Vasicek process in (4.2.2), with 7" = 4, A = 1/52, and A = 1/252,
respectively, corresponding to 4 years of weekly data and daily data. For each simulated sample
path, « is estimated by the ML method. We replicate this experiment 1,000 times to obtain the
simulated bias of 2/, which can provide an excellent approximation of the actual bias. The solid
black line in Figure 4.1 draws the simulated bias of K%, The dotted blue line reports the values
calculated from the leading term of the bias formula in (4.3.3).

Several features appear in Figure 4.1. First, the actual bias of Y ” is a nonlinear function of
k, and the curvature is large when x is small. Second, instead of going to zero, the bias increases
sharply as « — 0. Thus, the bias percentage is very high when « is low. Third, the bias magnitude
has almost no change when the sampling frequency changes from weekly to daily, showing that
the availability of high-frequency data cannot reduce the bias. Fourth, the bias formula in (4.3.3)
provides a very good approximation of the actual bias when & is large. However, when « is small,



4.3. ESTIMATION AND FINITE-SAMPLE BIAS 89

-------- Bias formula (13)

Actual bias

Bias

0 : 2 s 0 : 2 s
kappa kappa
Figure 4.1: Bias of k) as a function of . From left to right, the two panels responds to weekly
data (A = 1/52) and daily data (A = 1/252), respectively.

the bias formula (4.3.3) fails to capture the curvature of the actual bias; thus, it does not perform
well in approximating the actual bias.

To better understand the bias property of 7/ and the bias formula in (4.3.3), we expand ()
about the point p; = exp {—kA}:

—~ 1 N
Rn o = —x (%)
1 1, 1, 9
= —Z{ln(901)+¢—1(901—<ﬂ1)—2—90%(901—901) +"'},
The above Taylor expansion leads to the formula
pEMy L o5 ! 5 2 434
(n )—“_Z o (‘Pl—ﬁﬂl)—m (1 —p1) "+ p. (4.3.4)

Note that 1 = exp {—~A} is the autoregressive (AR) root of the discretization in (4.3.1), and 1,
as defined in (4.3.2), is the ML estimation. Formula (4.3.4) reveals that the moments of 7 — ¢
of every order contribute to the bias of £}’

The finite sample properties of »; have been well studied in the literature. Alternative bias
formulae under various model settings have been developed. A partial list includes Hurvicz (1950),
Kendall (1954), Marriott and Pope (1954), White (1961), Shenton and Johnson (1965), Yamamoto
and Kunitomo (1984), and Vinod and Shenton (1996). The bias formula derived in Marriott and

Pope (1954) is
—~ 3p1 +1 1
E(pr—p1)=—-— +O<ﬁ>'

Bartlett (1946) develops an approximation of the finite-sample variance:
1—f 1
Var (¢1) = i 4 G (—) :
n n

The bias formula of k% given in (4.3.3) is obtained by substituting the bias formula of Mar-
riott and Pope (1954) and the variance formula of Bartlett (1946) into the Taylor expansion (4.3.4)
and ignoring all the higher-order moments of 1 — (1. Involving only the first two moments of
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$1 omits the bias of KM% contributed by the higher-order moments of @1, such as the skewness

and the kurtosis. Yu (2012) argues that including higher-order moments of ©; can lead to a bias

formula of %} that captures the nonlinearity of the actual bias when the values of x are small.

He proves this argument for a Vasicek model with . = 0, which we will introduce in the following
subsection.

4.3.2 Vasicek model with ;1 = 0
The Vasicek process with ;1 = 0 has the expression
dr (t) = —kr (t)dt + odW (), (4.3.5)
whose exact discretization is a first-order AR model without intercept:
re = @ri-1 + &g
where ¢ = ¢ "> and
e "IN (0,07 (1— 2 / (26)) .
The ML estimator of , in this case, takes the form of

n

SO SR -
R=-X In(p) with p = (Z rtrt1> /Z . (4.3.6)
t=1

t=1

The Taylor expansion reveals the following relationship between the bias of = and the moments
of ©:
. 1 (1 1 . 2
E =k——¢—E(p—p) ——E(p- s o
(R) =r A{@ (P-¢) =5z B@—9) + }
Yu (2012), at the beginning of the paper, provides a bias formula of ¥ by only calculating the first
two moments of p — ¢:

. 2 1 1o, 1
E(ﬁ)—m:?<1+g>+ﬁ(e2A—1)+0(T>. 4.3.7)

The paper then argues that if x — 0, it has ¢2** — 1 — 0, which makes the constant term
% (1 + %) the only one dominating in the bias approximation. Hence, the nonlinearity of the
actual bias of k as k — 0 is not captured by the bias approximation in (4.3.7).

To better capture the nonlinearity of the actual bias when x is small, Yu (2012) develops
another bias approximation that involves the information from the higher-order moments of @ — .
This bias approximation is presented in Theorem 4.3.2.

Theorem 4.3.2 The estimator k given in (4.3.6) has the bias formula of

ER) -k = = (1 + l) + % (e —1) (4.3.8)

n
9 (1 _ e—QmQA) 9 1 — e 2nkA 1

- 1+ —— Y40 (=).
Tn (1 — e—268) n  n2(l—e26R) T

Compared with (4.3.7), the bias formula given in Theorem 4.3.2 has the additional term

2 (1 _ 6—27u~§A) { 2 1— e—QnHA }

_ 142 _~—-°
Tn (1 —e268) + n  n?(l—e26R)

When « — 0, it has
1— 6—2n/{A

—
n (1 — e 264) ’
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Figure 4.2: Bias of k as a function of x. From left to right, the two panels responds to weekly data
(A = 1/52) and daily data (A = 1/252), respectively.

and

2(1_6—27mA) {1+2 1_6—2nfiA }_> 2 <1+1>
o)

ST (1—e2RR) n o n2(1—e2k8) T

Therefore, when x — 0, the additional term has the same order as the leading term in the bias
formula, and cannot be ignored in the bias approximation. More importantly, the limit of the
additional term will cancel out the leading term in the bias formula when x — 0. As a result, it is
the middle term in the bias formula (4.3.8), i.e., % (62“A — 1), which plays a dominating role as
r — 0. This middle term can well capture the nonlinearity of the actual bias for small values of .

In addition, Yu (2012) proves that when A — 0 with a fixed time-span 7', ithas n = T/A —
00, and
2 1— eQnT
T + T2k
which clearly shows that the bias does not disappear when high-frequency observations are avail-
able.

Figure 4.2 compares the performance of formulae (4.3.7) and (4.3.8) in approximating the
actual bias of k. The dotted blue line and the dashed red line report the bias values calculated
from formulae (4.3.7) and (4.3.8), respectively. The solid black line gives the actual bias from
simulations that are replicated 1,000 times. The data are simulated based on the Vasicek process
in (4.3.5) with T'=4, A = 1/52, and A = 1/252, respectively. For each simulated sample path,
K is estimated by the estimator % defined in (4.3.6).

Two critical features can be seen in Figure 4.2. First, the bias approximation from Formula
(4.3.7), which uses only the information from the first two moments of @ — ¢ can well approximate
the actual bias when & is large. In contrast, the bias approximation from Formula (4.3.8), which
involves the information from higher-order moments of ¢ — ¢, accurately approximates the actual
bias for all concerned values of «, and perfectly captures the nonlinearity of the bias when x — 0.
Second, the actual bias of x goes to zero as k — 0. This feature sharply differs from the case
where the intercept of the Vasicek process is unknown, as shown in Figure 4.1.

E{R)—r=

4.3.3 Bias of quasi-ML estimators

Wang et al. (2011) point out that although the exact ML approach is optimal asymptotically, the as-
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sociated estimators may not perform the best in terms of the finite-sample properties. They derive
the bias formulae of the quasi-ML estimators of « that are obtained based on various approximate
discretizations of the OU process. It is shown that the estimator based on the first-order Euler
discretization has a smaller finite-sample bias than the estimators based on high-order approxima-
tions, which in turn perform better than the exact ML estimator. The reason for this finding is that
the bias can be decomposed into two parts, the estimation bias and the discretization bias, which
have opposite signs. A lower-order approximation generates a more significant discretization bias
that helps reduce the magnitude of the total bias.

For the OU process with an unknown mean, as described in (4.2.2), integrating both sides of
the equation over the interval from (¢ — 1) A to tA leads to the equation

tA
re—Ti_1 = —/1/ r(s)ds + KuA + &y,
(t—1)A
where ey = o (Wm — Wi- A) is an i.i.d. sequence of random variables with the normal distri-
bution N (0, 0%A). The Euler approximation is defined as

tA
/ r(s)ds~ri_q-A,
(t—-1)A

which leads to the following approximate discretization of the OU process:
re (1 — KA)ri—1 + KA + &y. (4.3.9)

For convenience, Equation (4.3.9) is referred to as Euler discretization hereafter.

The Euler discretization in (4.3.9) presents an AR(1) regression with normally distributed
errors. The ML estimator of the AR root, ¢, is given by (4.3.2). From the relationship between
r and the AR root in the regression of (4.3.9), the quasi-ML estimator of x based on the Euler

discretization has the form of 1
k\Euler = Z (1 - \21) . (4.3.10)

The Taylor expansion of p; = exp {—xkA} shows that

o (—rA)’
90122 F =1—-rkA+H,
i=0

where H =20, (_':!A)i = O (A?) as A — 0. Therefore,
K= AL (1 — cpl) + AT'H

and
~ 1 & ) H
KEuler — K = A ©1 — Y1 A
The bias of the Euler estimator ¥ g, i then expressed as
.~ - 1 N H
Bias (Kpuler) = E (Kpuler — k) = _ZE (P1— 1) — N

It becomes clear that the bias of K gy¢, has two components. The first component is — %E (P1—¢1)-
This component is called the estimation bias, which comes from estimating the AR root in the re-
gression of (4.3.9). The second component is —H /A, which is attributable to the truncation of the
Taylor expansion of ¢; = exp {—~A}. This component is named the discretization bias. It has
been well demonstrated in the discrete-time AR regression literature that the estimator 1 has a
downward bias. Hence, the estimation bias of ¥, is positive. In contrast, the representation of
H suggests that the discretization bias —H /A should be negative when <A is reasonably small.
Therefore, the two bias components have opposite signs and partially cancel each other out. As a
result, the magnitude of the total bias of K gye, is reduced. Theorem 4.3.3 gives the explicit form
of the bias formula of K e, developed in Wang et al. (2011).
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Theorem 4.3.3 Assume the short-term rate r (t) follows the OU process in (4.2.2) with k > 0.
The estimator K gyjer has the bias of

——~to T

T A (4.3.11)

Bias (Rpuler) =

14 3exp{—rA} H <1>

where (1 + 3exp {—rA}) /T > 0 is the estimation bias, and —% < 0 is the discretization bias.

Remark 4.3.4 Wang et al. (2011) prove that as long as T < 8 (1+ O (A))/ (k*A), the first
term of the bias formula (4.3.11) dominates the second term in magnitude. In other words, the
estimation bias of k gyier has a greater magnitude than the discretization bias. Therefore, the total
bias of K gyjer takes the same sign as the estimation bias, which is positive. However, because the
discretization bias is negative, the total bias of Kgyjer takes a smaller value than the estimation
bias. Notably, 8/ (K,ZA) accounts for very large values in empirically relevant cases.

To compare the Euler estimator & gy,¢, With that of the exact ML estimator E,{‘ZI L we have

Bias (ﬁ%L) — Bias (//%Euler)

N 5+2e“A+62”A_1+3e‘”A+E+O<£>
2T T A T
B 3+26”A+62“A—66_“A+£+0<1>
2T A T
B 3+2(1+/@A)+(1+2/@A)—6(1—/4A)+O(A2)+£+0<l>
2T A T
B 10“A+O(A2)+E+O<l)>o
2T A T '

Hence, the quasi-ML estimator K g has a smaller finite-sample bias than the exact ML estimator
when k > 0 and A is small.
Moreover, from the equation in (4.3.10), the variance of K g has the representation of

L

AQ V(l?" ((;51) ?

Var (EEuler) =

In contrast, the delta method suggests that the exact ML estimator Eﬁ/l L has the variance of

a5 - 2 (v 0 ).
1

when n — oo with a fixed A. When x > 0, which makes ¢ = exp {—xA} < 1, we have

Var (//%Euler) < Var (/K\%L) .
Therefore, the Euler estimator & gy, e, can perform better than the exact ML estimator in terms of
finite-sample variance.

In addition to Euler discretization, Wang et al. (2011) examine the finite-sample performance
of alternative quasi-ML estimators from a variety of approximation methods, including the trape-
zoidal approximation, the Milstein approximation, and the Norman approximation. Their results
show that when a higher-order approximation method is adopted, the discretization bias of the
estimator decreases, but the estimation bias increases. Because the discretization bias plays a role
in offsetting the estimation bias, a higher-order approximation leads to an estimator with a more
significant total bias. Therefore, the total bias of the Euler estimator is smaller than that of the
estimator based on any higher-order approximation.
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Figure 4.3: Bias of alternative estimators of x for the OU process with a known mean when
A=1/52and T = 4.

Wang et al. (2011) further extend their results to include the OU process with a known mean,
general univariate diffusion processes (such as the CIR process), and multivariate OU processes.
Figures 4.3-4.4 provide simulation results to compare the finite-sample performance of x’s
alternative estimators. For simplicity, we simulate data from the OU process with a known mean
of p =0:
dr (t) = —kr (t)dt + odW ().

For each simulation, we let 7' = 4 and A = 1/52, which corresponds to four years of weekly
observations. We replicate the simulation 1,000 times to calculate the bias and the variance of the
Euler estimator and the exact ML estimator of x. Figure 4.3 reports the bias values. Figure 4.4
displays the simulated variance.

Figures 4.3-4.4 clearly show that the Euler estimator performs better than the exact ML esti-
mator in terms of both finite-sample bias and variance. Figure 4.3 also plots the estimation bias
and the discretization bias of the Euler estimator, showing that these two types of bias have oppo-
site signs. Therefore, the estimation bias is offset partially by the discretization bias, reducing the
magnitude of the total bias of the Euler estimator.

4.3.4 Bias for general diffusion processes

Estimation of general diffusion processes also encounters the issue of finite sample bias. Consider
the following general diffusion process with a linear drift:

dr (t) =k (p—rt))dt+ oq(r(t);¢)dW (t), (4.3.12)

where ) is the vector of unknown parameters, and ¢ (r (¢) ;) is a function of 7 (¢) and ). The
diffusion process in (4.3.12) includes most of the models listed in Table 1 as special cases. The
exact discretization of this general diffusion process takes the form of

tA
re=e "+ (- e_“A) + / ") g (1 () 31b) AW (s) .
Ji-1)a

The above discretization gives an AR(1) regression with heteroskedasticity. The estimation of the
AR root suffers from finite-sample bias, which translates into the estimation of « in the end.
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Figure 4.4: Standard deviations of alternative estimators of x for the OU process with a known
mean when A = 1/52 and 7' = 4.

Due to the complexity of the function ¢ (7 (¢) ; ), the transitional density of the general dif-
fusion process is not analytically available. Thus, quasi-ML methods based on various approx-
imation methods are often adopted. For example, Nowman (1997) proposes the approximation
method as

tA tA
[ e s dW ()~ qlraie) [ o (s
t—1)A (t—1)A
= q(r—1:v) e,
which leads to the Nowman discretization
rem e e+ p (1= e ) + g (r1; ) e (4.3.13)

where {g,} is an i.i.d. sequence with N (0,02 (1 — e 2*2) /(2x)) distribution. Then, the ap-
proximate transition density function, the log-likelihood function, and the associated quasi-ML
estimators of parameters can be obtained. The Nowman discretization can provide an excellent
approximation of the exact discretization when the sampling interval A is reasonably small.
Take the famous CIR process as an example, where r (¢) follows the general diffusion process

(4.3.12) with ¢ (r (¢) ;¢0) = /7 (t):

dr(t) =k (p—r(t)dt+o/r(t)dW (t). (4.3.14)
The Nowman method gives the following approximate discretization

re e g+ 1 (1 — e_“A) + /Ti—1E¢-

Tang and Chen (2009) develop the corresponding quasi-ML estimator of « as
. 1 >
RCIR—Nowman = _Z In (61) )

where Bl is the quasi-ML estimator of the AR root in the Nowman discretization that takes the
form of

n n n
nEY oy =t Y e
; / =1

n n 1
n2y 1y rq—1
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Bl is a biased estimator, whose bias translates into Kc7r— Nowman- Tang and Chen (2009) provide
an explicit bias formulae for Ko7 r— Nowman, Which we report in Theorem 4.3.5.

Theorem 4.3.5 For a stationary CIR process as given in (4.3.14) with 2kj1/ 0% > 2, the quasi-ML
estimator KoT R— Nowman has the bias as
(a) when n. — oo with a fixed A,

. —~ 1 -
Bias (KCIR—Nowman) = ?BJ (97 A) + O (TL 2) 3

(b) when n — oo with T — oo and A — 0, and for some ¢ > 2, TAYC - o,

P 4 _
Bias (Rc1r- Nowman) = T +o (T 1) )
where B3 (0; A) takes a complicated form that can be found in Tang and Chen (2009), which is

omitted here for space limit.

Wang et al. (2011) propose using the Euler approximation to estimate the CIR model and
compare the finite-sample performance of the Euler estimator with that of the estimator from
the Nowman approximation. Unlike the OU process, the quasi-ML estimator of the diffusion
parameter o2 of the CIR process has a substantial finite-sample bias. Detailed analysis and the
bias formula can be found in Tang and Chen (2009).

4.3.5 Bias in pricing contingent claims

As studied in Subsection 4.2.2, the pricing formulae of contingent claims, such as bonds and bond
options, are nonlinear functions of the parameters in the diffusion process. Therefore, the bias in
estimating SDEs’ parameters translates into the price calculation of contingent claims. In addition,
the estimation variance of the SDEs’ parameters may significantly contributes to the bias in pricing
contingent claims, because of the nonlinearity of the pricing formulae. In other words, even if all
the parameter estimations have no bias, the estimation of the contingent claims prices can still
suffer from severe bias problem.

To investigate the bias issue in pricing contingent claims, let us assume the short-term rate
7 (t) follows the OU process defined in (4.2.2), and all the parameters are known except for x.
Use P (k), a function of k, to denote the price of contingent claims, which is either the price of
a zero-coupon bond as given in (4.2.4) or the price of a bond option as listed in (4.2.8). Let x}©
be the ML estimator of  defined in (4.3.2). By virtue of the invariance principle, replacing & in
P (k) by KMT generates the ML estimate of P (k), denoted by

PML _ p (R
The Taylor expansion about point « leads to the following equation

OP (k)
ok

0?P (k)

S @)

ﬁ;LML =P (I{) + (k\iyll - '%) + n

Taking expectations on both sides of the above equation, we have

_ 0P (k)
0Ok

0P (k)
OK?

E(ﬁ,ﬁ‘“) — P(k) E(RMY — k) + ERVE k) 4. (43.15)
Equation (4.3.15) reveals two important facts of the bias of ﬁéx“. First, the bias of )7 trans-
lates into PM%, amplified or reduced by the multiplier OP (x) /Ox. Second, the mean-squared-

error (MSE) of M’ contributes to the bias of ]3,{‘4 L. Tts influence on the bias is scaled by
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0?P (k) /Ok®. When the price formula P (k) has strong nonlinearity, which makes the magni-
tude of 92P (x) /Ox? significant, the finite-sample bias of PML can be very substantial even if
}37{‘4 ~ has no bias.

In a more realistic situation where all the parameters § = (k, u, o) in the OU process are
unknown, the finite-sample bias and variance of the estimation of each parameter contribute to the
bias of the contingent-claim price P (). Define

PYE = P (B)F) = P (RA", i1 5)E)

rTn
First expanding P (@“‘) about the true value of the parameter vector 6, then taking the expecta-
tions, we can have
(RUE) — &
B(BY") ~ PO)+ %8 250 250 E () —
E (cMl) — 0o

92P(0) 82P(0) 92P(6)
OK2 Ok OKkOc /
\E (gML _pg) | 2RO *p06) 2PO) | (gML _ 9>

OpOK O dpdo
92P(6) 92P(0) O2P(6)
000k dadu o2

-~ . / . .
where 0ME — 9 is a 1 x 3 row vector and (-) denotes the vector transpose. In this case, besides

the bias and variance, the covariance of the estimators (k" iM%, 521 also contributes to the
bias of P71,

We provide some simulation results in Table 4.2 to further illustrate the bias problem in pricing
contingent claims. The simulation settings are similar to that in Phillips and Yu (2005, 2009),
where the bias problem has been systematically studied and more simulation results can be found.

The left panel of Table 4.2 reports the simulation results for the Vasicek model. The data are
simulated from the OU process with k1 = 0.02, p = 0.12, and ¢ = 0.01. Let x be the only
unknown parameter and x the ML estimator defined in (4.3.6). Use BP to denote the price of a
three-year discount bond with the terminal payoff L = $100, and OP as the price of a two-year
call option written on the discount bond. Set the annual interest rate to be 6%, and the strike price
of the option as K’ = 105 x exp{—3x0.06}. The true values of BP and OP are calculated by using
the pricing formulae given in (4.2.7) and (4.2.8), respectively. We assume the market price of risk
to be A = 0 for simplicity. Replacing x in the pricing formulae by ¥ yields the ML estimates

——ML ML
of the bond price and the option price, denoted by BP,, and OP,, , respectively. For each

sample path, we simulate 5,000 data with 7" = 30 and A = 1/250, corresponding to 30 years of
—ML
daily observations. We replicate the simulation 5,000 times to calculate the bias of x, BP,,  and

—~ML
OP

n
Two features are apparent in the left panel of Table 4.2. First, the ML estimator s is severely

upward biased. The bias percentage is 215.09%. Second, EI\DQJ b and 51\3?&4 b have negative bias.
Although economically significant, the bias percentage of the bond price is —0.909% only. In
contrast, the bias percentage of the option price is much more substantial, reaching —7.54%.

The right panel of Table 4.2 reports simulation results for the Black-Scholes option pricing
model, in which we can see that the parameter of the underlying diffusion process has almost
no estimation bias, whereas the estimation of the option price has substantial bias. In the Black-
Scholes model, the stock price .S (¢) is assumed to be a process of geometric Brownian motion
(GBM):

dS (t) =aS (t)dt+oS (t)dB (1), (4.3.16)

where « and o are two constants. Consider a European call option written on this stock with a
strike price K and a maturity 7. The Black-Scholes option pricing formula takes the form of

OP=St)®(dy) — Ke "™ ® (ds) , (4.3.17)
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Table 4.2: Bias in pricing contingent claims. The left panel reports the simulation results for
—ML —ML
the Vasicek model. BP,,  is the estimate of the price of a three-year discount bond; OP,,

represents the estimate of the price of a two-year call option written on the discount bond. The

. . . . ——ML
right panel gives the simulation results for the Black-Scholes model, where OP,,  denotes the
estimate of the price of a one-week call option written on a stock.

Vasicek model Black-Scholes

gur ppit opy | s2ME o opat
True 002 83.12 55098 | 045 544
Mean 0.063 8237  5.0044 | 0.4478 625

Bias (in %) 215.09 -0.909 -7.54 -0.4791 14.96

where d; = [In (S (¢) /K) + (r +0.502) 7] / (61/7), d2 = d1 — /7, @ () denotes the cumu-
lative function of the standard normal distribution, and r is the averaged annual interest rate from
time ¢ to ¢ + 7. In this example, the only unknown parameter in the option price is o2. Lo (1988)
advocates the following ML estimator of o with discrete-time price observations {St}io:

1 n—1 S n—1 S 2

~2. ML t+1 —1 +1

GEME = 2N =2 =01y In . (4.3.18)
"=0 ( St = )

——ML
Putting 2ME into the pricing formula yields the ML estimate of the option price OP,, =
or (a2M").

We simulate data from the GBM defined in (4.3.16) with a = 0, 0? = 0.45, A = 1/250, and
n = T/A = 250, corresponding to one year of daily observations. Assume that the initial price
of the stock is S (0) = 100. Consider a deep out-of-money call option with K = 1.45 (0)e"",

r = 6%, and 7 = 5/250 (the option expires in one week). For each simulated sample path,

R —~ML . . .
calculate the ML estimates of 52" and OP, . We replicate the experiment 5,000 times to

obtain the bias of the ML estimates, and report them in the right panel of Table 4.2.

The simulation results show that the ML estimator of the parameter in the diffusion price,
ETZL’ML, has almost no bias. In contrast, the estimate of the option price, 51\32/[ L, is severely
upward biased, with the bias percentage of 14.96%. The bias in pricing option is attributable to
the nonlinearity of the price formula with respect to o2. In the same spirit of Equation (4.3.15), it

is easy to get

E (0P, ") - 0P (o)
o00P (02)
Oo?

POP (0?)

~2,ML 2
(O g ) 8(0'2)2

n

E (82,ML _ 02)2 ..

n

When ETZL’M L has almost no bias, the contribution of the first term in the above equation to the
. .. . .. ~2.ML . . .

option pricing bias becomes negligible. However, o, can have significant variance, and hence

significant MSE. Phillips and Yu (2009) point out that the price of the deep-out-money call option

82013(02)

is a strongly nonlinear function of o2. That means D022

2

2 ——ML
the MSE of 527 is amplified by the multiplier 80%2(;), making OP,, has substantial finite-

has a large magnitude. Therefore,

sample bias.
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4.4 Bias-correction Methods

To reduce the estimation bias of x in the OU process defined in (4.2.2), it is possible to simply
apply the explicit bias formulae, such as those in (4.3.3), (4.3.8), and (4.3.11), to perform bias
correction. However, no bias formulae are available when interest quantities are the parameters in
either general diffusion processes or the prices of contingent claims, such as bonds and options.
This section introduces two bias-correction methods that work well without knowing the bias
formula: the jackknife method and the indirect inference method. Both methods can effectively
reduce bias. The jackknife technique is easy to implement. In comparison, the indirect inference
approach can simultaneously reduce bias and variance, at least in some situations.

4.4.1 Jackknife method

The jackknife method was proposed by Quenouille (1956) to reduce the finite sample bias in para-
metric estimation problems. It has many applications in discrete time models; see, for example,
Efron (1982), Shao and Tu (1995), and Hahn and Newey (2004). Phillips and Yu (2005) imple-
ment this method in estimating continuous-time diffusion processes and contingent claims prices.

To illustrate the idea of the jackknife technique, let us consider the OU process (4.2.2) as an
example. The exact ML estimator £/ has been defined in (4.3.2), where n = T/ A represents
the sample size. Formula (4.3.3) describes the finite-sample bias of ﬁﬁ/f L which is rewritten here
for convenience:

B@™") =+ 2+0n) =r+ -2 +0 07,

where ¢ = 5/2 + "2 + 272 /2. Now, decompose the whole sample into m consecutive subsam-
ples, each of which has [ = n/m observations. Let E{‘{[ L denote the ML estimator of x by using

the observations in the i*" subsample, for i = 1,2, ..., m. From the formula (4.3.3), Rl]‘z/[ L has the
finite-sample bias
m n\ 2
B = nt oo ((2)7).
(R ") =r+ RCt p-
Define the jackknife estimator as
. ML
—~ _ . m ML > i Ry
Kljack = ml"in — ﬁ (441)

The expectation of the jackknife estimator is

) ity (5 axe)

m2—m

~ m _
E(Hjack):m( +E +O(n 2)

= H+O(n_2).

The above formula clearly shows that the leading term of the bias of % is canceled out by the
counterparts of E{‘{[ L As a result, the bias of the jackknife estimator &, is reduced to the order
of O (n™2).

To apply the jackknife technique, people often choose m = 2 for simplicity. However, choos-
ing larger values of m can help reduce the finite-sample variance of the jackknife estimator. The
variance of K j,.,, with small values of m is often greater than that of the ML estimator Rf\l’“ . How-
ever, under broad conditions, these two estimators can have the same asymptotic variance. For the
stationary OU process with x > 0, Tang and Chen (2009) prove that v/n (Eﬁ/[ L_ m) converges to
a normally distributed random variable as n — oo with a fixed A. From the formula in (4.4.1),
we have

\/E(Ejack_ ) m\/_(il ) 1_1{\/_2\/— AML_ )}
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The stationarity of the OU process makes Elj‘z/[ L fori =1,2,...,m,aweakly dependent sequence.
Hence, when n — oo with m — oo and 1/1 + m/l — 0, the second term in the above equation
goes to zero, making & jqcr have the same limiting distribution as RMEL,

When the quantity of interest becomes the price of the contingent claims, as in the case of
bonds and options, plugging the jackknife estimator & 4, into the corresponding pricing formula
may not lead to a better estimate of the price than the ML estimate in terms of finite-sample bias.
This is because, as shown by Equation (4.3.15), both the bias and the MSE of &, contribute to
the bias of the price estimation. The MSE part is critically important for pricing bias when price
formulae have strong nonlinearity. The jackknife estimator 4., has a smaller bias but a greater
variance than M. More often than not, Kjack has a larger MSE than RKML  Accordingly, the
plug-in estimator P (Kq4c;) may have a greater bias than the ML estimator P (Rf?\/l L )

To obtain a bias-reduced estimator for the contingent claims price, Phillips and Yu (2005)
recommend applying the jackknife technique directly to the price estimation through the following
procedure:

1. Obtain the ML estimate # © using the entire sample;

MEY

2. Calculate the price estimate P (R

3. Use subsamples to obtain the estimates {’/%f\l/[ L }Zl;

4. Calculate the price estimates P (Eﬁ“ ), fori=1,...,m;

5. Obtain the final estimate of the price by using the jackknife estimator

m ~ML
P m P(EQ“)——ZMP(”” ). (4.4.2)

ek = ——
Jae m—1 m2—m

The estimation procedure above reveals another merit of the jackknife method: Implementing
the jackknife technique does not require any knowledge of the analytical form of the bias. More-
over, provided that the bias of P (Eﬁ“ ) can be expanded asymptotically in a series of increasing
powers of n~!, it can be proved that the jackknife estimator ]%ack has a bias of order O (n_Q),
not O (n‘l).

Table 4.3 summarizes certain simulation results to reveal the performance of the jackknife
technique in reducing the bias of option pricing. The simulation settings are the same as in Table
4.2. Again, we use OP to denote the price of a two-year call option written on a discount bond that

ML
expires in three years with the terminal payoff L = $100. OP,,  represents the ML estimator

. . —=Jack . . . . . —=II . ..
of the option price, and OPnac is the jackknife estimator with m = 2. OP,, is the indirect-
inference estimator that will be introduced in Subsection 4.4.2.
Table 4.3 clearly shows that the jackknife technique can significantly reduce the estimation

—— ML
bias compared with the ML approach. The bias percentage of the ML estimator OP,, is —7.54%.

—=Jack
The jackknife estimator OPnaC reduces that percentage to —4.92%. However, Table 4.3 also
shows that the jackknife estimator has a greater standard error than the ML estimator and slightly
increases the MSE.

4.4.2 Indirect inference method

Many models in economics and finance are too complex to permit the likelihood function to be
constructed analytically, but they can readily be simulated. To estimate these models effectively,
Smith Jr (1993) and Gourieroux et al. (1993) develop a simulation-based estimation method that
is called the indirect inference (II) approach. This technique can also be applied to perform bias
correction in estimation. Among many other applications, the II technique is used by Phillips and
Yu (2009) to correct the bias in pricing contingent claims, Gouriéroux et al. (2010) to reduce bias
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Table 4.3: Comparison of alternative estimators in option pricing. Data are simulated from the OU

process in (4.2.2) with x = 0.02. A two-year call option written on a discount bond that expires
——~ML ——Jack ——SM
in three years with the terminal payoff L = 100 is considered. OP,, ()PnaC ,and OP,,

are the ML estimator, the jackknife estimator with m = 2, and the indirect inference estimator,
respectively.

True value: OP = 5.5098

Estimation Method (/)]\32/[ g 51\37{a6k 51\3711[

Mean 5.0944 52386  5.3923
Bias (in %) -1.54 -4.9226 -2.134
Std err 0.7712 0.8517  0.7434
RMSE 0.8760 0.8939  0.7526

in estimating dynamic panel models, and Jiang et al. (2018) to reduce bias in structural change-
point estimation.

This subsection takes the OU process defined in (4.2.2), with s being the only unknown pa-
rameter, as an example to introduce the idea of the II method. We first consider the estimation of
 and then study the estimation of contingent claims prices.

Assume 7 is the number of observations available. Then, 2L defined in (4.3.2) gives the
ML estimate of x. Empirical studies in the asset pricing literature suggest that reasonable values
of « fall into the interval [0, 3]. For any possible choice of x € [0, 3], we can simulate data
straightforwardly from the exact discretization of the OU process given in (4.3.1). Replicating the
simulation K times generates K simulated data sets, denoted by RU) = {?{1] ), ?’{Qj ) ol }, for

7 =1,2,..., K. For the jth simulated data set, an ML estimate nﬁ”‘ can be obtained by using

the same formula as in (4.3.2). Then, the indirect inference estimator of « is defined as

yT'n

I _ ~ML _ =ML, 443
K, = arg ngl[(l)rg Ky, d Z ( )

The logic behind the indirect inference estimator is as follows. By construction, 753 should
have the same finite sample properties as x/”. The sample mean of 729 can serve as a good
approximation to the population expectation of £ %, In the case where K — oo, the law of large
numbers implies that

K
! > wENET s B(RYT) = by (k)

where 5 denotes convergence in probability and b, (k) is called the binding function. For
each value of k € [0, 3], by, (k) gives the expectation of the ML estimator of k. When by, (x) is
invertible, the II estimator becomes

_argﬁ]gn[%)r?S |/$ —bn(li)‘ = b, " (RMF) .

11
n

K
This means that the II estimator aims at finding one value of x that minimizes the distance between
the ML estimate KM L and its expectation. Note that any bias occurring in K L also happens in
the binding function b,, (). Hence, 51! can correct the bias appearing in xA/%. 4
Moreover, the II estimator is pos51ble to possess a smaller finite-sample variance than k;,
The Taylor expansion of b, ! ( Ko ) about the point b,, (x) takes the form of

"ML

R G
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B by, (K)
= K+ <—8H,

1
o )) (BME — by, (k) + 0p ((RYF = by (r))) .

which leads to the approximation

Var (//%H) ~ ((%n ()

n 0’{1

—2
) Var (R2") .
Kk=bn (k)

Therefore, when |0by, (k) /Ok| > 1, the slope of the binding function being greater than unity, we
can have Var (k') < Var (R)'1).

In addition to improving the finite-sample performance, the I estimator %2/ can have the same
good asymptotic properties as & ~. When £3/% is asymptotically unbiased with lim, .o E (R 1) =
K, it has lim, o by, (k) = k. Hence, %! is asymptotically equivalent to KM% as n — oc.

When the quantity of interest is either the bond price or the option price, constructing the
IT estimator needs to first set an interval containing possible price values. For any given price
value in the interval, take the inverse of the pricing formula to obtain the corresponding value of
the parameter in the diffusion process, then generate data by simulations. The concrete steps of

applying the II technique to estimate the contingent claims price include:

1. Obtain the ML estimate of the price ﬁém =P (Eﬁ“) by using the real observations avail-
able.

2. Based on the estimate ]3,{\“, set an interval for possible price values, denoted by A.

3. For any given choice of p € A, invert the pricing formula, Formula (4.2.7) for the bond
price and (4.2.8) for the option price, to obtain the corresponding value of the parameter
k=P (p).

4. Simulate data from the OU process in (4.2.2) with x = P~ (p) to get the simulated sample
paths RU) = {77(13), 17(2]), .. .,?An])}, for j = 1,2,..., K. For each simulated sample path,

obtain the ML estimate 75 “7 and P2*%7 (p) = P (%24 L )

5. Calculate the sample average of pMEi (p) as a simulated binding function

K
7 1 SML,j
b () = ¢ JZ_} B (p). (44.4)
6. Obtain the II estimate of P by
P!IT = arg min ‘ﬁ,{wL — by, (p)‘ . (4.4.5)
peEA

Simulation results reported in Table 4.3 demonstrate the finite-sample performance of the II
estimator in pricing bond options. As in Table 4.2, a two-year call option written on a discount

11
bond that expires in three years with the terminal payoff L = 100 is considered. We use OP,,
to denote the II estimator of the option price, and replicate the simulation 5,000 times to calculate
the binding function.

Three features are clear in Table 4.3. First, compared to the ML estimator (/)}\32/[ L, the II
estimator 5?’2[ significantly reduces the bias, from —7.54% to —2.13%. Second, the finite-
sample variance and the RMSE of (/)}\fo are also smaller than those of the ML estimator (/)}\32/1 L.
The variance of (/?T’QJ t is 0.7712. In contrast, the variance of 5\P7€1 is only 0.7434. Third,
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Binding Function
w
[6)]

45 degree line
=== Binding function

Option Price

Figure 4.5: Binding function of the II estimator of the option price. The blue dash-dotted line
draws the binding function by, (p) defined in (4.4.4). The 45° solid line is plotted for comparison.

11 — Jack
OP,, performs better than the jackknife estimator OPnaC in terms of both finite-sample bias and

—IJ —Jack
variance. It is noticeable that the bias of OP,, is less than half of the bias of ()PnaC

7
To better understand the second feature mentioned above, namely, that OP,, has a smaller

finite-sample variance than (/)]\324 L, Figure 4.5 plots the simulated binding function 3,,, (p) as de-
fined in (4.4.4). It is clearly shown that the bonding function is nonlinear in the upper-right corner.
The upper-right corner corresponds to a range of small values of x, a region suggested by most
empirical studies in the term structure literature. More importantly, the slope of the binding func-
tion in the upper-right corner is greater than unity. When the replication number increases, i.e.,
K — oo, it has

K
im by (p) = lim — S PMLI (p) = B (PMLd (p)) =
A @) = i g2 > B ) = (BM (p) 1= bu ().
=
and " . .
oP, = argrrg/rxl‘OPﬁ —b, (p)‘ _ bv_zl (OP,,L > .
P

The Delta method implies that

Var (5]\3?) ~ <8bg—;p)

-2
) Var ((/)]\DiuL> .
p=bn(p)

—1I

Hence, the slope of the binding function being larger than unity makes the variance of OP,,
——~—ML
smaller than that of OP,, .

4.5 Conclusion

This chapter briefly reviews recent developments in the finite-sample theory of continuous-time
models. It consists of three main parts. The first part introduces the applications of univariate
diffusion processes in modeling short-term interest rates. Taking the OU process as an example,
this part builds up the connections between the diffusion process and the prices of contingent
claims, including both bonds and bond options.
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The second part studies the finite-sample properties of the estimation of diffusion processes.
We focus on the persistency parameter in the OU process and note that although it enjoys asymp-
totic efficiency, the ML estimator suffers from severe finite-sample bias. Various bias formulae for
the exact ML estimator are introduced. Then, the quasi-ML estimator based on the Euler approxi-
mation is presented, along with an explanation of why this quasi-ML approach can perform better
than the exact ML method in terms of finite-sample bias and variance. Finally, the bias problems
in estimating general diffusion processes and in pricing contingent claims are discussed.

The third part of the chapter advocates two bias-correction methods: the jackknife method and
the indirect inference method. Both methods can effectively reduce the finite-sample bias when
the explicit bias formula is unknown. The jackknife technique is easy to apply. In contrast, the
indirect inference approach may reduce the finite-sample bias and the variance simultaneously.
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