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This chapter reviews three recently developed posterior test statistics for hypothesis testing
based on posterior output. These three statistics can be viewed as the posterior version of the
“trinity” of test statistics based on maximum likelihood (ML), the likelihood ratio (LR) test,
the Lagrange multiplier (LM) test, and the Wald test. The asymptotic distributions of the test
statistics are discussed under repeated sampling. Also, based on the Bernstein-von Mises the-
orem, the equivalence of the confidence interval construction between the set of posterior tests
and their frequentist counterparts is developed, giving the posterior tests a frequentist asymp-
totic justification. The three statistics are applicable to many popular financial econometric
models, including asset pricing models, copula models, etc. Studies based on simulated data
and real data in the context of several financial econometric models are performed to demon-
strate the finite sample behavior and usefulness of the test statistics.
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10.1 Introduction

In economics and finance, hypothesis testing is a primary concern in statistical inference. For
example, an economic theory often corresponds to a testable hypothesis in empirical analysis.
Thus, testing a point null hypothesis is important when checking statistical evidence from data to
support or to be against a particular economic theory. The central question we ask in this chapter
is how to test a point null hypothesis when posterior output is available.

Broadly speaking, there are three posterior-based methods available in the Bayesian litera-
ture for hypothesis testing. The first one is the well-known Bayes factor (BF) that compares
the marginal likelihoods of the two competing models corresponding to the null and alternative
hypotheses (Kass and Raftery, 1995). Unfortunately, BFs are subject to a few theoretical and prac-
tical problems. First, BFs are not well-defined under improper priors. Second, BFs are subject to
Jeffreys-Lindley-Bartlett’s paradox; they tend to choose the null hypothesis when a very vague
prior is used for parameters in the null hypothesis (see Kass and Raftery (1995), Poirier (1995),
Chapter 4 in Wakefield (2013)). Third, in many cases, the evaluation of marginal likelihood is
difficult. Several strategies have been proposed in the literature to address some of these diffi-
culties. For example, to solve the first two problems, one may use a prior that is data-dependent
when calculating BFs. To make the prior data-dependent, one may split the data into two parts:
one as a training set and the other for statistical analysis. The training data can be used to update
a prior, which can be improper, to generate a proper prior to analyze the remaining data (see the
fractional BF of O’Hagan (1995) and the intrinsic BF of Berger (1985)). To address the compu-
tational problem of BFs,the methods of Friel and Pettitt (2008), Li et al. (2021), and Chib (1995)
can be used.

The second posterior-based method uses credible intervals or sets. This line of research
has drawn a lot of attention among econometricians and statisticians in recent years (see Cher-
nozhukov and Hong (2003), Moon and Schortheide (2012), Kline and Tamer (2016), Liao and
Simoni (2019) and Chen et al. (2018)).

The third method is based on statistical decision theory. The idea begins with Bernardo and
Rueda (2002, BR), where it is demonstrated that the BF can be regarded as a decision problem
with a simple zero-one loss function when it is used for point hypothesis testing. It is this zero-
one loss that leads to Jeffreys-Lindley-Bartlett’s paradox. BR also suggested using the continuous
Kullback-Leibler (KL) divergence function as the loss function to replace the zero-one loss. Sub-
sequent extensions include Li and Yu (2012), Li et al. (2014), Li et al. (2015), Liu et al. (2021)
and Li et al. (2022), where alternative loss functions are used.

By focusing on the third line of approaches, the goal of this chapter is to review the literature on
hypothesis testing based on posterior output. Posterior output can be achieved via some advanced
posterior simulation techniques such as Markov chain Monte Carlo (MCMC) or sequential Monte
Carlo (SMC). The posterior test statistics developed for hypothesis testing when posterior output
is available can be justified in a frequentist set-up in the same way as testing methods based on the
maximum likelihood (ML) estimator are justified.

With posterior output, it is not immediately obvious how to make statistical inference in the
frequentist framework. For the point-null hypothesis testing problem, this chapter describes how
the posterior test statistics for hypothesis testing are developed under the decisional framework.
In this chapter, three posterior test statistics for hypothesis testing that were developed in recent
years are reviewed. They can be viewed as the Bayesian version of the “trinity” of test statistics
based on ML, namely, the likelihood ratio (LR) test, the Lagrange multiplier (LM) test, and the
Wald test. Under repeated sampling, the asymptotic distributions of these posterior test statistics
are discussed. Simulated data are also used to examine the finite sample properties of the test
statistics and real data to show of their usefulness.

This chapter is organized as follows. Section 2 reviews the Bayesian inference based on poste-
rior output. Inferential approaches that are typically used in the Bayesian literature are also briefly
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explained. Section 3 reviews several statistics for hypothesis testing based on decision theory,
and Section 4 reviews the posterior statistics. Section 5 describes various simulation studies, and
Section 6 provides the empirical illustrations. Finally, Section 7 concludes the chapter.

10.2 Bayesian Inference based on Posterior

Without loss of generality, let y = (y1, ... ,yn)l denote the data generated from a probability
measure Py on the probability space (€2, F, ), and p(y|?) is denoted as the likelihood function.
To perform Bayesian inference about 44, let p(1?) be the prior distribution of ¥. Then, the posterior
distribution is obtained via the Bayesian theorem:

p(y|9)p(9)
p(y)

where p(y) = [ p(y|9)p(9)d? is the marginal likelihood.

Frequentist inference is based on the likelihood function p(y|#), and the Bayesian statistical
inference is based on the posterior distribution p(9¥|y). The posterior distribution p(d|y), when
it is not analytically tractable, can be obtained via some advanced posterior simulation techniques
such as MCMC or SMC. Gamerman and Lopes (2006) and Chopin and Papaspiliopoulos (2020)
provide details about these simulation techniques.

Samples obtained from the posterior simulation can be used for statistical inference. Bayesian
estimates of 9 can be obtained easily via sampling means of random samples. Specifically, let
{ﬂ(j ) ,j =1,2,---, J} be the effective random samples generated from the joint posterior distri-
bution p(?¥|y). Then, the Bayesian estimates of 9 can be obtained as follows:

p(Wy) = o p(y[9)p(9), (10.2.1)

J
9 =E[y] = /19]7 (B]y)dd ~ ~ Z (10.2.2)

Clearly, these Bayesian estimates are consistent estimates of the corresponding posterior means
(Geyer, 1992). A consistent estimate of Var(¢|y) can be described by follows:

where 9, = 2 23'121 2
Under some regularity conditions, when p(19) = O,(1), Li et al. (2017) showed that the
relationship between the posterior mean 19 and the posterior mode ¥ can be expressed as:

9 =0+ 0y(n1), (10.2.3)
~ -1
0?1 9
Var(dly) = [_%ﬁ) + Op(n2). (10.2.4)

The large sample properties in (10.2.3) and (10.2.4) provide the fountainhead from which all the
methods reviewed in this chapter springs.

10.3 Hypothesis Testing based on Posterior Output

10.3.1 Hypothesis testing under decision theory

It is assumed that probability model M = {p(y|9)} is used to fit data y where 9 = (', ¢’ )’ €
®. We are concerned with testing a point null hypothesis that may arise from the prediction of
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a particular theory. Let 8 € ®y denote a vector of gyg-dimensional parameters of interest and
Y € O, a vector of gy-dimensional nuisance parameters so that ®@ = @y x ©,,. The testing
problem is given by:

(10.3.1)

H()Z 9:90,
Hll 0#90

In the statistical decision framework, hypothesis testing may be understood as follows. There
are two statistical decisions in the decision space, accepting Hy (name it dg) or rejecting Hy (name
it dy). Let {£(d;,0,1),i = 0,1} be the loss function of the statistical decision associated with
d;. For the decision problem, the loss functions {£(d;, 8, 1),7 = 0, 1} can be used to measure the
loss of accepting Hy or rejecting Hy as a function of the real value of the parameters (0, 1)).

Given the loss function and data y, the optimal action is to reject Hy, if and only if (iff) the
expected posterior loss of accepting Hy is larger than the expected posterior loss of rejecting Hy:

/ £(do, 8, 4)p(6, 1|y)dbde — / £(d1,0,4)p(0, 9|y)d0de
Je, Je, Je, Je,
— / (L(do, 0,4) — L(d1,0,%)} p(8, ly)d6dep > 0.

e, /o,

Therefore, in practice, only the following net loss difference function is required to be specified:
AL(Hy,0,v) = L(dy, 0,v) — L(d1,0,v). (10.3.2)

This equation measures the evidence against Hy as a function of (0, 1)).
For this prespecified net loss difference function AL(Hy, 6, 1)), we can define a posterior-
based statistic as:

To(y, 60) = /@ | DL(Ho 0.9)p(0,]y)d00% = g, (AL(Ho,0.4)  (1033)
0 ¥

Following Berger (1985), any Bayesian admissible solution to the decision problem must satisfy:
Reject Hy iff Ty(y,00) > 0, (10.3.4)
BR shows that the net loss function can generally take the form:
AL (Hp,0,v) =m(09,0,1) —c,

where m (09, 0, 1)) is a non-negative discrepancy measure between model p(y|@ = 6¢, 1) and
model p(y|0, ), ¢ > 0 is a context-dependent utility value that measures the advantage of being
able to work with the simpler model when it is true. For this type of net loss function, a possible
loss function for the decision can be given as follows:

[ if =8,

L(do, 0, ) _{ o+ Lm (60, 0,)  if 6+ 6 (10.3.5)
_Ja if & =6y

L(dr,6,9) = { ¢ —im(00,0,9) if 6+ 6 (103.6)

where ¢; measures the cost of action d; and ¢ = ¢; — ¢y > 0. Then, let T (y, 0y) be defined as:
T(y.00) = Egy, (m(00,0,4)) = By, (AL(Ho,0,9)—c.  (103.7)

Then, Ty (y, 8¢) > 0 is equivalent to T (y, 8y) > c. In this case, Hy is rejected.
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10.3.2 The choice of loss function for hypothesis testing

In this subsection, we review the loss functions that are used to construct hypothesis test statistics.
We show that the BFs correspond to the discrete loss function that equals of 0 and 1. To overcome
the shortcomings of BFs, alternative continuous loss functions have been proposed in the literature
to construct new test statistics based on the MCMC output. There is a more fundamental difference
between these new test statistics and the BFs. The new test statistics are justified in a frequentist
setup by assuming that y comes out of the data generating process in a repeated experiment, while
BFs are justified in a Bayesian setup (i.e., the decision is made conditional on y).

BF's and zero-one loss function

If one uses the following zero-one loss functions:

0 if6=260 1 if6=20
‘C(dOve?,‘rb) = 7f ’ ) E(d1797¢) = 7f ’ )
1 if 0 # 6 0 if 6+ 6y
then, the net loss function AL (Hy, 9, ) is:
-1 if6=280
AE (H079711b) = Zf 0 .
1 if 6 +#0y

Thus, the expected posterior loss is given by:

/ AL (Ho, 0.4) p(8, 4ly)d0dep = / AL (Ho, 0,4) p(6]y)do.

For point hypothesis testing, a reasonable prior for € requires a positive probability w being as-
signed to Hy. Let the prior 8 be a mixed random variable whose density is:

p(0) = wd (0 — 6o) + (1 — w) m(6),

where § (-) denotes the Dirac delta function and 7(80) is a proper density function. For more details
about the mixed random variable and Dirac delta function, see Pishro-Nik (2016).
Thus, the joint posterior density of € and 4 is:

p(y0,)p(0, )

p(0,¢ly) = o)
_ p(yl0 =60, 9)p(4|6 = 6,)ws (6 — 60) N p(y|0,v)p(|0) (1 — w) (0)
p(y) p(y) ’

where p(y) = [ [ p(y|0, v)p(0, )dOdp is the marginal likelihood that can be expressed as:

p(y) = w / P(y10 = B0, )p(1]6 = 8,)dw + (1 — w) /w<e> /‘p<y|e,w>p<¢|e>d¢de.

(10.3.8)
Then, the posterior density of @ is:
poly) = [ ple.piviy
— w0 00) + (1w S p(y16,)p()|0)drpm(6) (103.9)

) T2(6) [ ply |6, ¢)p(6]6)dvsda

where:
o [ p(y]6 = 00, ¥)p(y|0 = Bo)d‘b’ (10.3.10)
p(y)
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which is the probability of the event {8 € @y : 8 = 0 }. (10.3.9) is the density of a mixed random
variable. Under this posterior, AL (Hy, 6, 1)) accounts for only two possible values, +1, and:

Py, (AL (Hy,0,4) = —1) = w", Py (AL (Hy,0,9) = 1) = 1 - w".

Thus, the expected posterior net loss is:

Eg,, (AL (Ho,0,%)) = —w'+1-w’
_w[p(y|0 =80, 9)p(1|0 = 6,)dy
p(y)
(A= w) [7(0) [ p(y10,%)p(1]0)depd6
p(y) ’

where the second equality is due to (10.3.10).
The decision rule is:

reject Hy iff w /p(y\@ =00, 9Y)p(|0 = 6,)dyp < (1 —w) /7‘(’(9) /p(y\B,@b)p(zb\H)dzde.

To represent the prior ignorance, w is often set to 1/2. In this case, the decision rule is:

_ [ p(y10 = 00, 9)p(1|0 = 60)dyp _ mg
[ [p(y|0,9)p([6)m(8)d0dy — my

where {my, k = 0, 1} are the marginal likelihoods for Hy and Hj, respectively.

As the ratio of the marginal likelihoods, By; is the well-known BF (Kass and Raftery, 1995).
An important condition for BF to be valid in hypothesis testing is w = P(6 = 6y) > 0, which
means that Hy must have a positive probability mass although @ is a point in the parameter space.
If this condition is not satisfied such that p(@) is continuous, then:

p(y|0,v)p(6, ¥)
p(y)

_ /Aﬁ(H 0. ) P10 0)P(10)p(0)
0,Y, p(y)
_ /p(}’|9»¢;1(0}(,1)ﬂ|9)p(9)d¢d9.

reject Hy iff By

<1, (10.3.11)

/ AL (Hy, 0., ) drpd

dapdo

This equation is always positive so that Hy is always rejected.

In the Bayesian literature, BF serves as the gold standard for model comparison after posterior
distributions are obtained for candidate models. BF is intuitively appealing and has a strong prob-
abilistic interpretation but is known to suffer from some theoretical and computational difficulties.
First, when a subjective prior 7(0) is not available, Jeffreys’ prior or reference prior (Jeffreys,
1961; Bernardo and Smith, 2009) are often used to reflect the lack of prior information. Jeffreys’
prior and reference prior are generally improper. Thus, 7(6) = C f(0), where f(6) is a nonin-
tegrable function, and C' is an arbitrary positive constant. In this case, the BF can be expressed

0 [y plylee. 00)p(pl60)d
C Jo Jup(y16,%)p(v(6)f(6)dOdy

Clearly, the BF is ill-defined because it depends on the arbitrary constant, C'.

Second, to address the ill-defined problem of BF under the improper prior, a proper prior
7(@) with a large variance (i.e., a vague prior) has been proposed to represent the prior ignorance.
While the BF is well-defined in this case, it has a tendency to favor the null hypothesis, even when
the null hypothesis is incorrect, leading to the notorious Jeffreys-Lindley-Bartlett’s paradox (see
Jeftreys (1961), Lindley (1957), Bartlett (1957), Poirier (1995) and Robert (1993, 2007)).

Bo1
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To explain this statistical paradox, we use the example in Liu et al. (2021). Let y be an
independent and identically distributed random sample from a normal distribution N (6, 02) with
a known variance o2. Suppose the null hypothesis is Hy : # = 0 and the alternative is Hy : 6 # 0.
Suppose the prior distribution of @ is N (ug, 72). The posterior odds are expressed as the ratio of
the posterior probabilities of the alternative and null hypotheses:

POIO _ p(Hl’g) — P(??\Hl) > p(Hl) — BFIO % M (10.3'12)

p(Holy) p(ylHo) p(Ho) p (Ho)

where § = L 3" | v, p(Ho) and p (Hy) are the prior probabilities of Ho and H respectively;
and BF}g is the ratio of marginal densities of y under the null and alternative hypotheses. The
posterior distribution under the alternative hypothesis is defined as follows:

e‘ﬂ ~ N (M*70*2)

where:
* 0_*2 (@ + n_ﬂ) o IU'OUQ + nTQg 0_*2 _ 1 _ 02T2
w= 2 o2) o24nr? )’ BB g2 nr?
The marginal densities under the different hypotheses are:
glHy ~ N (0,0%/n), (10.3.13)
glH1 ~ N (po,0?/n+712). (10.3.14)
Then, the logarithm of BF can be written as:
2log BFio = (2 (7)) ! 7 (%) g (10.3.15)
= (z - —= — _ 3.
&2 H0 Y= a2 (o W RO &2y nr?

where z () = /n (g — 0) /o is the standard z-statistic. As noted by Bartlett (1957), for any fixed
dataset, and hence, the fixed ¥ and the fixed sample size n, (10.3.15) suggests that log BFjg —
—o0 as 72 — co. Even when the absolute value of z (7) is sufficiently large so that Hy is rejected
in the frequentist inference, the BF favors Hy. This type of disagreement is due to the arbitrary
value of 7 which reflects some indeterminacy of the prior density.

Jeffreys-Lindley-Bartlett’s paradox leads researchers to find variations to the BF. Examples
include partial Bayes factor (O’Hagan, 1991), the intrinsic Bayes factor (Berger and Pericchi,
1996), and the fractional Bayes factor (O’Hagan, 1995). These variants basically split the data
y into a training sample and a testing sample. The training sample is used to update an unin-
formative prior to obtain an informative prior. Unfortunately, these methods suffer from more or
less arbitrary choices of training samples, weights for averaging training samples, and fractions,
respectively.

Finally, for the latent variable model and many other models, calculation of the marginal
likelihood M}, k = 0,1 often involves intractable high-dimensional integrals, and as a result,
BFs are generally very difficult to calculate; see Han and Carlin (2001) for an excellent review of
methods for calculating the BFs from the MCMC output.

Bernardo and Rueda (2002) and the K-L loss function

Bernardo and Rueda (2002, BR) pointed out that if 8 is a continuous parameter, hypothesis testing
forces the use of a non-regular (not absolutely continuous) ‘sharp’ prior to concentrating a positive
probability mass so that the null hypothesis Hy must have a strictly positive prior probability.
This nonregular prior structure leads to the theoretical difficulties of BFs. To overcome these
difficulties, Bernardo and Rueda (2002) suggested using a continuous loss function based on the
Kullback-Leibler (KL) divergence to replace the discrete loss function:

= x DIM x
Kilp(a).aa)] = [ ple)n 2
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where p(x) and ¢(x) are any two regular probability density functions.
Based on the Kullback-Leibler (KL) divergence, BR takes the form of the net loss function
as:

AL(Hy,0,¢%) =m (60,0,v) —c
m (90797¢) = min {KL [p(y‘97¢)?p(y’907 ¢)] 7KL [p(y’00’¢)p(y‘97¢)]}

As shown in section 3.1, as to this type of net loss function, a possible loss function for decision
making can be given by:

(e if 6 =8,
£(do, 6.4) = { o+ s min {KL[p(y|8, %), p(y160, %)), KL [p(y|80, %), p(y16.%)]}  if 6+ 00

o it 8= 8,

where c¢; measures the cost of action d; and ¢ = ¢; — ¢g > 0. Then, the corresponding hypothesis
test statistic can be given by:

L(d1,0,v) = {

TBR (Y7 90) = E’l9|y [m (907 97 ¢)] :
A Bayesian admissible solution to the decision problem should satisfy:
Reject Hj iff Tpr(y,09) > ¢

While Tgr (y, 0p) is well-defined under improper priors, because the KL divergence function
often does not have a closed-form expression, Tpr (y, 0) is difficult to compute for the latent
variable model. c is also difficult to determine. BR suggested choosing threshold values based on
the normal distribution for ¢ to implement the test. The rationale for basing threshold values on
the normal distribution conceivably comes from the fact that many test statistics are asymptotically
normally distributed. Therefore, BR’s approach is not Bayesian as the sampling distribution of the
test statistic is used and it is based on the idea of repeated sampling, not conditional on y.

For the normal mean hypothesis testing problem we have discussed before, m (0, §) takes the

form: ) (516,07 /) )
T N (yl0,0%/n _ 1no
0= [0 (605 o S g0 = 25

Then, we have:

1 92 1 § .
Tpr(y,bo) = 5/7;—2]\[ (01", 0%) db = 5% (12 + o).

It can be shown that:

2 2 2,,2
nT (m z(g)2+2—\/ﬁuogz(‘)+ Sl +1)

1
Tr(y,bo) = = Y P p—
BR(Y: %) 2024+ n1? \ o2 +n7? o? +nr? 72 (0% +nt?)

which is immune to Jeffreys-Lindly-Bartlett’s paradox. Under the condition that g = 0, 0 = 1,

we have: ) )
nr nr
< 2 () + 1) .

1
Tun(y,bo) = 214+ n72 \ 1+ nr2

As n — oo, we can further obtain:

Tgr(y,fo) — % (Z (7)* + 1) 20

under the null hypothesis.
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Li and Yu (2012) and the O loss function

To address the computational problem in Tgg (y,0p), Li and Yu (2012, LY) proposed a loss
function based on the Q function used in the EM algorithm (Dempster et al., 1977) to replace the
KL divergence function. For any two points such as 1 and ¥, defined in the parameter space, the
Q function can be expressed as:

Q(h|d) = Ey |, 9, Inp(y, z[d1)].

Compared with the observed data likelihood function p(y|?), the Q function is easier to evaluate
for the latent variable model. Let 99 = (6o, ), Li and Yu (2012) defined a new continuous net
loss function as:

Aﬁ(’ﬁ, ’190) = m(@o, 9, ’l,b) — C
m(60,0,9) = {Q(I|9) — Q) } + {Q(Po[Do) — Q(I[F0)}

Correspondingly, for this type of net loss function, a possible loss function for decision making
can be given by:

c if 0=20
£(do,6,%) = { o+ 1 {Q(9]9) — Q(o[9)} + } {Q(ol0) — QBI9)} i 0 £ 6,

fa if =0,
L(d1,0,7) = { a1 — 35 {Q(IY) — Q(Fo[9)} — & {Q(F[F0) — Q(I|Y0)}  if O # 6y

where c; measures the cost of action d; and ¢ = ¢; — cg > 0. Thus, LY proposed a posterior-based
test statistic as follows:

Try(y,600) = Eg,,, [m(60,0,%)]

Although Ty (y, 89) is well-defined with improper priors and is easy to compute for the latent
variable model, one still must specify some threshold values for ¢ to make a decision. Again, these
threshold values given by LY lack rigorous statistical justifications.

10.4 Bayesian version of LR, LM and Wald test statistics

To address the problem in choosing threshold values, Li et al. (2015, 2022) and Liu et al. (2021)
introduce another three loss functions. The corresponding test statistics can be explained as the
posterior version of LR, LM and Wald test statistics, which are popular in the frequentist paradigm.

Assuming that y comes from a probability measure Py on the probability space (2, F, I),
let Py be a collection of candidate models indexed by parameters ©. Following White (1987), if
there exists 1 such that Py € P, we call that the model Py is correctly specified. If for any 4,
Py ¢ Py, we say the model Py is misspecified. In this subsection, we assume that the model is
correctly specified.

In this subsection, we establish large sample properties for T (y, 8¢) under repeated sampling.
Lety' := (yo,y1,...,y) forany 0 < t < nandl; (y',9) = logp(y'|9) — log p(y'~*|) be the
conditional log-likelihood for the #** observation for any 1 < ¢ < n. When there is no confusion,
we just write ; (y',) as I; (9) so that the log-likelihood function £,,(¢) (= log p(y|®¥) condi-

tional on the initial observation) can be written as y ,- ; l; (). Let lij ) (19) be the 5" derivative
of [; (¥) and lgo) (¥) = I (V). Moreover, let:

dlog p(y'|9) i (1) 92 log p(y*|9) i @)

i=1 =1
si(®) = 1" (9) = s(y",9) —s(y""",9), () = 1) (¥) = h(y",9) — h(y' !, 9),
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= S (). 3,00) = LS ) 5 @) s 0) 500 50) = LY sw),
t=1

B, (¥) =Var

%Zﬁ”(ﬂ)]ﬂn — [ H@)g ) dy. 3.0) = [ Tu(@)g () dy,
t=1

where ¢(y) is the data generating process (DGP). In the literature, H,,(9) and J,, (1) are gener-
ally known as the Hessian matrix and the Fisher information matrix; H,,(9) and J,, () are the
empirical Hessian matrix and empirical Fisher information matrix.

In this subsection, to show the equivalence between the posterior test statistics and their fre-
quentist versions, we introduce the following regularity conditions:

Assumption 1: For ¢ = gy + gy, © is a compact subset of RY.

Assumption 2: For any ¢ > 0 and r > 2, the a-mixing condition with the coefficient o (m) =
@) (m%_5> is satisfied for {y;},< ;.

Assumption 3: For all ¢, [, (9) is three-times differentiable on ® almost surely.
t') (9) — l(J ‘ < C] ) || — 9’| in probability,
where ¢/ (y') > 0, sup, E Hcg (yt)H < oo, L3, ( ! (y') - E (Cz (yt)>> L0, and j =
0,1,2.

Assumption 5: For all ¥ € ©, there exists M;(y*) > 0 such that lt(j ) (9)

Assumption 4: For any 99, ¥’

P W) <
M (y ) and sup, HMt ||T+(s < M for some & > 0 and M < oo, where 7 is the same as that
in Assumption 2, and j =0, 1, 2.

Assumption 6: For 0 < j < 1, {l,gj ) (19)} is Lo-near epoch dependent of size —1 and for

j =2, of size —% uniformly on ®.

Assumption 7: For any € > 0:

lim sup  sup lz {El:()]-E[l,(9%)]} <0, (10.4.1)
n—oo 196@\1\](190,8) n —

where N (190, 5) is the open ball of radius ¢ around the true value 9°.

Assumption 8: The prior distribution p (1) is assumed to be thrice continuously differentiable
and0 < p (192) < oo uniformly in n. For some n*, when n > n*, it is assumed that the posterior
distribution p (9|y) is proper and [ |9 p (9]y) d® < +oo.

Remark 10.4.1 For dependent and heterogeneous data, Assumptions 1-7 are standard primitive
conditions to develop the maximum likelihood theory (e.g., consistency and asymptotic normality).
Assumption 1 is the compactness condition. Assumption 2 shows the weak dependence in y,. As-
sumption 3 is the continuity condition. Assumption 4 is the Lipschitz condition for l;. Assumption 5
is the domination condition for l;. Assumption 6 shows weak dependence in l;. Assumption 7 is the
identification condition. Assumption 8 is the primitive condition on the prior distribution. More
details about these regularity conditions can be found in Gallant and White (1988), Wooldridge
(1994), Li et al. (2017, 2022) and Liu et al. (2021).

10.4.1 Li et al. (2022) and LR-type loss function

Spiegelhalter et al. (2002) defined the following Bayesian deviance function to measure the Bayesian
model fit of a candidate model:

D(y) = / n p(y 6. 4)p(6. 1|y)d6dep. (104.2)
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Based on the Bayesian deviance function, we can develop a loss function for hypothesis testing as

follows:
Cp if 8 = 00

co+Inp(y|0,¢) —Inp(y|6o,vp) if 6 #6y °

(e it 6 =0

where ¢; measures the cost of action d;. Let ¢ = ¢; — ¢g > 0 and we have:

AL(Ho,0,%) = 2(Inp(y|0,1) — Inp(y|6o, 1)) — c.

According to the original definition given in (10.3.3), the corresponding test statistic can be
established as:

(o, 0.9) = {

Toy.00) = [ [ AL(HYO.4)0(0.vly)a00y
= [ [ 20up16.9) ~ p(yi00. ) - I p(6. $iy)a0ap. (1043)

Let: o
T, (y. 60) = / / 2 (0 p(y|8,4) — Inp(y 6o, )] p(6, 3|y)dBdep.

Then, T (y, 80) > 0 is equivalent to T (y, 8p) > c. In this case, H is rejected.

The posterior test statistic T (y, @) was first introduced by Li et al. (2014, LZY). To deter-
mine c for hypothesis testing, given some mild regularity conditions, Li et al. (2014) derived the
asymptotic distribution of the test statistic as:

Ti(y,00) + |p+a — tr[=LG) (9)Vaa(D)]| & &' |10 (90) 01 (90) 1311 (90)] e,

where € is a standard multivariate normal variate, %9 = (6o, ¥,)’ is the true value of ¥, J(J¢) is
the Fisher information matrix given by:

300) = 1 [ ~LE(G0)p(5100)dy.

with IJ () being the inverse of J(¥¢), J11(¥9) and 1J;;(1¥9) being the submatrices of J(g)
and IJ(9¥¢), respectively, both corresponding to €. Based on the asymptotic distribution, quantiles
at certain probability levels can be chosen to make statistical inferences.

The asymptotic distribution is not pivotal. To overcome this disadvantage, Li et al. (2022,
LWY?Z) revised the loss function as:

‘@ if 6 =8,
Ao 0 W)= ot [2ply, )~ mply. 0.9) - Dely.00)] it 026, * (O
¢ if =8,
AALOPI= ey [2inply. 8) ~ply.0.9) ~ Duly.00)] it 0£0, 0 104

where D.(y,00) = [Inp(y, 60,%)p(v,00ly)de is the Bayesian complete deviance function
under the null hypothesis. It can be shown that:

AL (H07 0717b) =m (007 97¢) -G

where:

~

m (00, 0,%) = 4Inp(y,¥) — 2Inp(y, 8,4) — 2D.(y, 0o).
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The corresponding test statistic is:
Trwyz(y.60) = Eyyy [m (60,0,)]
— [ [1ply. ) - 21050y 0.9) ~ 2D (5. 00)] p(6. $ly)c6av.
We can show that we:
reject Hy iff Trwyz(y,00) > c. (10.4.6)

Again, one can derive the asymptotic distribution of Ty #(y,80) so that quantiles at certain
probability levels can be chosen to make statistical inferences.

In many models, the MLE 9 is not easy to find. Based on T 11y z(y, 6o), to avoid the use of
1§, Li et al. (2022) defined two test statistics:

T1Lwyz(y,00) = 2[De(y) — De(y, 00)], To.Lwy z(y, 60) = 2 [Inp(y,8,4) — Inp(y, 6o, %)) ,
(10.4.7)
where D.(y), the Bayesian complete deviance function with the prior information, is given by:

Dely) = / / I p(y|6. ) + Inp(8.4)] p(8, xply)d6dp,
and:

Inp(y,0.9) =Inp(y|0,v9) +1np(8,9),Inp(y, 0, %y) = Inp(y|6o, ¥y) + Inp(6y, ).

Under some regularity conditions, Li et al. (2022) showed that under the null and alternative
hypotheses:

Towyz(y,00) = Trowyz(y,00) + a9 + Op(n™2) = To Ly z(y, 00) + Op(n~"/?),
(10.4.8)
and under the null hypothesis:

T1owyz(y,00) + @ = Torwyz(y,00) + Op(n™?) = LR + 0, (n"1/?) 4 x*(g0)-

Thus, we can obtain that:

d d
T1owyz(y,00) + a0 = X*(20), T, wy z(y, 00) = X*(qp)-

Lietal. (2022) explained T rwyz(y, €o) as the Bayesian version of the LR statistic, and T2 iy z(y, 6o)
as the Bayesian plug-in version of LR statistic. In practice, one can use these posterior test statis-
tics for hypothesis testing.

Using the normal mean hypothesis testing example shown above, we can show that:

2 2 2
T o 2ynopy poo
Tl,LWYZ(y7 90) T 52 + nr2 z (y) + o2 + nTQz (y) -1+ 7_2(0_2 + 7172)7
2 2 2
T 2 2\/nopy ,_ poo
Ty rwyz(y,0) = Zrn? m_gz( ) PO m_QZ( ) 2002 4 nr2)’

which is immune to Jeffreys-Lindly-Bartlett’s paradox. If we set 4o = 0 and o = 1, the expression
can be simplified as:

2 2

B nr
2(7)? = 1, Towyz(y. o) = Trnra?

nrt

T1owyz(y,00) = To 0 )7

When n — oo, under the null hypothesis, we have:

Tiowy2(¥,00) +1—2(5)° 2 0, Torwy2(y, 00) — 2 (5)* 2 0.
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10.4.2 Li et al. (2015) and LM-type loss function

Let:
m (00,0,4) = (0 — 0)'Coo(90)(0 — 0), (10.4.9)

where:
_ Olnp(y]9)
B 0
s(19) is the score function of 19, Cyg(??) is the submatrix of C'(9) corresponding to € and is semi-
positive definite, 99 = (09, 1) is the posterior mean of 9 under Hy, and @ is the posterior mean
of 0 under H;.

Based on this quadratic loss, a possible loss function for hypothesis testing can be specified

C(0) = s(9)s(9)',s(V)

as:
£(do, 8, %) = { co+ 1(0 — 8 Cyo(Bo)(0 —B) if 046, (10.4.10)
fa it 6 = 6
cn0 ) ={ 0 4o drcuino o oz (10410

Thus, based on this loss function, a posterior test statistic proposed by Li et al. (2015, LLY)can be
given by:

Trry(y,00) = Eypy [m (60,0, 9)] = /(9 —8)'Cpy(90)(0 — O)p(V|y)dd,  (10.4.12)

where p(9|y) is the posterior distribution of ¢ under H;. Thus, we can further show that:
Reject Hy iff Trry(y,00) > c, (10.4.13)

The proposed test can be viewed as the Bayesian version of the LM test. To show this link, let

the LM statistic (Breusch and Pagan, 1980) be:
1 - L~ ~
LM = —s5(0) [H}, (Do) ] 50(D0).

where 9 = (6, 'L//J\O) is the MLE of ¥ under the null hypothesis, sg(?) is the subvector of s(13)
corresponding to 0, and H,, go(??) is the submatrix of H,, () corresponding to #. Under some
regularity assumptions, when the null hypothesis is true and the likelihood dominates the prior, Li
et al. (2015) showed that:

Ty (y,00) = LM + 0,(1) 5 *(qn).

The test statistic T1 1y (y, o) has a few important properties. For example, the test statistic
is well-defined under an improper prior and immune to Jeffreys-Lindley-Bartlett’s paradox. In
addition, for the latent variable model, it is not difficult to compute with the EM algorithm. Finally,
it follows a pivotal () asymptotically, and thus, it is easy to obtain threshold values.

For the normal mean hypothesis testing, we have:

m'2

T 00) = 2 (7)°.
LLY(yv 0) o2 + nr2 z (y)
which is immune to Jeffreys-Lindly-Bartlett’s paradox. Under the condition that yp = 0, 0 = 1,

we have:

TLT2

Trry(y,to) = Torn2” @)?*.

As n — oo, we can further obtain:
Trry(y,00) — 2 (5)° 50

under the null hypothesis.
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10.4.3 Liu et al. (2021) and Wald-type loss function

Although the test statistic proposed by Li et al. (2015) is convenient to calculate and has some
good properties, it requires evaluating the first-order derivative of the likelihood function. In many
models, particularly in latent variable models, this first-order derivative is not easy to evaluate
because the observed-data likelihood function may not have an analytical expression.! Another
feature of Ty (y,00) is that it requires estimating both the null model and the alternative
model, although under Hy, it is shown to be asymptotically equivalent to the Lagrange Multiplier
(LM) test that requires estimating the null model only. Based on another quadratic loss function,
Liu et al. (2021, LLYZ) proposed a test statistic that is only a by-product of the MCMC output
under H; and thus is easier to compute.
Let the posterior covariance matrix under the alterative hypothesis be:

V(®) = E[(®-9)(9 -9y, ] = /‘w —B)(D — B p(B]y)dv.

where 9 is the posterior mean of 19 under the alternative hypothesis H;. Liu et al. (2021) proposed
the following net loss function for hypothesis testing:

m (09, 0,%) = (0 — ;) [Vee(;’)]_l (0 —69),

where Vg@(’lg) is the submatrix of V/(99) corresponding to @, and [V gg(9)] ! is the inverse matrix
of Vygo(19).
Based on this quadratic loss function, one can specify two possible loss functions for hypoth-

esis testing given by:

- €0 if 8@ =260
£ldo. 0,9) = { ot 1000 [Vos(®)] " (0-00) ito£e, 0 1OHD
o C1 lf 9 — 00

Thus, Liu et al. (2021) proposed the following posterior-based test statistic given by:

Trryz(y, 60) = Egjy [m (600,0,9)] = /(9 —0y) [Vee(ﬁ)]_l (0 — 6o) p(V]y)dd,
(10.4.16)
Consequently, we can show that:

Reject Hj iff TLLyz(y,a()) > c, (10.4.17)

To show the link between Ty z(y, 00) and the Wald statistic, define the Wald statistic by
(Engle, 1984):

Wald = 7 (8 - 90)' —H, (9)] - (6-00). (10.4.18)

where 9 := (5, @Z) is the ML estimate of ¥. Under some regularity assumptions when the null
hypothesis is true and the likelihood dominates the prior, Liu et al. (2021) showed that:

d
Troyz(y,00) — g9 = Wald + 0,(1) = x*(g).

This result is why T 1y z(y, 89) may be viewed as a Bayesian version of the Wald test.

! Advanced techniques, such as automatic differentiation, can help evaluate derivatives. Skaug and Yu (2014) use the
automatic differentiation technique, together with the Laplace approximation, to approximate the likelihood function
of stochastic volatility models.
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Trryz(y,00) shared some nice properties with the test statistic proposed by Li et al. (2015).
First, this test statistic is well-defined under improper prior distributions and is immune to Jeffreys-
Lindley-Bartlett’s paradox. Second, the asymptotic distribution allows threshold values for c to be
easily obtained from the x?(-) distribution to make the decision.

An advantage of Ty z(y,00) compared to Ty (y,0p) is that Ty 1y z(y, 09) does not
require evaluating the first-order derivative of the likelihood function. Another advantage of
Trryz(y,00) over Trpy (y,600) is that T1 1y 2 (y, 69) only must estimate the alternative model
but Ty (y, 0p) must estimate both the null model and alternative model.

For the normal mean hypothesis testing, we have:

2 2 2
nr 2+/npoo o
(—)2 + \/—/'LO P (—) + IU“O

—_ —— + 1.
02 4+ nr? 02 4+ nr? (02 +nr2)7r2 +

Treyz(y,0) =

which is immune Jeffreys-Lindly-Bartlett’s paradox. Under the condition that g = 0, 0 = 1, we

have:

n7'2

T y 0)) = —=2 (¥ 2 + 1.
LLY Z( ) 0) 2 n 22 (y)
Asn — oo, WE can further obtain:

Troyz(y,00) —1—2(5)° >0
under the null hypothesis.

The following table summarizes the posterior-based trinity of the tests and their key properties.
Although constructed from the posterior output, which contains random draws from the Bayesian
posterior distribution, the statistical inference made by the three tests is not conditional to the
data. Instead, the justification of the three tests is performed in a frequentist framework, requiring
repeated sampling from the DGP and an asymptotic argument.

10.5 Simulation Studies

We designed two experiments to examine the finite-sample performance of the proposed test with
simulated data. In the first experiment, we examine the finite performance of the proposed pos-
terior statistics in terms of the empirical size and empirical power. In the second experiment, we
consider a copula model in a similar manner.

10.5.1 Hypothesis testing in a linear regression model

In this subsection, we consider a simple linear regression model as follows:
Yy = a+ Bx; + &4, EiwiidN(0,0'2), i=1,2,---,n,

where x; is randomly drawn from the standard normal distribution and then fixed under repeated
sampling. For point-null hypothesis testing problem, we test whether the slope coefficient is zero:

Hoi/BZO VS Hli/B#O,

For the Bayesian analysis, we choose the prior distributions to be the natural conjugate Normal-
Gamma priors:

1
(@, ) ~ N(po, 0*Vp) and h = —5 ~ G(a, b),

where 19 = (fta, 1), Vo =diag(Vy, V), G(a, b) denotes the gamma distribution with the shape
parameter a and the rate parameter b. Let /i = (X’X) ™" X'Y be the OLS estimator of 1 = (cv, 8)’,
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Summary of posterior-based Trinity of Tests

Trywz Trry Trryz
Expression 2[D(y) — D(y,00)] + q | tr [Cyo(90)Voy(0)] | (0 — moV\ [Vio(9)] - (6 —69)
Prior Improper or proper Improper or propers | Improper or proper
Jeffreys-Lindley’s Paradox | No No No
Asymptotic Theory x(q) X(q) x*(q)
Asymptotic Pivotal Yes Yes Yes
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1 ... 1

/
) . Then, the posterior distributions of ;s and
1T ... Ip

where Y = ( Y1 --- Yn ),,X:(

h under H; are:

M|Y7 h7 Hl ~ N(M170'2V1),

n 1 _ _

hly; Hi ~ G <a + oot 5 (VY + Vg o — i3 1#1)) :

where Vi = (X'X +V; 1) and iy = V(X' X+ Vo) = Vi(X'y + Vy o).
Under Hy, y; = o + ¢; and:

aly; Ho ~ N(pa1,0*Va1),

n 1 MZ ,U2
hly; Hy ~ G —b+-(yy+2 o
ly; Ho (a+27 +2<yy+va v ))

where V1 = # and p101 = Va1 (Z?’:l yi + *‘”/—Z) We randomly draw 10,000 iid samples for
each parameter. Based on these random samples, we calculate the posterior statistics.
Particularly, we set the true values for a* and o* to equal 1 and 1. We consider three different
values for 8%, f* = 0.0,0.1,0.2, and three different sample sizes, n = 50, 500, 2000. For each
case, we simulate data from the true DGP and perform hypothesis testing at the 5% significance
level 1,000 times. We report the rejection rate of Hy across the 1,000 replications.
We consider two types of priors, noninformative prior distributions (NP) and informative prior

distributions (IP) of parameters of interest as follows:
NP : (pa, pg, Vo, V3, a,b) = (o, 8%,10000, 10000, 1, 1).
IP : (pa,pg, Vo, Vs, a,b) = (o, *,10000,0.001, 1, 1).

The empirical size and power of various statistics under different sample sizes are reported in
Table 1 (under uninformative priors) and Table 2 (under informative priors).

The results in Table 1 show good finite sample performance of the proposed posterior statistics
in terms of empirical size and empirical power under uninformative prior distributions (NP). For
the empirical size, when the sample size is small (e.g., n = 50), the empirical sizes of different
statistics reported in this study exhibit some variation, ranging from 4.5% to 6.5%. As the sample
size increases, the empirical sizes of different statistics increasingly agree with each other and are
all estimated to be around the nominal size of 5.0%. The results regarding size are consistent
with our theoretical predictions. Regarding the empirical power, as the sample size increases, and
B* deviates from the hypothesized value under the null hypothesis, the empirical powers of all
statistics reported in this study increase to 100.0%.

Table 2 shows the empirical size and power of these statistics in a linear regression model
under informative prior distributions (IP). The performance of the frequentist LR, Wald, LM
statistics remain the same as those under uninformative prior distributions (NP) reported in Table
1. For the posterior statistics, when informative prior information exists, the empirical size and
power are strongly affected, particularly when the sample size is small. These results are easy to
understand because the prior information matters for the posterior distribution of parameters when
data information is insufficient (e.g., when the sample size is small). More specifically, when
Hj is true, the empirical size deviates markedly downwards from the nominal size of 5.0% (e.g.,
0.0% when n = 50, 500; approximately 1.4% when n = 2,000). However, as the sample size
increases, and the data information begins to dominate the prior information, the empirical sizes
of all the posterior statistics increase to be approximately 5% (n = 20,000). When H; is true,
the empirical powers of T}:YWZ(y, 6o) + qo, TQLYWZ(y, 00) and T 1y 7(y,00) — qp increase
markedly, equaling 100.0% even under a small sample size (n = 50). However, for T1,y (y, 6o),
the empirical power decreases sharply under small sample size, equaling 0% with n = 50, and
gradually recovers to 100.0% as the sample size increases.
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Table 10.1: Empirical size and power of posterior statistics in a linear regression model (NP)

Empirical Size (8* = 0.0)
n =50 n=>500 n=2000

LR 5.2% 41% 4.6%

Wald 5.4% 41% 4.6%

LM 6.5% 43% 4.6%

T o, ¥.00) ta  49% 4.0% 4.6%
Tiywz(¥,60) 4.9% 4.1% 4.6%
Trryvz(y,00) —q 53% 4.1% 4.6%
Trry(y.00) 4.5% 4.0% 47%

Empirical Power (5* = 0.1)
n =50 n=>500 n=2000

LR 9.2% 59.8% 99.4%
Wald 9.2% 59.8% 99.4%
LM 11.5%  60.3% 99.4%

T 0, (v.00) a0 88% 59.7%  99.4%
T2 w2 (v, 00) 8.8%  59.6%  99.4%
Trryz(y,00) —q 92%  60.0% 99.4%
Trry(y,600) 7.9% 59.4% 99.4%
Empirical Power (8* = 0.2)

n=>50 n=>500 n=2000

LR 25.5%  99.8% 100.0%
Wald 258%  99.8% 100.0%
LM 283%  99.8% 100.0%

T yw,(v,.00) +a 239% 99.8%  100.0%
T2,v,(y,00)  238% 99.8%  100.0%
TLLyz(y, 90) —qp 25.7% 99.8% 100.0%
Ty (y,600) 23.0%  99.8% 100.0%
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Table 10.2: Empirical size and power of posterior statistics in a linear regression model (IP)

Empirical Size (6* = 0.0)
n=50 n=500 n=2000 n = 20000

LR 52%  4.1% 4.6% 4.8%

Wald 54%  4.1% 4.6% 4.8%

LM 6.5%  4.3% 4.6% 4.8%
Tiyvwz(y.00) +q 00%  0.0% 1.4% 4.6%
T? w2y, 00) 0.0% 0.0% 1.5% 4.6%
Triyz(y,00)—q9 00%  0.0% 1.4% 4.8%
Trry(y,60) 0.0%  0.0% 1.4% 4.4%

Empirical Power (5* = 0.1)
n=>50 n=>500 n=2000 n=20000

LR 9.2% 59.8% 99.4% 100.0%
Wald 9.2% 59.8% 99.4% 100.0%
LM 11.5%  60.3% 99.4% 100.0%

Thywz(y,600) +q 100.0% 100.0%  100.0% 100.0%
T2 w2y, 00) 100.0% 100.0%  100.0% 100.0%
Trrvz(y,00) —qe 100.0% 100.0%  100.0% 100.0%
Trry(y,6o0) 0.0% 8.4% 97.8% 100.0%
Empirical Power (5* = 0.2)
n=>50 n=>500 n=2000 n=20000

LR 25.5% 99.8% 100.0% 100.0%
Wald 25.8% 99.8% 100.0% 100.0%
LM 28.3% 99.8% 100.0% 100.0%

T yw,(¥,00) g5 100.0% 100.0% 100.0%  100.0%
T2, ,(y,00)  1000% 100.0% 100.0%  100.0%
Trivz(y,00) —q9  100.0% 100.0% 100.0%  100.0%
T.v (y, 00) 00%  815%  1000%  100.0%
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10.5.2 Hypothesis testing in copula models

In this subsection, we use the Gaussian copula model with a Gaussian margin to show the finite
sample performance of the proposed posterior statistics. Let 714, 7o; be two time series random
variables specified as:

Tt = M1+ o121,
Tor = W2 + 0229¢,
C(F(r1t), F(rat); 0) = ®(r1g, m2e5 p),

where p; and o; are the mean and the standard deviation of r;; and C|(+) is the copula function
C'(+) with the dependence parameter p. This model is known to be the same as a bivariate normal
distribution with the correlation coefficient being p. To simulate the data reasonably, we set u* =
(0.02,0.03)" and the true variance covariance matrix as:

. 2 2v2p"
o+ = < T ) (10.5.1)

where p* is the true value of p. We thus test the following hypothesis:
Hy:p=0 vs Hy:p#0.

In this model, we have parameters ¥ = (juy, i, h1, ha, p)’, where (1, u2) and (hy, ho) are
means and precision for the two random normally distributed variables, respectively, and p is of
primary interest. The prior distributions for the parameters are set as:

M1 ~ N(Mlo: 0%0)7 M2 ~ N(N2070%0)7
hy ~ Gamma(s1o,710), ha ~ Gamma(sag,T20),

p~ TN(,UP,O%,”), Ub),

where T'N (-) is the truncated normal distribution.
The uninformative prior distributions (NP) and informative prior distributions (IP) of the pa-
rameters of interest are set as:

. 2 o 2
NP : (10, 20, T10, 7205 5105 520, 7105 7205 Hpy T 55 1D, ub)

= (u%, 113,10000, 10000, 0.01, 0.01, 0.02, 0.04, p*, 10000, —1, 1)

IP : (p10, 1120, 030, 0305 5105 8205 710, 7205 fp; O o, 1b; ub)
— (i, 15, 10000, 10000, 0.01, 0.01, 0.02, 0.04, p*, 0.0009, —1, 1)

To perform a simulation study, we consider three different p* (p* = 0.0,0.1,0.2) and three
different sample sizes n = 100, 500, 5000. For each case, we repeat the data generation process
1,000 times independently and report the rejection rate of Hy based on different statistics at the
5% significance level across the 1,000 replications. The empirical size and power of the proposed
statistics are reported in Table 3 (under uninformative priors) and Table 4 (under informative pri-
ors).

The results in Table 3 exhibit a similar pattern as those in Table 1. For the empirical size
when the sample size is small (e.g., n = 100), marked disagreement among the empirical size of
different statistics appears, and some are far away from the nominal size 5% (e.g., the empirical
size of T'1,1,y z(y, 00)—qg is as large as 13.6%, while the empirical size of T 1,1,y (y, 0p) is as small
as 2.7%). However, as the sample size increases, the empirical size of different statistics reported
in this study converge towards each other, being approximately the nominal size of 5%. Regarding
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Table 10.3: Empirical size and power of posterior statistics in a Gaussian copula model (NP)

Empirical Size (p* = 0.0)

n =100 n =500 n = 5000

LR 5.5% 6.0% 5.7%
Wald 6.3% 6.6% 5.7%
LM 5.5% 6.4% 5.7%
TlLYWZ(y7 6o) + qo 5.9% 6.4% 5.7%
T2 w7 (v, 00) 5.8% 6.1% 5.5%
TLLyz(y, 90) — qp 13.6% 9.4% 6.1%
Trry(y.00) 2.7% 5.4% 5.1%
Empirical Power (p* = 0.1)
n =100 n=>500 n = 5000
LR 15.8% 58.0% 100.0%
Wald 17.0% 58.6% 100.0%
LM 16.1% 58.1% 100.0%
T}:YWZ(y, 0o) +q9 19.5% 58.9% 100.0%
T%YWZ(y, 6o) 15.9% 57.4% 100.0%
Trivz(y.00) —qp  27.2% 59.2% 100.0%
Trry(y,600) 7.0% 53.0% 100.0%
Empirical Power (p* = 0.2)
n =100 n =500 n = 5000
LR 55.1% 99.4% 100.0%
Wald 57.4% 99.4% 100.0%
LM 56.3% 99.4% 100.0%
TlLYWZ(y, 600) +q9 555% 99.4% 100.0%
T%YWZ(y, 6o) 53.5% 99.3% 100.0%
Trivz(y,00) —qp  59.9% 99.3% 100.0%
Ty (y,00) 34.8% 99.0% 100.0%
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Table 10.4: Empirical size and power of posterior statistics in a Gaussian copula model (IP)

Empirical Size (p* = 0.0)
n =100 n=>500 n=>5000 n=>50000

LR 5.5% 6.0% 5.7% 5.0%

Wald 6.3% 6.6% 5.7% 5.0%

LM 5.5% 6.4% 5.7% 5.0%
Thyw,(v.00) ta5  01%  0.1% 3.0% 47%
T2, 1w, (¥, 00) 01%  0.1% 3.3% 4.8%
TLLyz(y, 90) —qp 0.0% 0.1% 4.0% 5.8%
Trry(y,60) 0.0% 0.2% 2.8% 4.5%

Empirical Power (p* = 0.1)
n=100 n =500 n=>5000 n = 50000

LR 15.8% 58.0% 100.0% 100.0%
Wald 17.0% 58.6% 100.0% 100.0%
LM 16.1% 58.1% 100.0% 100.0%

T v, (v,00) +q 100.0% 100.0%  100.0% 100.0%
T? w2 (v, 00) 100.0% 100.0%  100.0% 100.0%
Trryvz(y,00) —qe 100.0%  99.9% 100.0% 100.0%
Trry(y,60) 0.0% 9.1% 100.0% 100.0%
Empirical Power (p* = 0.2)
n =100 n =500 n=>5000 n = 50000

LR 55.1% 99.4% 100.0% 100.0%
Wald 57.4% 99.4% 100.0% 100.0%
LM 56.3% 99.4% 100.0% 100.0%

T w,(y,00) g5 1000% 100.0% 100.0%  100.0%
T2 w,(y,00)  100.0% 100.0% 1000%  100.0%
Trivz(y,00) — g9 100.0% 100.0%  1000%  100.0%
Toy (y,00) 00%  765%  100.0%  100.0%
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the empirical power, as the sample size increases, and as p* deviates from the hypothesised value
under the null hypothesis, the empirical powers of all statistics in this study approach 100%.

Table 4 shows the empirical size and power of these statistics in a Gaussian copula model
under informative prior distributions (IP), which exhibit similar patterns to that in Table 2. The
performance of the frequentist LR, Wald, LM statistics remain the same as those under uninfor-
mative prior distributions (NP) reported in Table 3. For the posterior statistics, the empirical size
and power are strongly affected by strong prior information, particularly under a relatively small
sample size. When Hj is true, the empirical size is distorted and nears 0.0% when n = 100, 500.
As the sample size increases up to 50,000, the empirical sizes of all the posterior statistics increase
to near the nominal size of 5.0%. When H; is true, the empirical powers of T}:YW 4y, 60) + qo,
TZLYWZ(y, 6o) and Tr1yz(y,00) — qp again increase to 100.0%, even with n = 100. How-
ever, for T,y (y, 0o), the empirical power first decreases to 0.0% (n = 100), and then gradually
increases to 100.0% as the sample size increases.

10.6 Empirical Illustrations

This section applies the proposed test statistics to two popular examples in economics and finance.
The first example contains asset pricing models with a ¢ error distributions. The likelihood func-
tions of these models have an analytical form and can also be rewritten in a latent variable form.
The second example is a Gaussian copula model with Gaussian margins.

10.6.1 Hypothesis testing for asset pricing models with multivariate t distribution

Asset pricing models are important models in modern finance and generally assume that the return
distribution is normal. Unfortunately, there has been overwhelming empirical evidence against
normality for asset returns, which have led researchers to investigate asset pricing models with
heavy-tailed distributions. Zhou (1993) and Kan and Zhou (2017) suggested using the multivariate
t distribution to replace the multivariate normal distribution. Based on the efficient market theory,
the asset excess premium should not be statistically different from zero. Finally, the multivariate ¢
distribution can be rewritten in scale-mixture form to become a latent variable model. Thus, based
on Zhang et al. (2019), we consider the following asset pricing model, which has two equivalent
representations:

Rt:a+ﬂ,Ft+€t,€tNt[0,2,V];
| 2 %

Rt = +ﬁ,Ft + &, € ~ N(O. E/wt),wt ~T (57 5) N

where R; is the excess return of portfolio at period ¢ with N x 1 dimension, F'; a K x 1 vector
of factor portfolio excess returns, & a N x 1 vector of intercepts, 3 a N x K vector of scaled
covariances, ¢; the random error, and ¢t = 1,2,--- ,n. For convenience, we restrict 3 to be a
diagonal matrix with diagonal elements U,?,L-,z' =1,2,---,N, and v to be a known constant as
v = 3. The scale-mixture representation of t distribution is used to write the “model.txt” file that
is passed to WinBUGS to generate MCMC outputs from the posterior distribution of parameters.

The data used in this study are monthly returns of 25 portfolios that are constructed at the
end of each month as the intersections of 5 portfolios formed on size (market equity, ME) and 5
portfolios formed on the ratio of book equity to market equity (BE/ME). The Fama/French’s five
factors, market excess return, SMB (Small Minus Big), HML (High Minus Low), RMW (Robust
Minus Weak), CMA(Conservative Minus Aggressive) are used as the explanatory factors (Fama
and French, 2015). The sample period is from July 1963 to July 2021; thus, N = 25, K = 5,
n = 697. These data are freely available from the data library of Kenneth French.?

Zhttp://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Table 10.5: Asset pricing testing under a multivariate t distribution

hypothesis a=0x1y
Tlywz(y,00) + N 72.23
Tlywz(y, 00) 72.45
TLLyz(y,eo)—N 71.59
Trry(y,00) 71.61

Making inferences for asset pricing models has attracted considerable attention in the empiri-
cal asset pricing literature. Avramov and Zhou (2010) provided an excellent review of the literature
on Bayesian portfolio analysis. For Bayesian inference, we must specify the prior distributions for
parameters. In this study, to represent the prior ignorance, we assign some vague conjugate prior
distributions:

a; ~ NJ0,100], 5;; ~ N[0, 100], o2 ~ IG[0.01,0.0001].

In the R language, we use R2ZWinBUGS to obtain the MCMC outputs and draw 100,000 ran-
dom observations from the posterior distributions in each model where the first 40,000 is used as
the burn-in sample, and the next 60,000 iterations is collected with every 3rd observation as an
effective observation. Thus, 20,000 effective observations are considered.

In asset pricing theory, the efficient market theory suggests that the excess premium c should
be zero. Thus, we can write this problem as a hypothesis to be tested as:

H():Oé:OXlN,Hlia#OXlN,

where 1 is an /N-dimensional vector with unit elements.

In section 3, we have shown that the threshold values from Bernardo and Rueda (2002) and Li
and Yu (2012) are difficult to calibrate. Thus, in this study, we only consider the statistics devel-
oped by Li et al. (2015), Liu et al. (2021) and Li et al. (2022). Based on 20,000 MCMC samples,
we calculate the four posterior test statistics, Ty (¥,00), Trryz(y, 00), Tty (¥, 6o), and
T%YW 4y, 00). For more details about computing these test statistics, see Li et al. (2015, 2022)
and Liu et al. (2021). We report the results in Table 5.

From these results, according to the critical values (37.65) from x2(25) under the 5% sig-
nificance level, all the test statistics reject the null hypothesis. Thus, we can conclude that the
mean-variance efficiency does not hold in practice.

10.6.2 Hypothesis testing for copula models

In this subsection, we use the Gaussian copula model with a Gaussian margin to fit real data and
perform hypothesis testing based on the proposed posterior statistics. Recalling the simulation
study in section 5.2, the model is specified as:

1t = H1 + 01214,
rop = U2 + 0222,
C(F(r1), F(ra); 6) = ®(r1g, 7213 p)s

where r1; and r9; are now daily log returns on the S&P 100 and S&P 600 indices at time ¢, i, 0;
are mean and standard deviation of 7, respectively, i = 1,2. ®(-) is the cumulative density
function of bivariate normal distribution. The log likelihood function at time ¢ is:

1
InL; =—In27 — —ln(

1 - P2)  Z+ 25— 2penem
2

h1h2 2(1 —p2) ’
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Table 10.6: Posterior mean and standard error of parameters in a Gaussian copula model

Parameters 11 h1 12 ho p
Posterior Means 0.0361 0.6765 0.0475 0.4938 0.8354
SE 0.0158 0.0116 0.0184 0.0087 0.0036

Table 10.7: Dependence testing based on a Gaussian copula model

hypothesis p=0
T, ,(v.00) +1 | 7333372
T yw2(y,00) 7333.244
Trryz(y,00) —1 | 53074.090
Triy(y, 60) 344.023

where h; = ;12— is the precision parameter, and z;; = (r; — ,ui)h,} / > The required parameters are
9 = (u1, h1, ,&2, ha, p)'; the first four are parameters related to the normal marginal distributions,
and the last one is for the copula function.

The data used in this study are daily percentage returns on the S&P 100 and S&P 600 Indices
from 17 August 1995 to 22 September 2021; thus, 7" = 6122. We are interested in the dependence
between the two series of index returns. Based on the Gaussian copula model with a Gaussian
margin, the hypothesis testing problem can be formulated as:

Hy:p=0,Hy:p#0.
We assign the following prior distributions on parameters:

i ~ N(0,25), i=1,2,
h; ~ Gamma(0.1,1), i=1,2,
p ~ TNJ0,100,—1,1].

We iterate 100,000 times starting at the initial value 6y = (0,1,0,1,0)’, and burn in the first
40,000 of the chain. For the remaining 60,000 observations, we take one of every 3 observations
and finally obtain an effective MCMC output of sample size 20,000 for each parameter. Based
on this MCMC output, we report the parameter estimation results based on the MCMC output in
Table 6 and the values of the proposed posterior statistics in Table 7.

According to the posterior statistics shown in Table 7, all four posterior statistics strongly reject
the null hypothesis that the two series of index returns are uncorrelated at the 5% significance
level. This result is consistent with the expectations that the two indices (SP100, SP600) returns
are naturally correlated with each other by construction. The estimation result for p in Table 6,
which is 0.8354 with a relatively small standard error (0.0036), also provides strong evidence
against the null hypothesis that assumes p = 0.

10.7 Discussion and future research

In this chapter, we review several statistics for hypothesis testing, which can be regarded as the
Bayesian version of the “trinity” of test statistics widely used in the frequentist domain, the LR
test, the LM test and the Wald test. Their asymptotic distributions are discussed based on a set
of regular conditions. We show that these approaches have good theoretical properties and do
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not require tedious additional computations. We also demonstrate the methods using econometric
models with simulation studies and real examples.
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